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Abstract: Automated driving will have a big impact on society, creating new possibilities for mobility and 

reducing road accidents. Current developments aim to provide driver assistance in the form of conditional 

and partial automation. Computer Vision, either alone or combined with other technologies such as radar 

or Lidar, is one of the key technologies of Advanced Driver Assistance Systems (ADAS). The presence of 

vision technologies inside the vehicles is expected to grow as the automation levels increase. However, 

embedding a vision-based driver assistance system supposes a big challenge due to the special features of 

vision algorithms, the existing constrains and the strict requirements that need to be fulfilled. The aim of 

this paper is to show the current progress and future directions in the field of vision-based embedded 

ADAS, bridging the gap between theory and practice. The different hardware and software options are 

reviewed, and design, development and testing considerations are discussed. Additionally, some 

outstanding challenges are also identified.  

 

1. Introduction 

Highly industrialized countries aim to increase mobile efficiency in terms of energy, time and 

resources as well as to reduce traffic related accidents [1]. Although enormous effort has been done to 

increase traffic safety, each year more than 1.2 million people still dies in traffic accidents worldwide. 

Road traffic accidents are the leading cause of death among young people between 15 and 29 years, and 

cost governments around the 3% of GDP [2]. Modern cars include technology to increase car safety and 

more generally road safety. This concept is known as Advanced Driver Assistance Systems (ADAS). 

Safety features are designed to avoid collisions and accidents by using technologies that alert the driver of 

potential dangers or by implementing safeguards and taking over control of the vehicle. 

Computer Vision, together with radar and Lidar, is at the forefront of technologies that enable the 

evolution of ADAS. Radar offers some advantages, such as long detection range (about 1-200 m), and 

capability to operate under extreme weather conditions. However, it is vulnerable to false positives, 

especially around road curves, since it is not able to recognize objects. Camera-based systems have also 

their own limitations. They are very affected by weather conditions, and they are not as reliable as radar 

when obtaining depth information. On the other hand, they have a wider field of view, and more 

importantly, they can recognize and categorize objects. For all these reasons, modern ADAS applications 

use sensor fusion to combine the strengths of all these technologies. Normally, a radar or Lidar sensor is 

used to detect potential candidates, and then, during a second stage, Computer Vision is applied to analyse 

the detected objects. Nevertheless, not all applications need sensor fusion, and some applications such as 
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Lane Departure Warning (LDW) or Driver Fatigue Warning (DFW) can rely entirely on a camera-based 

system. 

The role of Computer Vision in understanding and analysing the driving scene is of great importance 

in order to build more intelligent driver assistance systems. However, the implementation of these 

Computer Vision-based applications in a real automotive environment is not straightforward. The vast 

majority of works of the scientific literature test their driver assistance algorithms on standard PCs. When 

these algorithms are ported to an embedded device, they see their performance degraded and sometimes 

they cannot even be implemented. Since there are several requirements and constrains to be taken into 

account, there is a big gap between what is tested in a standard PC and what finally runs in the embedded 

platform. Furthermore, there is not a standard hardware and software platform, so different solutions have 

been proposed by the industry and the scientific community, as it is usual on still non-mature markets.  

The purpose of this paper is to present an up-to-date survey about different aspects of embedding 

vision-based ADAS. Section 2 lists the main requisites of embedded vision. An overview of the different 

hardware options is presented in Section 3, including a systematic review to study what the most frequent 

options are. Section 4 reviews the available software platforms and Section 5 discusses the design, 

development, validation and verification procedures. Section 6 presents a discussion that includes the main 

technical research challenges that vision-based embedded ADAS face, and finally, Section 7 concludes the 

article. 

2. Requisites of embedded vision  

Embedded vision systems for driver assistance need to fulfil a trade-off between several 

requirements: dependability, real-time performance, low cost, small size, low power consumption, 

flexibility and fast time-to-market. This section reviews these requirements in order to better understand 

the decisions taken during the design stage. 

 

2.1 Dependability 

 

Dependability is defined as the property of a computer system such that reliance can justifiably be 

placed on the service it delivers [3]. In order to determine the overall dependability of a system, several 

attributes are assessed. According to [3], these attributes are: 

 Availability, which means readiness for usage. 

 Reliability, which means continuity of service. 



This paper is a postprint of a paper submitted to and accepted for publication in IET Intelligent Transport Systems and is subject to Institution 

of Engineering and Technology Copyright. The copy of record is available at IET Digital Library http://dx.doi.org/10.1049/iet-its.2016.0026 

 

3 

 

 Safety, which implies the non-occurrence of catastrophic consequences on the environment. 

 Confidentiality, which implies the non-occurrence of unauthorised disclosure of information. 

 Integrity, which implies the non-occurrence of improper alterations of information. 

 Maintainability, which implies the ability to undergo repairs and evolutions. 

If we associate integrity and availability together with confidentiality, we obtain security, which is also 

critical.  

Impairments or threats are undesired circumstances that can affect negatively to a system’s 

dependability. There are the three main impairment forms: 

 Failure: it happens when the delivered service does not fulfil its function. 

 Error: it is generated from an invalid state and implies a discrepancy between the intended 

behaviour of a system and its actual behaviour inside the system boundary. An error may not 

necessarily cause a failure. The system can response to an error using for instance an exception 

handling mechanism, and continue operating fulfilling the functional specifications.  

 Fault: it is the adjudged or hypothesized cause of an error. The presence of a fault in a system may 

or may not lead to a failure 

Faults, errors and failures are therefore related terms, which operate according to a mechanism 

known as Fault-Error-Failure chain [4]. This mechanism works as follows. When a fault is activated it can 

generate an error. If the error is generated, it creates an invalid state than can lead to a failure, which is a 

deviation from the specified behaviour of the system that is observable by a user.  

In Computer Vision systems, failures are generally classified as false positives or false negatives. 

False positives can distract or confuse the driver, or even create dangerous situations. On the other hand, if 

the system does not alarm whenever is necessary, its utility decreases and it can create a feeling of false 

safety, which is also dangerous.  

 

2.2 Real-time performance 

 

The system not only needs a robust algorithm, but it also needs to run it fast enough to assist the 

driver in time. Normally the required real-time frame rate is between 15 and 30 frames per second.  

Obtaining a real-time performance on embedded vision is very challenging, as there is no hardware 

architecture that meets perfectly the necessities of each processing level. Three different processing levels 

can be found in computer vision applications: low-level, mid-level and high-level [5]. Low-level 
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processing is characterized by repetitive operations at pixel level. Typical examples are simple filtering 

operations such as edge detection or noise reduction. This processing is better served using single 

instruction on multiple data (SIMD) architectures. The following processing stage, mid-level, is focused 

on certain regions of interest that meet particular classification criteria. This processing level includes 

operations such as feature extraction, segmentation, object classification or optical flow. This part of the 

algorithm has higher complexity than simple filtering and can only be parallelised to some extent. Finally, 

high-level processing is responsible for decision-making, where sequential processing fits better. Figure 1 

summarises the features of each level of processing (adapted from [6]). 

 
Fig. 1. Features of each level of processing 

 
2.3 Low cost 

 

As explained before, due to the highly competitive market, the developed embedded device should 

have a low economical cost. An automotive optical camera costs around 150 USD [7], which is a 

significant cost. Therefore, it is necessary to minimise product development cost as well as use economical 

hardware for running the vision algorithms.  

 

2.4 Spatial constraints 

 

There is not much space inside a vehicle to install a camera-based system without affecting to the 

field of view of the driver. Furthermore, electronic components are very sensitive to temperature and 

vibrations, so their location inside the vehicle needs to be chosen carefully. A small sized device would 

facilitate a lot its integration.  

 

2.5 Low power consumption 
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Power consumption is an important matter in any embedded system, but it is especially relevant in 

automotive applications, where the energy efficiency is one of the most valuable features of a car. A power 

consumption of less than 3 W can be considered satisfactory [8]. 

 

2.6 Flexibility 

 

The flexibility of the whole system is an important issue to take into account during architecture 

design. A flexible ADAS implementation should be able to be updated easily in order to fix detected bugs. 

Otherwise, an entire hardware replacement would be necessary, which implies higher maintenance costs. 

Flexibility can be achieved by means of software or reconfigurable hardware. 

 

2.7 Short time to market 

 

The designed ADAS application should reach market fast, so it is necessary to choose architectures 

that enable rapid development cycles, which also implies lower development costs. However, this 

requirement often clashes with the requirement of dependability. In order to assure a dependable system, 

rigorous development procedures need to be followed, what makes it difficult to obtain a short time to 

market.  

 

3. Hardware 

3.1 Overview 

 

The explosion of modern driver assistance technologies started with the first DARPA Grand 

Challenges, which made these technologies more visible to the general public. The last of these challenges 

focusing on autonomous driving was the Urban Challenge that took place in 2007 [9]. In that challenge, 

most of the teams used desktop computers or small clusters to run their computing demanding algorithms. 

Those demonstrators were only a proof of concept, so it was not necessary to embed them. 

However, a hardware product that is installed inside a vehicle must be embedded and needs to fulfil 

the requirements of embedded vision systems, as explained in Section 2. There is no hardware architecture 

that meets perfectly all the necessities. This section gives an overview of available options. 
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3.1.1 ASIC: Application-Specific Integrated Circuits (ASIC) are integrated circuits (IC) customized 

for a particular use, rather than intended for general-purpose use. Designers of digital ASICs usually use a 

hardware description language such as Verilog or VHDL, to describe the functionality of ASICs.  

ASICs have the advantages of high performance and low power consumption. They are used only 

for manufacturing high quantity and long series due to their higher initial engineering cost, so they are not 

suitable for rapid prototyping. Additionally they have another important drawback: they are not 

reconfigurable. This means that once they are manufactured, they cannot be reprogrammed. This lack of 

flexibility has led to the use of other alternatives such as Field-Programmable Gate Arrays (FPGA). 

However, there can still be found in the literature some examples of ADAS implementations in ASIC [10, 

11]. This technology was also used by Mobileye to build its products EyeQ [12] and EyeQ2 [13], which 

are composed of dual CPU cores running in parallel with multiple additional dedicated and programmable 

cores. 

 

3.1.2 FPGA: A Field-Programmable Gate Array (FPGA) is an integrated circuit designed to be 

configured by a customer or a designer after manufacturing. They have lower power consumption and they 

are better suited for low-level processing than general purpose hardware, where they clearly outperform 

them. However, they are not so good for the serial processing necessary in mid and high levels.  

 

3.1.3 GPU: Another hardware architecture especially suited for parallel processing is the Graphics 

Processing Unit (GPU). A GPU is a specialized electronic circuit, originally designed to accelerate the 

creation of images intended for output to a display, which nowadays is also used for general-purpose 

computing. GPUs have traditionally been considered as power hungry devices and they are not very 

frequent yet in in-vehicle applications. However, recent solutions such as the DRIVE PX platform based 

on the NVIDIA Tegra X1 SoC [14] are very promising. 

 

3.1.4 DSP: Traditionally, Digital Signal Processors (DSP) have been the first choice in image 

processing applications. DSPs offer single cycle multiply and accumulation operations, in addition to 

parallel processing capabilities and integrated memory blocks. 

DSPs are very attractive for embedded automotive applications since they offer a good price to 

performance ratio. However, they require higher cost compared with other options such as FPGAs, and 

they are not as easy and fast to program as microprocessors. 
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3.1.5 Microprocessors: Microprocessors are the best option for high-level vision processing. 

Additionally, they are easy to program, since it is possible to use the same tools and libraries used for 

standard PC applications. This shortens significantly the learning curve necessary to master a new 

hardware architecture, which in case of FPGAs and GPUs needs to be specially taken into account.  

ARM architectures are leading the microprocessors market, although x86/x64 architectures can also 

be found. The problem with microprocessors is that they are not very well suited for low-level processing. 

As a consequence, complex algorithms usually need additional hardware acceleration.  

 

3.1.6 Hybrid or heterogeneous architectures: There is also a growing trend to use System on Chips 

(SoC) that can integrate two of more architectures in the same physical chip. For example we can have a 

microprocessor with a FPGA, DSP or GPU, obtaining a more efficient data transfer with less power 

consumption. Furthermore, SoCs are usually cheaper and have higher reliability than multi-chip solutions.  

 
3.2 Literature Review 

 

As shown in the previous overview, there is no ideal platform for implementing a vision-based 

vehicle detection algorithm. Therefore, this section presents a systematic review of the literature in order 

to find what the most common embedding options are. The main aim of this systematic review is to 

address the following research question: what embedded hardware platforms are the most popular among 

the scientific community to validate vision-based driver assistance algorithms?.  

Hardware gets obsolete very fast, so it is not worth reviewing papers published a long time ago, 

since the hardware they used on their work is already outdated. So, only papers published since 2012 were 

considered. As we are only taking into account embedded hardware, papers that only implemented their 

method in a standard PC were automatically discarded. 

Titles, abstracts and full articles were subsequently screened applying the inclusion criteria 

mentioned. In addition, references of the included articles were checked for other articles eligible for this 

review (snowball method). As quality criteria, only articles indexed in Web of Science and IEEEXplore 

were considered. 

The search in these databases using the mentioned inclusion criteria resulted in a total of 33 articles. 

The selected articles implemented at least one specific driver assistance application in an embedded 

platform. Articles presenting only generic hardware architectures were discarded. As shown in Table 2, 
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some works implemented more than one driver assistance application. Forward Collision Warning (FCW), 

Lane Departure Warning and traffic sign recognition are the most common applications.  

 

Table 1 Articles included in the systematic review categorised by application 

 
Embedded driver assistance application Articles 

 

Vehicle detection / Forward Collision Warning [15–24]  

Lane departure warning  / Lane keeping and lane changing [15, 23–30]  

Traffic sign recognition [31–36]  

Pedestrian detection [37–39]  

Night-time vehicle taillight detection [40–42]  

Surround view camera [43, 44]  

Free space detection [45] 

Driver fatigue and distraction monitoring [46] 

Full stereo pipeline  [47] 

 

The number of papers found each year for each hardware category is detailed in Table 3, where Mic. 

means Microprocessor and HA means Hardware Accelerator, which includes FPGAs and other kind of 

dedicated hardware accelerators excluding GPUs. 

 

Table 2 Number of publications for embedded vision ADAS per year 

 
Year FPGA DSP Mic. HA+Mic. DSP+Mic. GPU+Mic. HA+DSP 

 

2012 0 1 2 1 1 0 0 

2013 1 0 0 1 1 0 0 

2014 0 2 1 3 0 0 0 

2015 0 2 9 4 2 1 1 

Total 1 5 12 9 4 1 1 

 

It can be noted that most of the works include a microprocessor in their platforms (78.78%). DSPs 

are included in 30.3% of cases, and FPGAs or other dedicated hardware accelerators in the 33.3%. As Fig. 

2 shows, about half of the works (54.54%) use a pure FPGA, DSP or microprocessor solution, probably 

because from the point of view of the design, it is simpler to use a homogeneous platform. The 

microprocessor is also the most common option among the works that use a homogeneous architecture, 
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although DSPs are also quite common. In contrast, only in one case is the whole application embedded in 

a FPGA. The application implemented was a lane departure warning, which is one of the simpler vision-

based driver assistance applications from the computational point of view. This is due to the difficulty of 

implementing the high-level processing part of a computer vision algorithm in a platform that is more 

suited for SIMD.  

 
Fig. 2. Hardware architectures used by the scientific community to embed vision-based ADAS (2012 -2015) 

 

Regarding heterogeneous architectures, systems composed of microcontrollers and hardware 

accelerators are the first choice (27.27% of total cases). Normally, the hardware accelerators are 

synthesised in FPGAs. SoCs composed of DSPs and microcontrollers are less frequent (12.12% of total 

cases).  

It is worth noting that only one paper was found to implement at least some part of the algorithm in 

an embedded GPU. On the other hand, there are numerous research works in the literature where part of 

the vision algorithm is implemented in a GPU using a standard PC. The reason for this difference can be 

that GPUs have a very attractive architecture to boost vision-based algorithms, and are seen like an 

interesting platform by a significant part of the computer vision community. However, they have 

traditionally been very power-hungry devices, and they are not the first choice between experts on 

embedded systems. 

 

4. Software 

Given that every OEM has access to similar-quality hardware and sensors, the embedded software 

becomes the unique feature OEMs have to add value to their products and differentiate their brand. A 

massive change in automotive industry is foreseen, where software will play a very important role. 

FPGA

DSP

Micro.

HA + Micro

DSP+Micro

GPU+Micro

HA+DSP
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Therefore, the software platform used to implement each driver assistance algorithm needs to be carefully 

considered.  

Computer vision applications are implemented in a microprocessor in two main ways: as standalone 

software, or as a process running on top of an Operating System (OS). The first approach obtains better 

computational results, since it does not have the burden of an OS running on background. However, 

although the performance decreases when using an application that runs on an OS, it has many other 

advantages. First, there are great savings in development time and in the maintenance of the system. 

Second, the non-functional requirements of ADAS software systems are better addressed, which are 

scalability, extensibility and portability [48]. Third, when using an operating system the programmers can 

focus on the specific computer vision algorithms without having to care about other low-level details. The 

number of programming errors is reduced when using a higher abstraction level. And last but not least, 

using a real time operating system (RTOS), the strict reliability and safety requirements of embedded 

ADAS are better fulfilled. 

Ideally, the software for ADAS should be developed for its integration into AUTOSAR environment 

[49]. Some of the RTOS that are certified for highest ISO 26262 ASIL tool qualification level D are: 

Green Hills Integrity, ElectroBit Tresos Auto-Core OS, and Microsar OS SafeContext from Vector [50]. 

Normally, these options are only used in the industry, since the academia prefers more open options such 

as Linux-based OS.  

 

5. Design, development, validation and verification 

5.1 Introduction: infeasibility of complete testing 

 

The quantification of the dependability of life-critical computer-based systems has been extensively 

studied in the aeronautics field. In this field, a system is considered ultra-dependable if it has a failure rate 

of less than 10
-7

 failures per hour [51]. If we translate this to the automotive field, it means that in order to 

validate the failure rate of a driver assistance system, it is necessary to conduct at least 10
7 

hours (1141 

years) of operational testing. In fact, this number should be much bigger to achieve statistical significance. 

This leads to the idea of the infeasibility of complete testing [52].  

Due to the impossibility of conducting a statistically significant testing to ensure ultra-dependability, 

other strategies need to be followed. Dependability needs to be considered from the very beginning of the 

design stage until the last validation test. So design, development and validation concepts cannot be 
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completely decoupled from each other and cannot be implemented in isolated sequential stages. There is a 

standard that addresses this, ISO 26262, which sets a methodology that guides the hardware and software 

design, development, validation and verification procedures, following a V-model flow.  

 

5.2 V model  

ISO 26262 is an adaptation of IEC 61508 standard, and it defines functional safety for automotive 

equipment applicable throughout the lifecycle of all automotive electronic and electrical safety-related 

systems, which includes vision-based driver assistance systems. ISO 26262 is based upon a V model as a 

reference process model for the different phases of product development. 

A simplified version of the V model for product development at software level is represented in 

Figure 3. Starting from the upper-left side, the workflow goes from requirements to implementation. At 

each step, the system is typically broken down into smaller components. The right side of the V 

incrementally verifies and validates larger portions of the system. A similar approach is proposed for 

product development at hardware level. 

 

Fig. 3. Product development at software level following a V-model flow 

 

The V model described in ISO 26262 is generic enough to be valid for any automotive electronic 

and electrical safety-related system. Vision-based ADAS contain specific features different from other 

automotive systems that need to be considered. The following subsections discuss specific aspects of the 

design, development, validation and verification steps of vision-based ADAS. 

 

5.3 Design  

 

System design

Specification of SW 
safety requierements

SW architectural design

SW unit design and 
implementation

SW unit testing

SW integration and 
testing

Verification of SW 
safety requierements

Item integration and 
testing
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Not all the operation failures that occur during execution of an ADAS application are responsibility 

of the algorithm. The hardware and software can also fail due to design errors that do not belong to the 

vision algorithm itself. Since it is not possible to develop a system with a zero failure rate [53], the 

Automotive Safety Integrity Level (ASIL) risk level categories are used. A tolerable failure rate is 

assigned to each application in order to quantify the degree of rigor that should be applied in the 

development, implementation and verification stages.  

There are four ASIL levels, A, B, C and D, arranged in increasing order of integrity requirements. 

Each hazardous event is assigned an ASIL based on the combination of three parameters: severity (extent 

of human harm), probability of exposure to operational situations, and controllability (ability for persons at 

risk to take action to avoid harm) [54]. A system that requires an ASIL A would only represent likely 

potential for minor injuries, while a system that represents likely potential for severely life-threatening or 

fatal injury would need an ASIL D (see Table 1). A system can be decomposed into several different 

elements, and then, a high ASIL can be met by having redundant components working together, each one 

with lower ASIL than the overall system. 

 

Table 3 Automotive Safety Integrity Levels 

 

ASIL level Consequences of a failure 

 

A Potential for minor injuries 

B Possible major injuries or one fatality 

C Possible fatalities 

D Possible fatalities in the community 

 

This can be achieved implementing for example the monitor/actuator architecture proposed in [52]. 

In this architecture, the primary functions are performed by one module (the actuator), and an additional 

module is responsible of monitoring the correct functioning of the prior module. If the monitor is designed 

with an ASIL high enough, the actuator can be designed with a lower ASIL.  

 

 

5.4 Development  

 

The seamless synchronisation and fusion of the camera output with the rest of vehicle sensor outputs 

supposes a great challenge. In order to cope with this problem, practitioners use middleware created 
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specifically for automotive applications. Two of the most used ones are EB Assist ADTF [55] and 

RTMaps [56]. Other options include Polysync, BASELABS and vADASdeveloper by Vector. 

Another big challenge of embedding a vision algorithm is to run it in real time in the target 

embedded hardware platform. The frame rate of the overall driver assistance system (FPSADAS) is limited 

by the frame rate of the camera (FPScamera) and the processing time of the application (Tproc): 

 

(1) 𝐹𝑃𝑆𝐴𝐷𝐴𝑆 = 𝑚𝑖𝑛 (
1

𝑇𝑝𝑟𝑜𝑐
, 𝐹𝑃𝑆𝑐𝑎𝑚𝑒𝑟𝑎) 

 

Automotive cameras normally have a maximum frame rate of 30 or 60 FPS. So if the software is 

able to run in a higher frequency, the camera will be the one imposing the overall frame rate of the system. 

On the contrary, if the software runs too slow, it will be the bottleneck of the system. It is important to 

note that the total processing time of the application, Tproc, must include the image capture time. 

The frame rates and the processing times of the driver assistance systems implemented in the articles 

studied in the literature review of Section 3 are detailed in Table 4. Some of the articles only indicated the 

final frame rate, but they did not clarify whether the bottleneck was the camera or the software. For 

instance, if one only says that the frame rate is 30 FPS, which is a typical camera frame rate configuration, 

we cannot know if this is due to the camera limitation or due to the algorithm implementation. Other 

articles only indicated the processing time of the algorithm, and they did not comment anything about the 

final frame rate of the overall system. A comprehensive study of a vision-based embedded system 

performance should include a detailed time profiling of the implemented software and also the overall 

frame rate of the system considering the selected camera and the rest of the hardware. 

 

Table 4 Details about the articles included in the systematic review  

 
Article Frame rate 

(FPS) 

Proc. Time (ms). Resolution 

 

[15] 32 31.08 ? 

[40] 8 132 320x240 

[31] 0.5 1020 ? 

[43] 30 ? 480x204 

[41] 12 79.7 720x480 

[25] 40 ? 752x320 

[26] 22 ? 320x240 
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We have calculated the median, mean and standard deviation values of the data collected from the 

literature and the results are listed in Table 5. We have eliminated the outlier of [31], which presented an 

implementation that was very far from real time. The obtained median frame rate is 27.5 FPS and the 

mean value is 25.86 FPS. These results are in line with what stated in Section 2, where it was said that 

normally the required real-time frame rate is between 15 and 30 frames per second. The median and mean 

processing times are 31.99 ms and 44.89 ms respectively, which are also in line with the previous 

statement. In this case the standard deviation is very high, which is explained by the great differences in 

the computational complexity of different vision algorithms. 

 

 

Table 5 Median, mean and standard deviation values for frame rate and processing time  

[16] 30 ? 320x240 

[44] 30 ? 1280x720 

[32] 12 ? ? 

[47] 60 2 752x480 

[33] ? 16 640x480 

[17] 18 ? 640x480 

[27] ? 13 ? 

[28] 30 9.596 320x240 

[18] ? 11.85 320x240 

[19] ? 31 ? 

[20] 30 ? 640x480 

[21] 14 64.29 640x480 

[29] 16.63 45.31-49.26 640 × 480 

[37] ? 65 720x480 

[42] 5.46 183.16 ? 

[22] (FWC) 10 48.810 640x480 

[22] (LDW) 30 32.898 640x480 

[34] 43 23.25 1920 × 720 

[23] 6-8 110 384 × 216 

[30] 25 ? ? 

[38] 30.73 32.54 800x480 

[39] 20 ? 640x480 

[46] 6 ? 320x180 

[36] 60 ? 1920x1080 
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Most of the works in the literature (83.33 %) achieve the real time objective using an image 

resolution between 320x240 and 752x480 (see Table 4), thus between QVGA and WVGA. The most 

frequent resolutions are 320x240 (20.83 %) and 640x480 (33.33 %). The decision of choosing a camera 

image resolution is determined essentially by three factors: computing limitations, the economic cost of 

the camera sensor and the necessities of the computer vision algorithm.  Each vision algorithm demands a 

minimum image resolution. For instance, traffic sign recognition requires higher resolutions than other 

algorithms, as it can be concluded from the analysis of the literature (see Table 8 from Appendices). 

If it is not possible to run the algorithm in real-time with the required resolution, it is necessary to 

take one of these actions: upgrade the hardware, choose another algorithm or optimise the current one. 

When the current algorithm is not very far from running it in real-time, the latter option is normally chosen. 

Some good practices and procedures to optimise vision-based driver assistance algorithms are detailed in 

[18]. Having strict coding rules is also fundamental, such as the ones proposed by the Motor Industry 

Software Reliability Association (MISRA) [57]. MISRA developed MISRA C and MISRA C++ software 

coding guidelines, which have the objective to facilitate code safety, portability and reliability in the 

context of embedded systems. 

If the system is hard real time, not only the computational performance is important but also making 

the performance predictable. Just improving the average performance may not be enough. For instance, 

pipelining can improve performance on streaming stages but may not help satisfying hard real-time 

requirements. It is necessary to meet the system deadlines, so the software tasks need to be designed with 

this in mind. Assigning higher priority to the most time-critical tasks allows using a slower/cheaper 

processor while satisfying real-time constraints [5]. 

Vision systems based on supervised learning need to be trained with datasets that cover all the 

possible cases. In a vision-based driver assistance application it implies capturing data with different 

illumination, weather, road and driving conditions. Once the video compilation is finished, it is necessary 

to annotate all the objects and events that have been recorded and need to be detected by the algorithm. 

Traditionally, this video annotation has been done manually, having dedicated workers labelling each 

 Median Mean. Standard deviation 

 

Processing time (ms) 31.99 44.89 41.84 

Frame rate (FPS) 27.5 25.86 15.31 
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frame. However, as the size of the video databases grow, this solution becomes non-feasible. Video 

annotation tools, such as Vatic [58] or Viulib’s Video Annotator [59], make it easier to build massive, 

affordable video data sets. The collected video datasets are not only useful for developing new functions 

and improving current systems, but they are also useful for a first validation in laboratory. 

 

 

5.5 Validation and verification 

 

Driver assistance or automated driving functions cannot disturb normal driving conditions and 

should at least be as safe as unassisted manual driving. Therefore, a big effort should be spent on 

validation and verification stages. According to [60], validation is the assurance that a product, service, or 

system meets the needs of the customer and other identified stakeholders. It often involves acceptance and 

suitability with external customers. While verification involves an evaluation of whether or not a product, 

service, or system complies with a regulation, requirement, specification, or imposed condition. It is often 

an internal process.  

As explained before, the ISO 26262 standard guides the hardware and software design process and 

also sets acceptance criteria for each level of integration that must be fulfilled by testing. However, it is a 

generic approach and it does not detail any testing strategy that can lead to an efficient validation of 

vision-based driver assistance functionalities. The big problem is that existing analytical methods used in 

other fields are not useful here, due to the complexity and the wide diversity of driving scenarios and 

situations. In practice, algorithm verification and validation is currently done using brute-force methods 

that are extremely costly in money and time. Suppliers spend a lot of time gathering datasets that cover all 

the possible cases. As a consequence, usually, more time is spent in testing and validating a driver 

assistance system than developing the algorithm. 

Computer vision algorithms have traditionally been tested against video datasets. In vision-based 

driver assistance algorithms, the same approach is used for a preliminary in-laboratory validation. As 

explained before, it is extremely costly to gather the required video datasets. So it is now becoming quite 

common for researchers to release datasets, what facilitates the algorithm testing step for small research 

groups. Perhaps the best known public dataset is the KITTI Vision Benchmark Suite [61], created by 

Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago, which contains about 

180 GB of videos recorded in different conditions. Although open datasets are useful for small research 
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groups and universities, vehicle manufacturers and TIER 1 suppliers have their own datasets that are much 

bigger, containing several petabytes of video data.  

Normally, algorithms are first evaluated on a PC using some performance metrics. The definition of 

the most common ones are presented in Table 6, where TP means number of true positives, TN means 

number of true negatives, FP means number of false positives and FN means number of false negatives.  

 

Table 6 Performance metrics 

 

Performance metric Definition 

 

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

True positive rate / Detection rate / Recall 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Precision 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

False negative rate 𝐹𝑁

𝐹𝑁 + 𝑇𝑃
 

False positive rate 𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

 

The performance results obtained by the articles included in the literature review of Section 3 are 

presented in Table 7. In some articles, different results were given depending on the driving conditions. In 

these cases, the average value was considered.  

 

Table 7 Performance results in the articles included in the literature review  

 
Article Accuracy (%) Recall (%) Precision (%) False negative rate (%) False positive rate (%) 

 

[15] (LDW) ? 97.11 ? ? ? 

[15] (FCW) ? 99.22 ? ? ? 

[40] ? 79 ? ? 10.8 

[31] ? 89.9 ? ? ? 

[43] ? 89.33 ? 10.66 14.5 

[41] ? 92.08 ? ? ? 

[25] 97 ? ? ? ? 

[16] ? 99.29 ? ? 0.57 

[32] ? 93.24 ? ? ? 
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[33] ? 82 ? ? ? 

[17] 96 ? ? ? ? 

[28] ? 95 91 ? ? 

[18] ? 71.7 75 ? ? 

[19] ? 98.4 93.3 ? ? 

[20] 91.3 ? ? ? ? 

[21] ? 81.78 88.48 ? ? 

[29] ? >90 ? ? ? 

[37] ? 92.14 ? ? ? 

[42] ? 93.02 ? ? 2.81 

[34] 98.47 ? ? ? ? 

[23] Obstacle 

detection 

? 98.4 99.4 ? ? 

[23] Lane 

detection 

? 98.1 94.5 ? ? 

[24] Obstacle 

detection 

? 99.04 ? 0.96 0.85 

[24] Lane 

detection 

? >95 ? ? <2 

[38] Pedestrian 

detection 

80 36 96 ? ? 

[38] License plate 

recognition 

74 72 100 ? ? 

 

Median 93.65 92.58 93.90 - 2.40 

Mean 89.46 88.26 92.21 - 5.25 

Std. deviation 10.12 14.39 7.97 - 5.90 

 

The median, mean and standard deviation performance results are also included in Table 7. The 

median accuracy, recall and precision values are all above 90%. The standard deviation in the three cases 

is around 10%, which is reasonable since there are significant differences in the maturity level of the 

different driver assistance algorithms implemented. The recall is the most used metric as it is calculated in 

almost all works. Regarding the false positive and false negative rates, the differences here are bigger. The 

sample size of the false negative rates is too small to draw conclusions, but in the case of the false positive 

rates, part of the reason of the high standard deviation value might be that some works prioritise 

maximising the true positive number with the drawback of increasing the false positive number. 
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It is important to note that it is not possible to make a completely fair comparison as there is not any 

standard procedure for collecting and labelling the video data sets used for calculating these metrics. Not 

only this, the length and variety of the data sets differ significantly from one work to another. This leads to 

a challenge that has not been solved yet: the standardisation of the preparation and validation of evaluation 

data sets. The average 90% obtained on accuracy, recall and precision metrics also seems quite low for a 

real deployment. This leads to another unsolved question: what are the minimum threshold values that are 

required in the performance metrics? This question is related to the concept of infeasibility of complete 

testing introduced in Section 5.1 and to the commented complexity and wide diversity of driving scenarios 

and situations 

The testing done in the PC is useful to get some idea of the algorithm’s performance, but further 

testing is needed in the embedded platform. Vision-based embedded systems, as well as other kind of 

driver assistance systems, are normally tested in three stages [62]: 

 Testing on simulators. 

 Testing on test tracks. 

 Testing on public roads. 

There are numerous simulators to test driver assistance applications. Among the ones that are free, 

Racer [63] is probably the most known. Other proprietary options include SiVIC [64] and PreScan [65]. A 

more detailed review of simulators for testing ADAS can be found in [66].  

The next is step is testing in test tracks. Validation on the test track is done gradually, first assuring 

that all components are working independently. Then, driving manoeuvres are tested, starting from the 

most basic ones, and increasingly adding more complicated manoeuvres to the testing catalogue [62].  

The last step is testing on public roads. Since the first DARPA challenges, the importance of 

extensive on road testing has always been perceived as a core requirement before the public deployment of 

a driver assistance technology. There are several articles in the literature that present the conclusions 

obtained after field tests (see [67] for a brief overview). Normally all tests include instrumented cars with 

data gathering and recording equipment and extendable in-car platforms. 

 

6. Discussion 

The strict requirements and constrains of embedded ADAS guide the decisions taken during the 

whole cycle of design, development, validation and verification. This paper has shown that there is no 

ideal implementation platform for vision-based ADAS that meets perfectly all these requirements. The 
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specific features of vision-based algorithms can make one conclude that the best option is a hybrid 

platform composed of a microprocessor and a hardware accelerator such as a FPGA or a GPU. The low-

level processing part would be integrated in hardware, and the rest of the algorithm in the microprocessor. 

However, only half of the works found in the literature use this option. Almost all the remaining works are 

based on a pure microprocessor or DSP implementation. This division in the research community could be 

caused by the difficulty of dealing with hybrid architectures. Even as some hardware/software codesign 

approaches exist [68], they still involves a much bigger effort than a pure software implementation. A 

hardware implementation can achieve much better performance with lower power consumption than a 

software implementation. However, it requires much more time and effort in the design and test, implying 

higher development costs. Although some reconfigurable options exist, hardware implementations are still 

significantly less flexible than software options. Having a good balance between hardware and software is 

essential when designing the whole architecture. 

Usually the first prototype version does not achieve the desired real-time performance and requires 

some optimisations. However, an optimisation too dependent on the hardware architecture prevents a fast 

porting to a different hardware or it can even make it impossible. Considering the pace at which 

hardware’s processing speed advances, in the future probably more generous hardware platforms will be 

used and low-level code optimisation will not be necessary.  

It is also important to minimise false positive and false negative rates of ADAS, which are not 

always caused by the algorithm. Some decisions taken during the embedding stage can also influence. For 

example, camera calibration, image resolution, infrared illumination in case of driver drowsiness detection, 

etc. For this reason, it is very important to pay much attention to all these factors, and not concentrate only 

on the algorithm. It is a frequent error in computer vision practitioners to focus only in the algorithms, 

without even being aware of the impact of other factors in the final output. 

Previous sections have described the current progress in embedding vision-based ADAS. Human 

drivers are still responsible of monitoring the driving environment in currently deployed ADAS, what 

corresponds to automation level 1 or level 2 in SAE Standard J3016 [69]. There are still several technical 

challenges that we need to overcome to advance in embedding more autonomous vision-based driving 

functionalities (SAE levels 3 to 5):  

 One of the biggest problems when embedding an algorithm is that normally its performance 

on the target platform is not predictable. Vision algorithms are first programmed in a 

standard PC, and then are ported to the target embedded platform. The problem is that 
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embedded platforms have significantly less processing power than PCs and they usually have 

a different architecture, so until you test your algorithm in the embedded platform you are 

not sure of its final performance. There should be more research focused on performance 

prediction for image processing algorithms embedded on different platforms. There are some 

works in the literature focused on this topic [70–73], but there is still much work to be done.  

 The current video annotation tools are still mostly manual. It is necessary to advance on more 

automatic annotation tools in order to reduce the time and cost needed to develop and test 

new algorithms. Additionally, major improvements in software engineering are needed. 

 Outside the autonomous driving sector, safety-of-life critical decisions are never assigned to 

software systems. For instance, in the medical domain, software is used to support physicians 

by making recommendations about treatments for patients, but the final decisions are always 

taken by a human physician. In autonomous driving, the decisions taken can have similar life 

or death consequences. Major improvements in software engineering are also required here 

before those decisions can be trusted without a previous human approval. 

 Several potential cyberattacks that could affect vision components of future automated 

vehicles have been identified [74]. Some public demonstrations of hacking attacks with real 

cars have also been done. Cybersecurity methods to protect against attacks should be further 

studied.  

 In other sectors such as the aerospace industry, the classical approach to ensuring high 

dependability of systems involves designing in redundancy. It is an effective approach, but it 

raises a lot the economic cost of products. Cars, in contrast to airplanes, are mass-market 

products, so the prices need to be kept low. Consequently, new methods should be studied to 

reduce the dependency on hardware redundancy.  

 Current design flows consider safety concerns from the very beginning; however, it is still 

necessary to incorporate ethical considerations. The wide adoption of autonomous or semi-

autonomous vehicles promises to dramatically reduce the number of road accidents, but some 

accidents will be unavoidable and will require the system to choose the best option from the 

ethical point of view. For example, choosing whether to run over a group of pedestrians or to 

sacrifice the passenger by driving into a wall [75]. 
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7. Conclusions 

This article provided an insight into vision-based embedded ADAS. The key elements of this field 

were explained, starting from the features and requirements that these systems have. These features and 

requirements guide all decisions taken about hardware and software. The balance between the three levels 

of processing of the implemented vision algorithm (low-level, mid-level and high-level), is of big 

importance when designing both the hardware architecture and the finally optimised software. It is also 

remarkable that is not possible to fulfil completely all the requirements, so there must be a trade-off 

between the several design requisites. 

This article also reviews the hardware of software options for embedding vision-based ADAS. To 

the best knowledge of the authors, this is the first time that a systematic review about what embedded 

hardware platforms are the most popular among the scientific community is presented. This study is useful 

not only to show a comprehensive overview of what hardware architectures are currently used for vision-

based ADAS, but also to infer future trends. Regarding software, several important aspects were discussed, 

such as the design flow, the operating systems, the importance of frame rate and image resolution, or the 

annotation tools that are useful to train the supervised machine learning algorithms. The importance of 

validation and verification stages is also reflected in the article, with a brief review of current approaches. 

To conclude, it is important to note that there are still some challenges and open research questions 

that need to be addressed in order to advance towards a more autonomous and reliable driving. The 

automotive industry and the research community have achieved important milestones but there is still a 

long way to go, and there are many difficulties to overcome before the final objective of fully automated 

driving is reached. We believe that computer vision will play a key role here. However, it is not only 

important to improve current algorithms, but is also essential to focus on developing new methods, tools 

and architectures to embed them, in order to reduce the burden that this step involves today. 
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10.  Appendices  

 
Table 8 Details about the articles included in the systematic review  

 
Article Year Application Platform FPS. Resolution 

 

[15] 2012 FCW and LDW DSP: TMS320 DM6437  32 ? 

[40] 2012 Night-time taillight detection Mobile device with 1GHz CPU and Android 3.0 8 320x240 

[31] 2012 Traffic sign recognition Smartphone: Iphone 3GS  0.5 ? 

[43] 2012 Surround view camera FPGA + CPU 30 480x204 

[41] 2012 Night-time taillight detection ARM+DSP: TI OMAP3530 12 720x480 

[25] 2013 LDW FPGA 40 752x320 

[26] 2013 LDW FPGA with a softcore processor: MicroBlaze 22 320x240 

[16] 2013 Vehicle detection DSP+Micro.: TIDM3730 30 320x240 

[44] 2014 Surround view camera 2 DSP C66x cores 30 1280x720 

[32] 2014 Traffic sign recognition FPGA + soft-core processor: Xilinx Virtex 6 12.4 ? 

[47] 2014 Full stereo pipeline FPGA and mobile CPU 60 752x480 
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[33] 2014 Traffic sign recognition FPGA+PowerPC: Virtex4 ? ? 

[17] 2014 Vehicle detection PCM-9362 Intel embedded platform  18 640x480 

[27] 2014 Lane keeping and lane 

changing 

DSP: eZdspF2812 ? ? 

[28] 2015 LDW ARM+FPGA: Xilinx Zynq 30 320x240 

[18] 2015 Vehicle detection Embedded computer: Nexcom VTC 7120-BK  84 320x240 

[19] 2015 Vehicle detection Mobile device developed by Nokia ? ? 

[20] 2015 Vehicle detection Mobile devices: Sony Xperia Zl and Gsmart 

M1V2 

30 640x480 

[21] 2015 Vehicle detection DSP 14 640x480 

[29] 2015 LDW Snapdragon 600 embedded processor 16.63 640 × 480 

[37] 2015 Pedestrian detection DSP: TI DM648 DSP ? 720x480 

[42] 2015 Taillight detection and 

traffic sign recognition 

CITRIC Smart Camera Platform 5.46 ? 

[45] 2015 Free space detection FPGA+DSP ? ? 

[22] 2015 Vehicle detection Multi-core processor, accelerators, and a RISC 

core: TMPV7506XBG SoC 

10 640x480 

[22] 2015 LDW Multi-core processor, accelerators, and a RISC 

core: TMPV7506XBG SoC 

30 640x480 

[34] 2015 Traffic sign recognition DSP +ARM: TI DM6467 43 1920 × 720 

[23] 2015 FCW+LDW Tablet: LG Optimus V900 Pad  6-8 384 × 216 

[30] 2015 LDW TDA2x SoC: 2 DSP, 2 ARM cores,  4 HW 

accelerators 

25 ? 

[24] 2015 LDW iMX6Q board with an ARM9Q ? ? 

[38] 2015 Pedestrian detection and 

license plate recognition 

GPU+Micro.: NVIDIA Jetson  30.73 800x480 

[39] 2015 Pedestrian detection 2 mobile devices: Samsung Galaxy Tab Pro T325 

tablet and Sony Xperia Z1 smartphone  

20 640x480 

[35] 2015 Traffic sign recognition FPGA+Micro: Xilinx Zynq ? ? 

[46] 2015 Driver fatigue and 

distraction monitoring 

Smartphone: Xiaomi Redmi 1S  6 320x180 

[36] 2015 Traffic sign recognition FPGA+Mircro.: Spartan-6-FPGA 60 1920x1080 

 


