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Abstract. This paper presents a gesture recognition method for detect-
ing and classifying both cyclic and non-cyclic human motion patterns in
real-time applications. The semantic segmentation of a constantly cap-
tured human motion data stream is a key research topic, especially if
both cyclic and non-cyclic gestures are considered during the human-
computer interaction. The system measures the temporal coherence of
the movements being captured according to its knowledge database, and
once it has a sufficient level of certainty on its observation semantics
the motion pattern is labeled automatically. In this way, our recogni-
tion method is also capable of handling time-varying dynamic gestures.
The effectiveness of the proposed method is demonstrated via recogni-
tion experiments with a triple-axis accelerometer and a 3D tracker used
by various performers.
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1 Introduction

The semantic interpretation of human motion [1] is a key research topic in
various fields, such as human-computer interaction, video-surveillance, robotics,
biomechanics, biometric systems, or multimedia content analysis, amongst oth-
ers. Thus, gesture recognition allows us to communicate with computers at a
higher level of abstraction, adding more intelligence to motion capture and com-
puter vision systems. Moreover, combining such semantic motion information
with other communication channels such as voice or touch, i.e. multimodal in-
terfaces, would lead to a more natural interaction [2]. To achieve the goal of
recognizing motion patterns, three steps must be carried out: (1) the selection
of meaningful motion-features, (2) potential gesture spotting and (3) gesture
classification.

The first step consists of deciding which features derived from the data being
tracked will be used for a semantic interpretation. Depending on the motion
capture or computer vision system, these data could be obtained directly from
sensors or images, but also from the reconstruction of the user’s kinematic body
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structure (e.g, temporal joint positions, angles, velocities, etc). These are usually
chosen beforehand, but there are also some sophisticated approaches that can
make this selection (semi)automatically [3, 4]. Then, motor actions are repre-
sented by templates [5–7] or state-space models [8–12] using these selected data.
The former are static shape patterns containing motion information, while the
latter define the considered instantaneous motion-features as a state, and there-
fore a sequence is considered as a tour going through various states.

The second step consists of segmenting the continuous data stream into tem-
poral regions that might possibly be gestures with a meaning. As stated in
[1], the main difficulties come from the segmentation ambiguity and the spatio-
temporal variability involved. Additionally, gesture spotting is more challenging
when both cyclic and non-cyclic gestures are considered during the interaction,
because cyclic gestures may be performed with a different starting direction and
number of cycles keeping the same meaning (e.g., waving). Hence, there are
methods explicitly designed for non-cyclic gestures which require start and end
pauses [11] and others for cyclic [13] which focus on motion periods.

Finally, the third step consists of labeling the segmented motion with one of
the categories of the knowledge database, or as an unknown motion pattern. The
typical classification procedures found in the literature for motor action recogni-
tion are hidden Markov models (HMMs) [8], dynamic time warping [17], nearest
neighbors [5], dynamic Bayesian networks [10], neural networks [14] and ker-
nel methods such as support vector machines (SVMs) [15] and relevance vector
machines [16].

In this is work we propose a method for gesture spotting and classification
that can cope with both cyclic and non-cyclic time-varying human motion pat-
terns in real-time applications. Both objectives are achieved with a semantic
observation of the performance’s temporal advance, as once the computer knows

that the user is making a certain gesture it can segment the dataflow accordingly.
Unlike other approaches (especially those based on HMMs), our method does
not transform motion into symbols, and allows a measure of the proximity of
new performances to those in the database. This can be useful for motion style
learning tasks, which can lead to motor skills transfer through imitation.

2 Cyclic and Non-Cyclic Gesture Spotting

A system designed for coping with both cyclic and non-cyclic gestures should
label the observed motion patterns after each period of cyclic gestures, and af-
ter each non-cyclic gesture has been performed, even if the user keeps moving,
ignoring other transition movements. Ramanan and Forsyth [15] use joint tra-
jectories per second as motion-features, in order to obtain a continuous stream
of descriptive annotations (one per frame). Their experiments reveal that in this
way choppy annotation streams are produced. Therefore, they need to apply a
smoothing technique, once the observed bit strings are known, obtaining auto-
matic action descriptions quite close to real (no quantitative results are provided
for comparison). Kang et al. [17], whose work is focused on videogame control,
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segment potential gestures by detecting abnormal velocities, frames classified as
static gestures, or frames in which the tracked trajectories have severe curva-
tures, attaining a reliability of 93.36%. However, in this method those gestures
that may include one of these events during its performance cannot be consid-
ered. Stiefmeier and Rogen [18] transform the data stream and gestures into
strings encoding motion vectors and apply an approximate string matching pro-
cedure for the spotting and classification task. They achieved a correct spotting
rate of 82.7% with users performing bicycle maintenance tasks including cyclic
and non-cyclic gestures.

These approaches transform movements into symbol sequences before spot-
ting and classification tasks. Symbols are obtained by clustering neighboring
positions and trajectories in order to define a finite set of possibilities with
which motions can be modeled. This grid allows a higher generality in order to
label different performances of the same gesture in the same way, however at the
same time it may prevent the system from measuring the proximity of different
performance styles.

On the contrary, we propose to measure the spatio-temporal consistency of
the data stream with respect to each of the known gestures, and once a ”clear”
semantic match is obtained, label the period in which this observation has been
made with the corresponding meaning. Thus, the core of our approach relies
on the concept Temporal Advance Counting Algorithm presented by Mena et al.
[12], but goes beyond it by analyzing the advance through a dynamic time buffer
which is increased until the decision is taken, instead of observing a constant
number of recent frames for labeling the most recent one at each time instant.
In this paper we focus on the recognition of gestures performed by a single
”rigid” body (e.g., one hand, the head, etc). The combination of semantic body
part motion descriptions in a multibody structure (i.e., a full human body) is
beyond this scope.

The motion of a body part is defined as a temporally ordered sequence of
motion-features, i.e. vectors containing relevant information for further gesture
classification (e.g., velocities, accelerations, angular variations, etc). Therefore,
the knowledge database is constituted by a set of labeled motion patterns repre-
sented as connected states. The number of states will be the same for all of them
in order to make a balanced computation of the temporal advance in all gesture
candidates. Hence, even though this normalization is obtained through a post-
processing step (concretely adjusting a cubic-spline), the number of states of the
original gestures should not be too different from each other, so that they do
not get too distorted. This may appear to be a major restriction on the kind of
actions that can be modeled together (even after the cubic spline fitting), but the
complexity of these can be higher than those presented in previous approaches
in the field [15, 17, 18]. However, there is a restriction that must be accomplished
and it is that gestures must be independent one of each other, i.e. there must
not be gestures whose complete shape is similar to the part of another.

Algorithm 1 shows how the temporal advance is computed for a motion
sequence of size p with respect to a gesture candidate C. This advance takes into
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consideration the proximity of the recent dataflow states with respect to those
of the gesture. Hence, we call it a weighted temporal advance, where the weight
comes from the inverse of the mean distance of advancing states with respect
to their corresponding nearest ones in the gesture. A higher weighted temporal
advance count means a more accurate approximation to the gesture candidate,
and thus can be used as a quantitative measure for motor skills transfer through
imitation. However, it must be taken into account that in order to avoid a division
by zero this proximity must be limited to a certain minimal value. Note that
multiple states in the observed motion sequence can get matched to the same
state in gesture model, which would mean that there would not be advance in
that case, but this feature is precisely the one that allows to handle time warping
in performed gestures.

Algorithm 1 Weighted Temporal Advance Algorithm

1: procedure WeightedTemporalAdvance(sequence, gestureC)
2: nV otesC ⇐ 0
3: nearestStateIndexC ⇐ −1
4: previousIndexC ⇐ −1
5: sumDistancesC ⇐ 1
6: nearestStateDistanceC ⇐ 0
7: for i = 1 to p do
8: nearestStateIndexC ⇐getNearestStateIndex(sequence[i])
9: nearestStateDistanceC ⇐getNearestStateDistance(sequence[i])

10: if nearestStateIndexC > previousIndexC then
11: nV otesC ⇐ nV otesC + 1
12: sumDistancesC ⇐ sumDistancesC + nearestStateDistanceC

13: end if
14: previousIndexC ⇐ nearestPoseIndexC

15: end for
16: return nV otesC/(sumDistancesC/nV otesC) = nV otes2

C/sumDistancesC ,
where sumDistancesC > 0

17: end procedure

3 Semantic Observation of Temporal Advance

The weighted temporal advance will allow to compute the level of confidence
in the continuous data stream for a semantic gesture spotting. Firstly, we spot
when occurs a variation in the state sequence higher than a certain threshold,
and start the observation from the instant in which that variation was zero. To
do so we apply the algorithm used in [11] for the starting point determination.
Having this threshold allows us to filter small state variations due to noise. Then,
we can start the semantic observation from that point until the system takes a
decision, which could be a gesture detection or doing a reset. Therefore, the
observed segment, i.e. the buffer, increases its size dynamically as new motion-
features are being obtained from the motion capture system. Hence, gesture
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spotting and classification are solved in parallel. There are six conditions that
the observation must accomplish so that a data stream segment is labeled with
a gesture candidate:

(a) It has the highest weighted temporal advance.
(b) The weighted temporal advance is over a threshold.
(c) The number of temporal advances without the distance weight is at least a

certain portion of the number of gesture states.
(d) The observed data stream has at least a certain number of states.
(e) The dataflow has not been still for at least a certain time.
(f) The number of frames in the buffer is not excessive.

If all these conditions are met, apart from labeling the segment, the system
also resets the weighted temporal advance counting and forgets the previous
data, which means that in case a cyclic gesture is being done, when the system
tries to detect again the starting point of the new cycle, the lastest instant that
it may take into consideration will be the latest of the previous segment. On the
contrary, if the system accomplishes conditions (c) and (d), but not (b), or it does
not satisfy conditions (e) or (f), the counting is reset, but no answer is delivered,
because there was not enough confidence on the best candidate. Meanwhile, while
these situations are not met algorithm 1 is applied to the increasing buffer. The
matching procedure is not sensitive to the starting location, which is of special
interest especially for cyclic actions, which can start at any state, because the
weighted temporal advance will be increased independently of it.

This algorithm is fast enough for human-computer interaction with off-the-
shelf equipment, but in case it would be necessary, it may also be possible to
alleviate the computational cost by applying the counting every N frames while
the buffer is increasing and not every frame. Alternatively, taking advantage of
current GPU and multi-core CPU platforms, it is also possible to parallelize the
measurements with respect to gesture candidates, to attain faster framerates, or
otherwise for increasing the database size with a higher number of candidates.

4 Experimental results

In order to evaluate the presented gesture spotting and classification method,
a set of continuous dataflow captures containing a series of hand gestures per-
formed several times is used. The number of correct spotting and classifications
are computed, but also the number of deletions, insertions and substitutions.
Deletions occur when a gesture has not been spotted, insertions when the sys-
tem has spotted a gesture when it should not, and substitutions when it has
spotted a gesture correctly but it has not classified it with the right label. We
build the continuous data streams by concatenating previously segmented ges-
tures so that the obtained results can be visualized in an easier way (otherwise
the continuous dataflows should be segmented manually afterwards). In this way
we exactly know when start and end real gestures and which they are. There
may appear unnatural discontinuities at the boundaries of actions, especially for
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non-cyclic actions, but these are not relevant for this test because, as stated in
Section 3, the weighted temporal advance will be increased independently of the
gesture starting point.

Fig. 1. The dynamic gestures to be performed

Both a triple-axis accelerometer (Wiimote: http://www.nintendo.com/wii)
and a 3D tracker (Flock of Birds: http://www.ascension-tech.com) are used
for the experiment with the same gestures in order to compare results with dif-
ferent motion-features. The motion-features used in the triple-axis accelerometer
are directly the data coming from the sensor, while in the case of the 3D tracker
the velocity vectors derived from captured 3D positions are used. Fig. 1 shows
the gesture classes to be performed in the experiment. For each device, four users
perform 20 times these four gestures and therefore there are 20×4×4 = 320 sam-
ples in total (80 repetitions per gesture). The two confusion matrices obtained
from the leave-one-out training validation method [19] with all these samples are
shown in table 1. It can be seen that gesture classification using the weighted
temporal advance algorithm obtains very high rates: 98.75% using the triple-axis
accelerometer and 100% with the 3D tracker.

Assigned Real Class (3-Axis Accel.)
Class Rew FF Play Stop

Rew 80 0 2 0

FF 0 80 0 0

Play 0 0 78 2

Stop 0 0 0 78

Assigned Real Class (3D Tracker)
Class Rew FF Play Stop

Rew 80 0 0 0

FF 0 80 0 0

Play 0 0 80 0

Stop 0 0 0 80

Table 1. Confusion matrices of the labeled gestures captured with the triple-axis
accelerometer and the 3D tracker respectively, using leave-one-out

For the dataflow automatic segmentation, for each device, a part of the
recorded samples is used to build the knowledge database and the rest to build
the continuous data streams to be evaluated, one for each performer. During the
database training it is possible to obtain the most suitable parameter values for
gesture spotting according to it. These parameters are: (a) normalized number of
states per gesture in the database (NNS), (b) weighted temporal advance thresh-
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old (WTAT) and (c) temporal advance number with respect to the number of
states (TANS). In order to obtain the optimal parameter values, a continuous
dataflow with the database gestures (without resampling) is evaluated with dif-
ferent parameters combinations until the one with the highest recognition rate
is obtained. In our experiments we obtain, with slight variations from case to
case, NNS=12, WTAT=10 and TANS=70% for the triple-axis accelerometer and
NNS=19, WTAT=5 and TANS=70% for the 3D tracker. On the other hand, the
threshold of sequence variation for determining the observation starting point is
set manually for each device through experimentation, so that slight movements
are filtered. In this experiment we test two different alternatives for evaluating
the system: (1) using only one database of 80 samples (5 performances per ges-
ture and user) to evaluate the continuous dataflows of all users with the same
gesture spotting parameter values and (2) using 4 databases of 20 samples (one
per user, 5 performances per gesture) to evaluate the continuous dataflows of
the corresponding users that trained the system.

Case 1 Correct Deleted Inserted Substituted Ground Truth

Subject 1 58 (96.67%) 1 (1.67%) 3 (5%) 1 (1.67%) 60

Subject 2 57 (95%) 3 (5%) 6 (10%) 0 (0%) 60

Subject 3 53 (88.33%) 3 (5%) 13 (21.67%) 4 (6.67%) 60

Subject 4 51 (85%) 3 (5%) 16 (26.67%) 6 (10%) 60

Total 219 (91.25%) 10 (4.16%) 38 (15.83%) 11 (4.58%) 240

Case 2 Correct Deleted Inserted Substituted Ground Truth

Subject 1 60 (100%) 0 (0%) 6 (6.67%) 0 (0%) 60

Subject 2 56 (93.33%) 3 (5%) 12 (20%) 1 (1.67%) 60

Subject 3 56 (93.33%) 2 (3.33%) 6 (10%) 2 (3.33%) 60

Subject 4 50 (83.33%) 8 (13.33%) 13 (21.67%) 2 (3.33%) 60

Total 222 (92.25%) 13 (5.41%) 35 (14.58%) 5 (2.08%) 240

Table 2. Spotting and classification results with the triple-axis accelerometer for dif-
ferent subjects using (1) an overall auto-generated configuration and (2) their own
databases and auto-generated configurations respectively

Table 2 shows the obtained spotting and recognition results of this test using
the triple-axis accelerometer. It can be seen that in both cases remarkable recog-
nition rates are obtained (above 91%), and also that using the overall database
of 80 samples a slightly lower rate (91.25%) than using smaller (20 samples)
but more user oriented ones (92.25%) is achieved. Table 3 shows the obtained
results with the 3D tracker and the user oriented databases (we omit the over-
all database results because similar conclusions to those with the tripe axis
accelerometer are deduced). In this case the obtained results are even better
(94.58%). This improvement is also related to the employed motion-features. In
this case, these have a more direct relation with the performed movements, while
in the case of the triple-axis accelerometer the captured data are influenced by
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gravity apart from the movements themselves. Regarding the computation time,
the heaviest system, i.e. the one using the 80 sample database, runs at 82-98 Hz
which is above real-time performance even if the implementation has not been
parallelized. The system was implemented using C++, and tested on a 2.00 GHz
Intel Celeron 1 GB RAM.

Correct Deleted Inserted Substituted Ground Truth

Subject 1 58 (96.67%) 2 (3.33%) 5 (8.33%) 0 (0%) 60

Subject 2 58 (96.67%) 2 (3.33%) 9 (15%) 0 (0%) 60

Subject 3 56 (93.33%) 3 (5%) 5 (8.33%) 1 (1.67%) 60

Subject 4 55 (91.67%) 4 (6.67%) 4 (6.67%) 1 (1.67%) 60

Total 227 (94.58%) 11 (4.58%) 23 (9.58%) 2 (0.83%) 240

Table 3. Spotting and classification results with the 3D tracker for different subjects
using their own databases and auto-generated configurations
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Fig. 2. Close-up of the semantic gesture spotting and classification using the triple-axis
accelerometer and the 3D tracker respectively

Finally, Fig. 2 shows close-ups of how the semantic observation of the tem-
poral advance segments the data stream with respect to the true start and end
points of gestures being performed one after the other for both motion capture
devices. It can be seen how both the temporal advance and the weighted tem-
poral advance increase their values while the gestures are being recognized and



Gesture Spotting and Classification 9

how the system resets to zero once it has met the necessary conditions to take
a decision. It can also be observed how the decision is taken a few frames before
the real transition from gesture to gesture (marked with vertical dashed lines). It
occurs this way because it has been determined during the training that the an-
swer should be given when the number of temporal advances without the weight
is a bit less than the total number of states per gesture in the database, in order
to obtain better recognition rates.

5 Conclusions and Further Work

In this is work we have presented a method for gesture spotting and classifica-
tion that can cope with both cyclic and non-cyclic time-varying human motion
patterns in real-time applications. The spatio-temporal consistency of the data
stream with respect to each of the known gestures is measured with a weighted
temporal advance counting, where the weight comes from the inverse of the mean
distance of advancing states with respect to their corresponding nearest ones in
the gesture. A higher weighted temporal advance count means a more accurate
approximation to the gesture candidate, and thus can be used as a quantitative
measure for motor skills transfer through imitation. This weighted temporal ad-
vance allows to compute the level of confidence in the continuous data stream
for a semantic gesture spotting.

The semantic observation starts from the instant when a variation in the
state sequence higher than a certain threshold occurs until the system takes
a decision, which could be a gesture detection or doing a reset, depending on
certain conditions related with the temporal advance, the segment size and the
state sequence variation. Hence, gesture spotting and classification are solved in
parallel. Experimental results with gestures performed by various users with a
triple-axis accelerometer and a 3D tracker show the potential of this approach
for human-computer interaction.

Future work will focus on automatizing the selection of the optimal motion-
features for the spotting and recognition of gestures involving different body
parts. Additionally, it will also be explored the combination of semantic body
part motion descriptions in a multibody structure, extending the work done in
this subject in previous approaches such as [15, 20].
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