
This paper is a postprint of a paper submitted to and accepted for publication in IET Intelligent Transport Systems and is

subject to Institution of Engineering and Technology Copyright. The copy of record is available at IET Digital Library

http://dx.doi.org/10.1049/iet-its.2016.0026

1

Embedding Vision-based Advanced Driver Assistance Systems: a
Survey

Gorka Velez

 1*
, Oihana Otaegui

1

1

Vicomtech-IK4, Paseo Mikeletegi 57, San Sebastian, Spain
*
gvelez@vicomtech.org

Abstract: Automated driving will have a big impact on society, creating new possibilities for mobility and

reducing road accidents. Current developments aim to provide driver assistance in the form of conditional

and partial automation. Computer Vision, either alone or combined with other technologies such as radar

or Lidar, is one of the key technologies of Advanced Driver Assistance Systems (ADAS). The presence of

vision technologies inside the vehicles is expected to grow as the automation levels increase. However,

embedding a vision-based driver assistance system supposes a big challenge due to the special features of

vision algorithms, the existing constrains and the strict requirements that need to be fulfilled. The aim of

this paper is to show the current progress and future directions in the field of vision-based embedded

ADAS, bridging the gap between theory and practice. The different hardware and software options are

reviewed, and design, development and testing considerations are discussed. Additionally, some

outstanding challenges are also identified.

1. Introduction

Highly industrialized countries aim to increase mobile efficiency in terms of energy, time and

resources as well as to reduce traffic related accidents [1]. Although enormous effort has been done to

increase traffic safety, each year more than 1.2 million people still dies in traffic accidents worldwide.

Road traffic accidents are the leading cause of death among young people between 15 and 29 years, and

cost governments around the 3% of GDP [2]. Modern cars include technology to increase car safety and

more generally road safety. This concept is known as Advanced Driver Assistance Systems (ADAS).

Safety features are designed to avoid collisions and accidents by using technologies that alert the driver of

potential dangers or by implementing safeguards and taking over control of the vehicle.

Computer Vision, together with radar and Lidar, is at the forefront of technologies that enable the

evolution of ADAS. Radar offers some advantages, such as long detection range (about 1-200 m), and

capability to operate under extreme weather conditions. However, it is vulnerable to false positives,

especially around road curves, since it is not able to recognize objects. Camera-based systems have also

their own limitations. They are very affected by weather conditions, and they are not as reliable as radar

when obtaining depth information. On the other hand, they have a wider field of view, and more

importantly, they can recognize and categorize objects. For all these reasons, modern ADAS applications

use sensor fusion to combine the strengths of all these technologies. Normally, a radar or Lidar sensor is

used to detect potential candidates, and then, during a second stage, Computer Vision is applied to analyse

the detected objects. Nevertheless, not all applications need sensor fusion, and some applications such as

mailto:*gvelez@vicomtech.org

This paper is a postprint of a paper submitted to and accepted for publication in IET Intelligent Transport Systems and is subject to Institution

of Engineering and Technology Copyright. The copy of record is available at IET Digital Library http://dx.doi.org/10.1049/iet-its.2016.0026

2

Lane Departure Warning (LDW) or Driver Fatigue Warning (DFW) can rely entirely on a camera-based

system.

The role of Computer Vision in understanding and analysing the driving scene is of great importance

in order to build more intelligent driver assistance systems. However, the implementation of these

Computer Vision-based applications in a real automotive environment is not straightforward. The vast

majority of works of the scientific literature test their driver assistance algorithms on standard PCs. When

these algorithms are ported to an embedded device, they see their performance degraded and sometimes

they cannot even be implemented. Since there are several requirements and constrains to be taken into

account, there is a big gap between what is tested in a standard PC and what finally runs in the embedded

platform. Furthermore, there is not a standard hardware and software platform, so different solutions have

been proposed by the industry and the scientific community, as it is usual on still non-mature markets.

The purpose of this paper is to present an up-to-date survey about different aspects of embedding

vision-based ADAS. Section 2 lists the main requisites of embedded vision. An overview of the different

hardware options is presented in Section 3, including a systematic review to study what the most frequent

options are. Section 4 reviews the available software platforms and Section 5 discusses the design,

development, validation and verification procedures. Section 6 presents a discussion that includes the main

technical research challenges that vision-based embedded ADAS face, and finally, Section 7 concludes the

article.

2. Requisites of embedded vision

Embedded vision systems for driver assistance need to fulfil a trade-off between several

requirements: dependability, real-time performance, low cost, small size, low power consumption,

flexibility and fast time-to-market. This section reviews these requirements in order to better understand

the decisions taken during the design stage.

2.1 Dependability

Dependability is defined as the property of a computer system such that reliance can justifiably be

placed on the service it delivers [3]. In order to determine the overall dependability of a system, several

attributes are assessed. According to [3], these attributes are:

 Availability, which means readiness for usage.

 Reliability, which means continuity of service.

This paper is a postprint of a paper submitted to and accepted for publication in IET Intelligent Transport Systems and is subject to Institution

of Engineering and Technology Copyright. The copy of record is available at IET Digital Library http://dx.doi.org/10.1049/iet-its.2016.0026

3

 Safety, which implies the non-occurrence of catastrophic consequences on the environment.

 Confidentiality, which implies the non-occurrence of unauthorised disclosure of information.

 Integrity, which implies the non-occurrence of improper alterations of information.

 Maintainability, which implies the ability to undergo repairs and evolutions.

If we associate integrity and availability together with confidentiality, we obtain security, which is also

critical.

Impairments or threats are undesired circumstances that can affect negatively to a system’s

dependability. There are the three main impairment forms:

 Failure: it happens when the delivered service does not fulfil its function.

 Error: it is generated from an invalid state and implies a discrepancy between the intended

behaviour of a system and its actual behaviour inside the system boundary. An error may not

necessarily cause a failure. The system can response to an error using for instance an exception

handling mechanism, and continue operating fulfilling the functional specifications.

 Fault: it is the adjudged or hypothesized cause of an error. The presence of a fault in a system may

or may not lead to a failure

Faults, errors and failures are therefore related terms, which operate according to a mechanism

known as Fault-Error-Failure chain [4]. This mechanism works as follows. When a fault is activated it can

generate an error. If the error is generated, it creates an invalid state than can lead to a failure, which is a

deviation from the specified behaviour of the system that is observable by a user.

In Computer Vision systems, failures are generally classified as false positives or false negatives.

False positives can distract or confuse the driver, or even create dangerous situations. On the other hand, if

the system does not alarm whenever is necessary, its utility decreases and it can create a feeling of false

safety, which is also dangerous.

2.2 Real-time performance

The system not only needs a robust algorithm, but it also needs to run it fast enough to assist the

driver in time. Normally the required real-time frame rate is between 15 and 30 frames per second.

Obtaining a real-time performance on embedded vision is very challenging, as there is no hardware

architecture that meets perfectly the necessities of each processing level. Three different processing levels

can be found in computer vision applications: low-level, mid-level and high-level [5]. Low-level

This paper is a postprint of a paper submitted to and accepted for publication in IET Intelligent Transport Systems and is subject to Institution

of Engineering and Technology Copyright. The copy of record is available at IET Digital Library http://dx.doi.org/10.1049/iet-its.2016.0026

4

processing is characterized by repetitive operations at pixel level. Typical examples are simple filtering

operations such as edge detection or noise reduction. This processing is better served using single

instruction on multiple data (SIMD) architectures. The following processing stage, mid-level, is focused

on certain regions of interest that meet particular classification criteria. This processing level includes

operations such as feature extraction, segmentation, object classification or optical flow. This part of the

algorithm has higher complexity than simple filtering and can only be parallelised to some extent. Finally,

high-level processing is responsible for decision-making, where sequential processing fits better. Figure 1

summarises the features of each level of processing (adapted from [6]).

Fig. 1. Features of each level of processing

2.3 Low cost

As explained before, due to the highly competitive market, the developed embedded device should

have a low economical cost. An automotive optical camera costs around 150 USD [7], which is a

significant cost. Therefore, it is necessary to minimise product development cost as well as use economical

hardware for running the vision algorithms.

2.4 Spatial constraints

There is not much space inside a vehicle to install a camera-based system without affecting to the

field of view of the driver. Furthermore, electronic components are very sensitive to temperature and

vibrations, so their location inside the vehicle needs to be chosen carefully. A small sized device would

facilitate a lot its integration.

2.5 Low power consumption

This paper is a postprint of a paper submitted to and accepted for publication in IET Intelligent Transport Systems and is subject to Institution

of Engineering and Technology Copyright. The copy of record is available at IET Digital Library http://dx.doi.org/10.1049/iet-its.2016.0026

5

Power consumption is an important matter in any embedded system, but it is especially relevant in

automotive applications, where the energy efficiency is one of the most valuable features of a car. A power

consumption of less than 3 W can be considered satisfactory [8].

2.6 Flexibility

The flexibility of the whole system is an important issue to take into account during architecture

design. A flexible ADAS implementation should be able to be updated easily in order to fix detected bugs.

Otherwise, an entire hardware replacement would be necessary, which implies higher maintenance costs.

Flexibility can be achieved by means of software or reconfigurable hardware.

2.7 Short time to market

The designed ADAS application should reach market fast, so it is necessary to choose architectures

that enable rapid development cycles, which also implies lower development costs. However, this

requirement often clashes with the requirement of dependability. In order to assure a dependable system,

rigorous development procedures need to be followed, what makes it difficult to obtain a short time to

market.

3. Hardware

3.1 Overview

The explosion of modern driver assistance technologies started with the first DARPA Grand

Challenges, which made these technologies more visible to the general public. The last of these challenges

focusing on autonomous driving was the Urban Challenge that took place in 2007 [9]. In that challenge,

most of the teams used desktop computers or small clusters to run their computing demanding algorithms.

Those demonstrators were only a proof of concept, so it was not necessary to embed them.

However, a hardware product that is installed inside a vehicle must be embedded and needs to fulfil

the requirements of embedded vision systems, as explained in Section 2. There is no hardware architecture

that meets perfectly all the necessities. This section gives an overview of available options.

This paper is a postprint of a paper submitted to and accepted for publication in IET Intelligent Transport Systems and is subject to Institution

of Engineering and Technology Copyright. The copy of record is available at IET Digital Library http://dx.doi.org/10.1049/iet-its.2016.0026

6

3.1.1 ASIC: Application-Specific Integrated Circuits (ASIC) are integrated circuits (IC) customized

for a particular use, rather than intended for general-purpose use. Designers of digital ASICs usually use a

hardware description language such as Verilog or VHDL, to describe the functionality of ASICs.

ASICs have the advantages of high performance and low power consumption. They are used only

for manufacturing high quantity and long series due to their higher initial engineering cost, so they are not

suitable for rapid prototyping. Additionally they have another important drawback: they are not

reconfigurable. This means that once they are manufactured, they cannot be reprogrammed. This lack of

flexibility has led to the use of other alternatives such as Field-Programmable Gate Arrays (FPGA).

However, there can still be found in the literature some examples of ADAS implementations in ASIC [10,

11]. This technology was also used by Mobileye to build its products EyeQ [12] and EyeQ2 [13], which

are composed of dual CPU cores running in parallel with multiple additional dedicated and programmable

cores.

3.1.2 FPGA: A Field-Programmable Gate Array (FPGA) is an integrated circuit designed to be

configured by a customer or a designer after manufacturing. They have lower power consumption and they

are better suited for low-level processing than general purpose hardware, where they clearly outperform

them. However, they are not so good for the serial processing necessary in mid and high levels.

3.1.3 GPU: Another hardware architecture especially suited for parallel processing is the Graphics

Processing Unit (GPU). A GPU is a specialized electronic circuit, originally designed to accelerate the

creation of images intended for output to a display, which nowadays is also used for general-purpose

computing. GPUs have traditionally been considered as power hungry devices and they are not very

frequent yet in in-vehicle applications. However, recent solutions such as the DRIVE PX platform based

on the NVIDIA Tegra X1 SoC [14] are very promising.

3.1.4 DSP: Traditionally, Digital Signal Processors (DSP) have been the first choice in image

processing applications. DSPs offer single cycle multiply and accumulation operations, in addition to

parallel processing capabilities and integrated memory blocks.

DSPs are very attractive for embedded automotive applications since they offer a good price to

performance ratio. However, they require higher cost compared with other options such as FPGAs, and

they are not as easy and fast to program as microprocessors.

This paper is a postprint of a paper submitted to and accepted for publication in IET Intelligent Transport Systems and is subject to Institution

of Engineering and Technology Copyright. The copy of record is available at IET Digital Library http://dx.doi.org/10.1049/iet-its.2016.0026

7

3.1.5 Microprocessors: Microprocessors are the best option for high-level vision processing.

Additionally, they are easy to program, since it is possible to use the same tools and libraries used for

standard PC applications. This shortens significantly the learning curve necessary to master a new

hardware architecture, which in case of FPGAs and GPUs needs to be specially taken into account.

ARM architectures are leading the microprocessors market, although x86/x64 architectures can also

be found. The problem with microprocessors is that they are not very well suited for low-level processing.

As a consequence, complex algorithms usually need additional hardware acceleration.

3.1.6 Hybrid or heterogeneous architectures: There is also a growing trend to use System on Chips

(SoC) that can integrate two of more architectures in the same physical chip. For example we can have a

microprocessor with a FPGA, DSP or GPU, obtaining a more efficient data transfer with less power

consumption. Furthermore, SoCs are usually cheaper and have higher reliability than multi-chip solutions.

3.2 Literature Review

As shown in the previous overview, there is no ideal platform for implementing a vision-based

vehicle detection algorithm. Therefore, this section presents a systematic review of the literature in order

to find what the most common embedding options are. The main aim of this systematic review is to

address the following research question: what embedded hardware platforms are the most popular among

the scientific community to validate vision-based driver assistance algorithms?.

Hardware gets obsolete very fast, so it is not worth reviewing papers published a long time ago,

since the hardware they used on their work is already outdated. So, only papers published since 2012 were

considered. As we are only taking into account embedded hardware, papers that only implemented their

method in a standard PC were automatically discarded.

Titles, abstracts and full articles were subsequently screened applying the inclusion criteria

mentioned. In addition, references of the included articles were checked for other articles eligible for this

review (snowball method). As quality criteria, only articles indexed in Web of Science and IEEEXplore

were considered.

The search in these databases using the mentioned inclusion criteria resulted in a total of 33 articles.

The selected articles implemented at least one specific driver assistance application in an embedded

platform. Articles presenting only generic hardware architectures were discarded. As shown in Table 2,

This paper is a postprint of a paper submitted to and accepted for publication in IET Intelligent Transport Systems and is subject to Institution

of Engineering and Technology Copyright. The copy of record is available at IET Digital Library http://dx.doi.org/10.1049/iet-its.2016.0026

8

some works implemented more than one driver assistance application. Forward Collision Warning (FCW),

Lane Departure Warning and traffic sign recognition are the most common applications.

Table 1 Articles included in the systematic review categorised by application

Embedded driver assistance application Articles

Vehicle detection / Forward Collision Warning [15–24]

Lane departure warning / Lane keeping and lane changing [15, 23–30]

Traffic sign recognition [31–36]

Pedestrian detection [37–39]

Night-time vehicle taillight detection [40–42]

Surround view camera [43, 44]

Free space detection [45]

Driver fatigue and distraction monitoring [46]

Full stereo pipeline [47]

The number of papers found each year for each hardware category is detailed in Table 3, where Mic.

means Microprocessor and HA means Hardware Accelerator, which includes FPGAs and other kind of

dedicated hardware accelerators excluding GPUs.

Table 2 Number of publications for embedded vision ADAS per year

Year FPGA DSP Mic. HA+Mic. DSP+Mic. GPU+Mic. HA+DSP

2012 0 1 2 1 1 0 0

2013 1 0 0 1 1 0 0

2014 0 2 1 3 0 0 0

2015 0 2 9 4 2 1 1

Total 1 5 12 9 4 1 1

It can be noted that most of the works include a microprocessor in their platforms (78.78%). DSPs

are included in 30.3% of cases, and FPGAs or other dedicated hardware accelerators in the 33.3%. As Fig.

2 shows, about half of the works (54.54%) use a pure FPGA, DSP or microprocessor solution, probably

because from the point of view of the design, it is simpler to use a homogeneous platform. The

microprocessor is also the most common option among the works that use a homogeneous architecture,

This paper is a postprint of a paper submitted to and accepted for publication in IET Intelligent Transport Systems and is subject to Institution

of Engineering and Technology Copyright. The copy of record is available at IET Digital Library http://dx.doi.org/10.1049/iet-its.2016.0026

9

although DSPs are also quite common. In contrast, only in one case is the whole application embedded in

a FPGA. The application implemented was a lane departure warning, which is one of the simpler vision-

based driver assistance applications from the computational point of view. This is due to the difficulty of

implementing the high-level processing part of a computer vision algorithm in a platform that is more

suited for SIMD.

Fig. 2. Hardware architectures used by the scientific community to embed vision-based ADAS (2012 -2015)

Regarding heterogeneous architectures, systems composed of microcontrollers and hardware

accelerators are the first choice (27.27% of total cases). Normally, the hardware accelerators are

synthesised in FPGAs. SoCs composed of DSPs and microcontrollers are less frequent (12.12% of total

cases).

It is worth noting that only one paper was found to implement at least some part of the algorithm in

an embedded GPU. On the other hand, there are numerous research works in the literature where part of

the vision algorithm is implemented in a GPU using a standard PC. The reason for this difference can be

that GPUs have a very attractive architecture to boost vision-based algorithms, and are seen like an

interesting platform by a significant part of the computer vision community. However, they have

traditionally been very power-hungry devices, and they are not the first choice between experts on

embedded systems.

4. Software

Given that every OEM has access to similar-quality hardware and sensors, the embedded software

becomes the unique feature OEMs have to add value to their products and differentiate their brand. A

massive change in automotive industry is foreseen, where software will play a very important role.

FPGA

DSP

Micro.

HA + Micro

DSP+Micro

GPU+Micro

HA+DSP

This paper is a postprint of a paper submitted to and accepted for publication in IET Intelligent Transport Systems and is subject to Institution

of Engineering and Technology Copyright. The copy of record is available at IET Digital Library http://dx.doi.org/10.1049/iet-its.2016.0026

10

Therefore, the software platform used to implement each driver assistance algorithm needs to be carefully

considered.

Computer vision applications are implemented in a microprocessor in two main ways: as standalone

software, or as a process running on top of an Operating System (OS). The first approach obtains better

computational results, since it does not have the burden of an OS running on background. However,

although the performance decreases when using an application that runs on an OS, it has many other

advantages. First, there are great savings in development time and in the maintenance of the system.

Second, the non-functional requirements of ADAS software systems are better addressed, which are

scalability, extensibility and portability [48]. Third, when using an operating system the programmers can

focus on the specific computer vision algorithms without having to care about other low-level details. The

number of programming errors is reduced when using a higher abstraction level. And last but not least,

using a real time operating system (RTOS), the strict reliability and safety requirements of embedded

ADAS are better fulfilled.

Ideally, the software for ADAS should be developed for its integration into AUTOSAR environment

[49]. Some of the RTOS that are certified for highest ISO 26262 ASIL tool qualification level D are:

Green Hills Integrity, ElectroBit Tresos Auto-Core OS, and Microsar OS SafeContext from Vector [50].

Normally, these options are only used in the industry, since the academia prefers more open options such

as Linux-based OS.

5. Design, development, validation and verification

5.1 Introduction: infeasibility of complete testing

The quantification of the dependability of life-critical computer-based systems has been extensively

studied in the aeronautics field. In this field, a system is considered ultra-dependable if it has a failure rate

of less than 10
-7

 failures per hour [51]. If we translate this to the automotive field, it means that in order to

validate the failure rate of a driver assistance system, it is necessary to conduct at least 10
7

hours (1141

years) of operational testing. In fact, this number should be much bigger to achieve statistical significance.

This leads to the idea of the infeasibility of complete testing [52].

Due to the impossibility of conducting a statistically significant testing to ensure ultra-dependability,

other strategies need to be followed. Dependability needs to be considered from the very beginning of the

design stage until the last validation test. So design, development and validation concepts cannot be

This paper is a postprint of a paper submitted to and accepted for publication in IET Intelligent Transport Systems and is subject to Institution

of Engineering and Technology Copyright. The copy of record is available at IET Digital Library http://dx.doi.org/10.1049/iet-its.2016.0026

11

completely decoupled from each other and cannot be implemented in isolated sequential stages. There is a

standard that addresses this, ISO 26262, which sets a methodology that guides the hardware and software

design, development, validation and verification procedures, following a V-model flow.

5.2 V model

ISO 26262 is an adaptation of IEC 61508 standard, and it defines functional safety for automotive

equipment applicable throughout the lifecycle of all automotive electronic and electrical safety-related

systems, which includes vision-based driver assistance systems. ISO 26262 is based upon a V model as a

reference process model for the different phases of product development.

A simplified version of the V model for product development at software level is represented in

Figure 3. Starting from the upper-left side, the workflow goes from requirements to implementation. At

each step, the system is typically broken down into smaller components. The right side of the V

incrementally verifies and validates larger portions of the system. A similar approach is proposed for

product development at hardware level.

Fig. 3. Product development at software level following a V-model flow

The V model described in ISO 26262 is generic enough to be valid for any automotive electronic

and electrical safety-related system. Vision-based ADAS contain specific features different from other

automotive systems that need to be considered. The following subsections discuss specific aspects of the

design, development, validation and verification steps of vision-based ADAS.

5.3 Design

System design

Specification of SW
safety requierements

SW architectural design

SW unit design and
implementation

SW unit testing

SW integration and
testing

Verification of SW
safety requierements

Item integration and
testing

This paper is a postprint of a paper submitted to and accepted for publication in IET Intelligent Transport Systems and is subject to Institution

of Engineering and Technology Copyright. The copy of record is available at IET Digital Library http://dx.doi.org/10.1049/iet-its.2016.0026

12

Not all the operation failures that occur during execution of an ADAS application are responsibility

of the algorithm. The hardware and software can also fail due to design errors that do not belong to the

vision algorithm itself. Since it is not possible to develop a system with a zero failure rate [53], the

Automotive Safety Integrity Level (ASIL) risk level categories are used. A tolerable failure rate is

assigned to each application in order to quantify the degree of rigor that should be applied in the

development, implementation and verification stages.

There are four ASIL levels, A, B, C and D, arranged in increasing order of integrity requirements.

Each hazardous event is assigned an ASIL based on the combination of three parameters: severity (extent

of human harm), probability of exposure to operational situations, and controllability (ability for persons at

risk to take action to avoid harm) [54]. A system that requires an ASIL A would only represent likely

potential for minor injuries, while a system that represents likely potential for severely life-threatening or

fatal injury would need an ASIL D (see Table 1). A system can be decomposed into several different

elements, and then, a high ASIL can be met by having redundant components working together, each one

with lower ASIL than the overall system.

Table 3 Automotive Safety Integrity Levels

ASIL level Consequences of a failure

A Potential for minor injuries

B Possible major injuries or one fatality

C Possible fatalities

D Possible fatalities in the community

This can be achieved implementing for example the monitor/actuator architecture proposed in [52].

In this architecture, the primary functions are performed by one module (the actuator), and an additional

module is responsible of monitoring the correct functioning of the prior module. If the monitor is designed

with an ASIL high enough, the actuator can be designed with a lower ASIL.

5.4 Development

The seamless synchronisation and fusion of the camera output with the rest of vehicle sensor outputs

supposes a great challenge. In order to cope with this problem, practitioners use middleware created

This paper is a postprint of a paper submitted to and accepted for publication in IET Intelligent Transport Systems and is subject to Institution

of Engineering and Technology Copyright. The copy of record is available at IET Digital Library http://dx.doi.org/10.1049/iet-its.2016.0026

13

specifically for automotive applications. Two of the most used ones are EB Assist ADTF [55] and

RTMaps [56]. Other options include Polysync, BASELABS and vADASdeveloper by Vector.

Another big challenge of embedding a vision algorithm is to run it in real time in the target

embedded hardware platform. The frame rate of the overall driver assistance system (FPSADAS) is limited

by the frame rate of the camera (FPScamera) and the processing time of the application (Tproc):

(1) 𝐹𝑃𝑆𝐴𝐷𝐴𝑆 = 𝑚𝑖𝑛 (
1

𝑇𝑝𝑟𝑜𝑐
, 𝐹𝑃𝑆𝑐𝑎𝑚𝑒𝑟𝑎)

Automotive cameras normally have a maximum frame rate of 30 or 60 FPS. So if the software is

able to run in a higher frequency, the camera will be the one imposing the overall frame rate of the system.

On the contrary, if the software runs too slow, it will be the bottleneck of the system. It is important to

note that the total processing time of the application, Tproc, must include the image capture time.

The frame rates and the processing times of the driver assistance systems implemented in the articles

studied in the literature review of Section 3 are detailed in Table 4. Some of the articles only indicated the

final frame rate, but they did not clarify whether the bottleneck was the camera or the software. For

instance, if one only says that the frame rate is 30 FPS, which is a typical camera frame rate configuration,

we cannot know if this is due to the camera limitation or due to the algorithm implementation. Other

articles only indicated the processing time of the algorithm, and they did not comment anything about the

final frame rate of the overall system. A comprehensive study of a vision-based embedded system

performance should include a detailed time profiling of the implemented software and also the overall

frame rate of the system considering the selected camera and the rest of the hardware.

Table 4 Details about the articles included in the systematic review

Article Frame rate

(FPS)

Proc. Time (ms). Resolution

[15] 32 31.08 ?

[40] 8 132 320x240

[31] 0.5 1020 ?

[43] 30 ? 480x204

[41] 12 79.7 720x480

[25] 40 ? 752x320

[26] 22 ? 320x240

This paper is a postprint of a paper submitted to and accepted for publication in IET Intelligent Transport Systems and is subject to Institution

of Engineering and Technology Copyright. The copy of record is available at IET Digital Library http://dx.doi.org/10.1049/iet-its.2016.0026

14

We have calculated the median, mean and standard deviation values of the data collected from the

literature and the results are listed in Table 5. We have eliminated the outlier of [31], which presented an

implementation that was very far from real time. The obtained median frame rate is 27.5 FPS and the

mean value is 25.86 FPS. These results are in line with what stated in Section 2, where it was said that

normally the required real-time frame rate is between 15 and 30 frames per second. The median and mean

processing times are 31.99 ms and 44.89 ms respectively, which are also in line with the previous

statement. In this case the standard deviation is very high, which is explained by the great differences in

the computational complexity of different vision algorithms.

Table 5 Median, mean and standard deviation values for frame rate and processing time

[16] 30 ? 320x240

[44] 30 ? 1280x720

[32] 12 ? ?

[47] 60 2 752x480

[33] ? 16 640x480

[17] 18 ? 640x480

[27] ? 13 ?

[28] 30 9.596 320x240

[18] ? 11.85 320x240

[19] ? 31 ?

[20] 30 ? 640x480

[21] 14 64.29 640x480

[29] 16.63 45.31-49.26 640 × 480

[37] ? 65 720x480

[42] 5.46 183.16 ?

[22] (FWC) 10 48.810 640x480

[22] (LDW) 30 32.898 640x480

[34] 43 23.25 1920 × 720

[23] 6-8 110 384 × 216

[30] 25 ? ?

[38] 30.73 32.54 800x480

[39] 20 ? 640x480

[46] 6 ? 320x180

[36] 60 ? 1920x1080

This paper is a postprint of a paper submitted to and accepted for publication in IET Intelligent Transport Systems and is subject to Institution

of Engineering and Technology Copyright. The copy of record is available at IET Digital Library http://dx.doi.org/10.1049/iet-its.2016.0026

15

Most of the works in the literature (83.33 %) achieve the real time objective using an image

resolution between 320x240 and 752x480 (see Table 4), thus between QVGA and WVGA. The most

frequent resolutions are 320x240 (20.83 %) and 640x480 (33.33 %). The decision of choosing a camera

image resolution is determined essentially by three factors: computing limitations, the economic cost of

the camera sensor and the necessities of the computer vision algorithm. Each vision algorithm demands a

minimum image resolution. For instance, traffic sign recognition requires higher resolutions than other

algorithms, as it can be concluded from the analysis of the literature (see Table 8 from Appendices).

If it is not possible to run the algorithm in real-time with the required resolution, it is necessary to

take one of these actions: upgrade the hardware, choose another algorithm or optimise the current one.

When the current algorithm is not very far from running it in real-time, the latter option is normally chosen.

Some good practices and procedures to optimise vision-based driver assistance algorithms are detailed in

[18]. Having strict coding rules is also fundamental, such as the ones proposed by the Motor Industry

Software Reliability Association (MISRA) [57]. MISRA developed MISRA C and MISRA C++ software

coding guidelines, which have the objective to facilitate code safety, portability and reliability in the

context of embedded systems.

If the system is hard real time, not only the computational performance is important but also making

the performance predictable. Just improving the average performance may not be enough. For instance,

pipelining can improve performance on streaming stages but may not help satisfying hard real-time

requirements. It is necessary to meet the system deadlines, so the software tasks need to be designed with

this in mind. Assigning higher priority to the most time-critical tasks allows using a slower/cheaper

processor while satisfying real-time constraints [5].

Vision systems based on supervised learning need to be trained with datasets that cover all the

possible cases. In a vision-based driver assistance application it implies capturing data with different

illumination, weather, road and driving conditions. Once the video compilation is finished, it is necessary

to annotate all the objects and events that have been recorded and need to be detected by the algorithm.

Traditionally, this video annotation has been done manually, having dedicated workers labelling each

 Median Mean. Standard deviation

Processing time (ms) 31.99 44.89 41.84

Frame rate (FPS) 27.5 25.86 15.31

This paper is a postprint of a paper submitted to and accepted for publication in IET Intelligent Transport Systems and is subject to Institution

of Engineering and Technology Copyright. The copy of record is available at IET Digital Library http://dx.doi.org/10.1049/iet-its.2016.0026

16

frame. However, as the size of the video databases grow, this solution becomes non-feasible. Video

annotation tools, such as Vatic [58] or Viulib’s Video Annotator [59], make it easier to build massive,

affordable video data sets. The collected video datasets are not only useful for developing new functions

and improving current systems, but they are also useful for a first validation in laboratory.

5.5 Validation and verification

Driver assistance or automated driving functions cannot disturb normal driving conditions and

should at least be as safe as unassisted manual driving. Therefore, a big effort should be spent on

validation and verification stages. According to [60], validation is the assurance that a product, service, or

system meets the needs of the customer and other identified stakeholders. It often involves acceptance and

suitability with external customers. While verification involves an evaluation of whether or not a product,

service, or system complies with a regulation, requirement, specification, or imposed condition. It is often

an internal process.

As explained before, the ISO 26262 standard guides the hardware and software design process and

also sets acceptance criteria for each level of integration that must be fulfilled by testing. However, it is a

generic approach and it does not detail any testing strategy that can lead to an efficient validation of

vision-based driver assistance functionalities. The big problem is that existing analytical methods used in

other fields are not useful here, due to the complexity and the wide diversity of driving scenarios and

situations. In practice, algorithm verification and validation is currently done using brute-force methods

that are extremely costly in money and time. Suppliers spend a lot of time gathering datasets that cover all

the possible cases. As a consequence, usually, more time is spent in testing and validating a driver

assistance system than developing the algorithm.

Computer vision algorithms have traditionally been tested against video datasets. In vision-based

driver assistance algorithms, the same approach is used for a preliminary in-laboratory validation. As

explained before, it is extremely costly to gather the required video datasets. So it is now becoming quite

common for researchers to release datasets, what facilitates the algorithm testing step for small research

groups. Perhaps the best known public dataset is the KITTI Vision Benchmark Suite [61], created by

Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago, which contains about

180 GB of videos recorded in different conditions. Although open datasets are useful for small research

This paper is a postprint of a paper submitted to and accepted for publication in IET Intelligent Transport Systems and is subject to Institution

of Engineering and Technology Copyright. The copy of record is available at IET Digital Library http://dx.doi.org/10.1049/iet-its.2016.0026

17

groups and universities, vehicle manufacturers and TIER 1 suppliers have their own datasets that are much

bigger, containing several petabytes of video data.

Normally, algorithms are first evaluated on a PC using some performance metrics. The definition of

the most common ones are presented in Table 6, where TP means number of true positives, TN means

number of true negatives, FP means number of false positives and FN means number of false negatives.

Table 6 Performance metrics

Performance metric Definition

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

True positive rate / Detection rate / Recall 𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Precision 𝑇𝑃

𝑇𝑃 + 𝐹𝑃

False negative rate 𝐹𝑁

𝐹𝑁 + 𝑇𝑃

False positive rate 𝐹𝑃

𝐹𝑃 + 𝑇𝑁

The performance results obtained by the articles included in the literature review of Section 3 are

presented in Table 7. In some articles, different results were given depending on the driving conditions. In

these cases, the average value was considered.

Table 7 Performance results in the articles included in the literature review

Article Accuracy (%) Recall (%) Precision (%) False negative rate (%) False positive rate (%)

[15] (LDW) ? 97.11 ? ? ?

[15] (FCW) ? 99.22 ? ? ?

[40] ? 79 ? ? 10.8

[31] ? 89.9 ? ? ?

[43] ? 89.33 ? 10.66 14.5

[41] ? 92.08 ? ? ?

[25] 97 ? ? ? ?

[16] ? 99.29 ? ? 0.57

[32] ? 93.24 ? ? ?

This paper is a postprint of a paper submitted to and accepted for publication in IET Intelligent Transport Systems and is subject to Institution

of Engineering and Technology Copyright. The copy of record is available at IET Digital Library http://dx.doi.org/10.1049/iet-its.2016.0026

18

[33] ? 82 ? ? ?

[17] 96 ? ? ? ?

[28] ? 95 91 ? ?

[18] ? 71.7 75 ? ?

[19] ? 98.4 93.3 ? ?

[20] 91.3 ? ? ? ?

[21] ? 81.78 88.48 ? ?

[29] ? >90 ? ? ?

[37] ? 92.14 ? ? ?

[42] ? 93.02 ? ? 2.81

[34] 98.47 ? ? ? ?

[23] Obstacle

detection

? 98.4 99.4 ? ?

[23] Lane

detection

? 98.1 94.5 ? ?

[24] Obstacle

detection

? 99.04 ? 0.96 0.85

[24] Lane

detection

? >95 ? ? <2

[38] Pedestrian

detection

80 36 96 ? ?

[38] License plate

recognition

74 72 100 ? ?

Median 93.65 92.58 93.90 - 2.40

Mean 89.46 88.26 92.21 - 5.25

Std. deviation 10.12 14.39 7.97 - 5.90

The median, mean and standard deviation performance results are also included in Table 7. The

median accuracy, recall and precision values are all above 90%. The standard deviation in the three cases

is around 10%, which is reasonable since there are significant differences in the maturity level of the

different driver assistance algorithms implemented. The recall is the most used metric as it is calculated in

almost all works. Regarding the false positive and false negative rates, the differences here are bigger. The

sample size of the false negative rates is too small to draw conclusions, but in the case of the false positive

rates, part of the reason of the high standard deviation value might be that some works prioritise

maximising the true positive number with the drawback of increasing the false positive number.

This paper is a postprint of a paper submitted to and accepted for publication in IET Intelligent Transport Systems and is subject to Institution

of Engineering and Technology Copyright. The copy of record is available at IET Digital Library http://dx.doi.org/10.1049/iet-its.2016.0026

19

It is important to note that it is not possible to make a completely fair comparison as there is not any

standard procedure for collecting and labelling the video data sets used for calculating these metrics. Not

only this, the length and variety of the data sets differ significantly from one work to another. This leads to

a challenge that has not been solved yet: the standardisation of the preparation and validation of evaluation

data sets. The average 90% obtained on accuracy, recall and precision metrics also seems quite low for a

real deployment. This leads to another unsolved question: what are the minimum threshold values that are

required in the performance metrics? This question is related to the concept of infeasibility of complete

testing introduced in Section 5.1 and to the commented complexity and wide diversity of driving scenarios

and situations

The testing done in the PC is useful to get some idea of the algorithm’s performance, but further

testing is needed in the embedded platform. Vision-based embedded systems, as well as other kind of

driver assistance systems, are normally tested in three stages [62]:

 Testing on simulators.

 Testing on test tracks.

 Testing on public roads.

There are numerous simulators to test driver assistance applications. Among the ones that are free,

Racer [63] is probably the most known. Other proprietary options include SiVIC [64] and PreScan [65]. A

more detailed review of simulators for testing ADAS can be found in [66].

The next is step is testing in test tracks. Validation on the test track is done gradually, first assuring

that all components are working independently. Then, driving manoeuvres are tested, starting from the

most basic ones, and increasingly adding more complicated manoeuvres to the testing catalogue [62].

The last step is testing on public roads. Since the first DARPA challenges, the importance of

extensive on road testing has always been perceived as a core requirement before the public deployment of

a driver assistance technology. There are several articles in the literature that present the conclusions

obtained after field tests (see [67] for a brief overview). Normally all tests include instrumented cars with

data gathering and recording equipment and extendable in-car platforms.

6. Discussion

The strict requirements and constrains of embedded ADAS guide the decisions taken during the

whole cycle of design, development, validation and verification. This paper has shown that there is no

ideal implementation platform for vision-based ADAS that meets perfectly all these requirements. The

This paper is a postprint of a paper submitted to and accepted for publication in IET Intelligent Transport Systems and is subject to Institution

of Engineering and Technology Copyright. The copy of record is available at IET Digital Library http://dx.doi.org/10.1049/iet-its.2016.0026

20

specific features of vision-based algorithms can make one conclude that the best option is a hybrid

platform composed of a microprocessor and a hardware accelerator such as a FPGA or a GPU. The low-

level processing part would be integrated in hardware, and the rest of the algorithm in the microprocessor.

However, only half of the works found in the literature use this option. Almost all the remaining works are

based on a pure microprocessor or DSP implementation. This division in the research community could be

caused by the difficulty of dealing with hybrid architectures. Even as some hardware/software codesign

approaches exist [68], they still involves a much bigger effort than a pure software implementation. A

hardware implementation can achieve much better performance with lower power consumption than a

software implementation. However, it requires much more time and effort in the design and test, implying

higher development costs. Although some reconfigurable options exist, hardware implementations are still

significantly less flexible than software options. Having a good balance between hardware and software is

essential when designing the whole architecture.

Usually the first prototype version does not achieve the desired real-time performance and requires

some optimisations. However, an optimisation too dependent on the hardware architecture prevents a fast

porting to a different hardware or it can even make it impossible. Considering the pace at which

hardware’s processing speed advances, in the future probably more generous hardware platforms will be

used and low-level code optimisation will not be necessary.

It is also important to minimise false positive and false negative rates of ADAS, which are not

always caused by the algorithm. Some decisions taken during the embedding stage can also influence. For

example, camera calibration, image resolution, infrared illumination in case of driver drowsiness detection,

etc. For this reason, it is very important to pay much attention to all these factors, and not concentrate only

on the algorithm. It is a frequent error in computer vision practitioners to focus only in the algorithms,

without even being aware of the impact of other factors in the final output.

Previous sections have described the current progress in embedding vision-based ADAS. Human

drivers are still responsible of monitoring the driving environment in currently deployed ADAS, what

corresponds to automation level 1 or level 2 in SAE Standard J3016 [69]. There are still several technical

challenges that we need to overcome to advance in embedding more autonomous vision-based driving

functionalities (SAE levels 3 to 5):

 One of the biggest problems when embedding an algorithm is that normally its performance

on the target platform is not predictable. Vision algorithms are first programmed in a

standard PC, and then are ported to the target embedded platform. The problem is that

This paper is a postprint of a paper submitted to and accepted for publication in IET Intelligent Transport Systems and is subject to Institution

of Engineering and Technology Copyright. The copy of record is available at IET Digital Library http://dx.doi.org/10.1049/iet-its.2016.0026

21

embedded platforms have significantly less processing power than PCs and they usually have

a different architecture, so until you test your algorithm in the embedded platform you are

not sure of its final performance. There should be more research focused on performance

prediction for image processing algorithms embedded on different platforms. There are some

works in the literature focused on this topic [70–73], but there is still much work to be done.

 The current video annotation tools are still mostly manual. It is necessary to advance on more

automatic annotation tools in order to reduce the time and cost needed to develop and test

new algorithms. Additionally, major improvements in software engineering are needed.

 Outside the autonomous driving sector, safety-of-life critical decisions are never assigned to

software systems. For instance, in the medical domain, software is used to support physicians

by making recommendations about treatments for patients, but the final decisions are always

taken by a human physician. In autonomous driving, the decisions taken can have similar life

or death consequences. Major improvements in software engineering are also required here

before those decisions can be trusted without a previous human approval.

 Several potential cyberattacks that could affect vision components of future automated

vehicles have been identified [74]. Some public demonstrations of hacking attacks with real

cars have also been done. Cybersecurity methods to protect against attacks should be further

studied.

 In other sectors such as the aerospace industry, the classical approach to ensuring high

dependability of systems involves designing in redundancy. It is an effective approach, but it

raises a lot the economic cost of products. Cars, in contrast to airplanes, are mass-market

products, so the prices need to be kept low. Consequently, new methods should be studied to

reduce the dependency on hardware redundancy.

 Current design flows consider safety concerns from the very beginning; however, it is still

necessary to incorporate ethical considerations. The wide adoption of autonomous or semi-

autonomous vehicles promises to dramatically reduce the number of road accidents, but some

accidents will be unavoidable and will require the system to choose the best option from the

ethical point of view. For example, choosing whether to run over a group of pedestrians or to

sacrifice the passenger by driving into a wall [75].

This paper is a postprint of a paper submitted to and accepted for publication in IET Intelligent Transport Systems and is subject to Institution

of Engineering and Technology Copyright. The copy of record is available at IET Digital Library http://dx.doi.org/10.1049/iet-its.2016.0026

22

7. Conclusions

This article provided an insight into vision-based embedded ADAS. The key elements of this field

were explained, starting from the features and requirements that these systems have. These features and

requirements guide all decisions taken about hardware and software. The balance between the three levels

of processing of the implemented vision algorithm (low-level, mid-level and high-level), is of big

importance when designing both the hardware architecture and the finally optimised software. It is also

remarkable that is not possible to fulfil completely all the requirements, so there must be a trade-off

between the several design requisites.

This article also reviews the hardware of software options for embedding vision-based ADAS. To

the best knowledge of the authors, this is the first time that a systematic review about what embedded

hardware platforms are the most popular among the scientific community is presented. This study is useful

not only to show a comprehensive overview of what hardware architectures are currently used for vision-

based ADAS, but also to infer future trends. Regarding software, several important aspects were discussed,

such as the design flow, the operating systems, the importance of frame rate and image resolution, or the

annotation tools that are useful to train the supervised machine learning algorithms. The importance of

validation and verification stages is also reflected in the article, with a brief review of current approaches.

To conclude, it is important to note that there are still some challenges and open research questions

that need to be addressed in order to advance towards a more autonomous and reliable driving. The

automotive industry and the research community have achieved important milestones but there is still a

long way to go, and there are many difficulties to overcome before the final objective of fully automated

driving is reached. We believe that computer vision will play a key role here. However, it is not only

important to improve current algorithms, but is also essential to focus on developing new methods, tools

and architectures to embed them, in order to reduce the burden that this step involves today.

8. Acknowledgments

This work has been supported by the EU-H2020 project inLane, under the grant agreement number

687458, and by the program ELKARTEK of the Basque Government under the project TIPOTRANS.

This paper is a postprint of a paper submitted to and accepted for publication in IET Intelligent Transport Systems and is subject to Institution

of Engineering and Technology Copyright. The copy of record is available at IET Digital Library http://dx.doi.org/10.1049/iet-its.2016.0026

23

9. References

1 Bengler, K., Dietmayer, K., Färber, B., Maurer, M., Stiller, C., Winner, H.: “Three Decades of

Driver Assistance Systems: Review and Future Perspectives”IEEE Intell. Transp. Syst. Mag., 2014,

6, (4), pp. 6 – 22.

2 “World Health Organization:” “Global status report on road safety 2015” (2015)

3 Laprie, J.: “Dependable Computing : Concepts , Limits , Challenges,” in “25th International

Symposium on Fault-Tolerant Computing” (1995), pp. 42–54

4 Aviz, A., Laprie, J., Randell, B.: “Fundamental Concepts of Dependability” (LAAS-CNRS, Tech.

Rep. N01145, 2001)

5 Kim, K., Choi, K.: “SoC architecture for automobile vision system,” in Kim, J., Shin, H. (Eds.):

“Algorithm & SoC Design for Automotive Vision Systems” (Springer Netherlands, 2014), pp. 163–

195

6 Wu, N.: “High Speed CMOS Vision Chips,” in “2011 IEEE 54th International Midwest Symposium

on Circuits and Systems (MWSCAS)” (2011), pp. 1–4

7 Mukhtar, A., Xia, L., Tang, T.B.: “Vehicle Detection Techniques for Collision Avoidance Systems :

A Review”IEEE Trans. Intell. Transp. Syst., 2015, 16, (5), pp. 2318–2338.

8 Forster, F.: “Heterogeneous Processors for Advanced Driver Assistance Systems”ATZelektronik

Worldw., 2014, 9, (1), pp. 14–18.

9 Buehler, M., Iagnemma, K., Singh, S. (Eds.): “The DARPA Urban Challenge: Autonomous

vehicles in city traffic” (Springer, 2009)

10 Darouich, M., Guyetant, S., Lavenier, D.: “A reconfigurable disparity engine for stereovision in

advanced driver assistance systems”Lect. Notes Comput. Sci., 2010, 5992, pp. 306–317.

11 Mielke, M., Schafer, A., Bruck, R.: “ASIC implementation of a gaussian pyramid for use in

autonomous mobile robotics,” in “IEEE 54th International Midwest Symposium on Circuits and

Systems (MWSCAS)” (2011), pp. 1–4

12 Stein, G.P., Rushinek, E., Hayun, G., Shashua, A.: “A Computer Vision System on a Chip: a case

study from the automotive domain,” in “2005 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR’05) - Workshops” (2005), pp. 130–130

13 Mobileye: “EyeQ2,” http://www.mobileye.com/technology/processing-platforms/eyeq2/, accessed

January 2016

14 NVIDIA: “NVIDIA DRIVE PX,” http://www.nvidia.com/object/drive-px.html, accessed January

2016

This paper is a postprint of a paper submitted to and accepted for publication in IET Intelligent Transport Systems and is subject to Institution

of Engineering and Technology Copyright. The copy of record is available at IET Digital Library http://dx.doi.org/10.1049/iet-its.2016.0026

24

15 Lin, H.-Y., Chen, L.-Q., Lin, Y.-H., Yu, M.-S.: “Lane departure and front collision warning using a

single camera,” in “2012 IEEE International Symposium on Intelligent Signal Processing and

Communications Systems” (2012), pp. 64–69

16 Wu, B., Chen, Y., Yeh, C., Li, Y.: “Reasoning-Based Framework for Driving Safety Monitoring

Using Driving Event Recognition”IEEE Trans. Intell. Transp. Syst., 2013, 14, (3), pp. 1231–1241.

17 Chen, G., Shen, P., Cho, C., Vinay, M.S., Guo, J.: “A Forward Collision Avoidance System

Adopting Multi-feature Vehicle Detection,” in “2014 IEEE International Conference on Consumer

Electronics - Taiwan (ICCE-TW)” (2014), pp. 125–126

18 Nieto, M., Vélez, G., Otaegui, O., Gaines, S., Van Cutsem, G.: “Optimising computer vision based

ADAS: vehicle detection case study”IET Intell. Transp. Syst., 2016, 10, (3), pp. 157–164.

19 Wang, X., Tang, J., Niu, J., Zhao, X.: “Vision-based two-step brake detection method for vehicle

collision avoidance”Neurocomputing, 2016, 173, pp. 450–461.

20 Jheng, Y., Yen, Y., Sun, T.: “A Symmetry-based Forward Vehicle Detection and Collision Warning

System on Android Smartphone,” in “2015 IEEE International Conference on Consumer

Electronics - Taiwan (ICCE-TW)” (2015), pp. 212–213

21 Gu, Q., Yang, J., Zhai, Y., Kong, L.: “Vision-based multi-scaled vehicle detection and distance

relevant mix tracking for driver assistance system”Opt. Rev., 2015, 22, (2), pp. 197–209.

22 Ozaki, N., Uchiyama, M., Tanabe, Y., Miyazaki, S., Sawada, T., Tamai, T.: “Implementation and

Evaluation of Image Recognition Algorithm for An Intelligent Vehicle using Heterogeneous Multi-

Core SoC,” in “2015 20th Asia and South Pacific Design Automation Conference (ASP-DAC)”

(2015), pp. 410–415

23 Petrovai, A., Danescu, R., Nedevschi, S.: “A stereovision based approach for detecting and tracking

lane and forward obstacles on mobile devices,” in “2015 IEEE Intelligent Vehicles Symposium”

(2015), pp. 634–641

24 Gruyer, D., Livic, I.C., Lusetti, B., Revilloud, M., Glaser, S.: “PerSEE : a Central Sensors Fusion

Electronic Control Unit for the development of perception-based ADAS,” in “14th IAPR

International Conference on Machine Vision Applications (MVA)” (2015), pp. 250–254

25 An, X., Shang, E., Song, J., Li, J., He, H.: “Real-time lane departure warning system based on a

single FPGA”EURASIP J. Image Video Process., 2013, 2013, (1), p. 38.

26 Anders, J., Mefenza, M., Bobda, C., Yonga, F., Aklah, Z., Gunn, K.: “A hardware/software

prototyping system for driving assistance investigations”J. Real-Time Image Process., 2013.

27 Chiang, H., Chen, Y., Member, S., Wu, B., Lee, T.: “Embedded Driver-Assistance System Using

Multiple Sensors for Safe Overtaking Maneuver”IEEE Syst. J., 2014, 8, (3), pp. 681–698.

This paper is a postprint of a paper submitted to and accepted for publication in IET Intelligent Transport Systems and is subject to Institution

of Engineering and Technology Copyright. The copy of record is available at IET Digital Library http://dx.doi.org/10.1049/iet-its.2016.0026

25

28 Velez, G., Cortés, A., Nieto, M., Vélez, I., Otaegui, O.: “A reconfigurable embedded vision system

for advanced driver assistance”J. Real-Time Image Process., 2015, 10, (4), pp. 725–739.

29 Satzoda, R.K., Lee, S., Lu, F., Trivedi, M.M.: “Snap-DAS : A Vision-based Driver Assistance

System on a Snapdragon TM Embedded Platform,” in “IEEE Intelligent Vehicles Symposium”

(2015), pp. 660–665

30 Hammond, M., Qu, G., Rawashdeh, O. a.: “Deploying and Scheduling Vision Based Advanced

Driver Assistance Systems (ADAS) on Heterogeneous Multicore Embedded Platform,” in “2015

Ninth International Conference on Frontier of Computer Science and Technology” (2015), pp. 172–

177

31 Koukoumidis, E., Martonosi, M., Peh, L.: “Leveraging Smartphone Cameras for Collaborative

Road Advisories”IEEE Trans. Mob. Comput., 2012, 11, (5), pp. 707–723.

32 Giesemann, F., Pay, G., Limmer, M., Ritter, W.: “A Comprehensive ASIC / FPGA Prototyping

Environment for Exploring Embedded Processing Systems for Advanced Driver Assistance

Applications,” in “2014 International Conference on Embedded Computer Systems: Architectures,

Modeling, and Simulation” (2014), pp. 314–321

33 Souani, C., Faiedh, H., Besbes, K.: “Efficient algorithm for automatic road sign recognition and its

hardware implementation”J. Real-Time Image Process., 2014, 9, (1), pp. 79–93.

34 Yin, S., Ouyang, P., Liu, L., Guo, Y., Wei, S.: “Fast traffic sign recognition with a rotation invariant

binary pattern based feature.”Sensors, 2015, 15, (1), pp. 2161–80.

35 Borrmann, J.M., Haxel, F., Viehl, A., Bringmann, O., Rosenstiel, W.: “Safe and Efficient Runtime

Resource Management in Heterogeneous Systems for Automated Driving,” in “2015 IEEE 18th

International Conference on Intelligent Transportation Systems” (2015), pp. 353–360

36 Schwiegelshohn, F., Gierke, L., Michael, H.: “FPGA Based Traffic Sign Detection for Automotive

Camera Systems,” in “2015 10th International Symposium on Reconfigurable Communication-

centric Systems-on-Chip (ReCoSoC)” (2015), pp. 1–6

37 Chiang, C., Chen, Y., Ke, K., Yuan, S.: “Real-time Pedestrian Detection Technique for Embedded

Driver Assistance Systems,” in “2015 IEEE International Conference on Consumer Electronics

(ICCE)” (2015), pp. 206–207

38 Son, S., Baek, Y.: “Design and Implementation of Real-Time Vehicular Camera for Driver

Assistance and Traffic Congestion Estimation.”Sensors, 2015, 15, (8), pp. 20204–31.

39 Costea, A.D., Vesa, A.V., Nedevschi, S.: “Fast Pedestrian Detection for Mobile Devices,” in “2015

IEEE 18th International Conference on Intelligent Transportation Systems (ITSC)” (2015), pp.

2364–2369

40 Chen, D., Lin, Y., Peng, Y.: “Nighttime Brake-Light Detection by Nakagami Imaging”IEEE Trans.

Intell. Transp. Syst., 2012, 13, (4), pp. 1627–1637.

This paper is a postprint of a paper submitted to and accepted for publication in IET Intelligent Transport Systems and is subject to Institution

of Engineering and Technology Copyright. The copy of record is available at IET Digital Library http://dx.doi.org/10.1049/iet-its.2016.0026

26

41 Chen, Y.-L., Chiang, H.-H., Chiang, C.-Y., Liu, C.-M., Yuan, S.-M., Wang, J.-H.: “A Vision-Based

Driver Nighttime Assistance and Surveillance System Based on Intelligent Image Sensing

Techniques and a Heterogamous Dual-Core Embedded System Architecture”Sensors, 2012, 12,

(12), pp. 2373–2399.

42 Almagambetov, A., Velipasalar, S., Member, S., Casares, M.: “Robust and Computationally

Lightweight Autonomous Tracking of Vehicle Taillights and Signal Detection by Embedded Smart

Cameras”IEEE Trans. Ind. Electron., 2015, 62, (6), pp. 3732–3741.

43 Scharfenberger, C., Chakraborty, S., Färber, G.: “Robust Image Processing for an Omnidirectional

Camera-based Smart Car Door”ACM Trans. Embed. Comput. Syst., 2013, 11, (4), pp. 87:1–87:28.

44 Zhang, B., Appia, V., Pekkucuksen, I., et al.: “A surround view camera solution for embedded

systems,” in “IEEE Conference on Computer Vision and Pattern Recognition Workshops

(CVPRW)” (2014), pp. 662–667

45 Neumann, L., Vanholme, B., Gressmann, M., Bachmann, A., Kahlke, L., Schule, F.: “Free Space

Detection: A Corner Stone of Automated Driving,” in “2015 IEEE 18th International Conference on

Intelligent Transportation Systems” (2015), pp. 1280–1285

46 Manoharan, R., Chandrakala, S.: “Android OpenCV based effective driver fatigue and distraction

monitoring system,” in “2015 International Conference on Computing and Communications

Technologies (ICCCT’15)” (2015), pp. 262–266

47 Honegger, D., Oleynikova, H., Pollefeys, M.: “Real-time and Low Latency Embedded Computer

Vision Hardware Based on a Combination of FPGA and Mobile CPU,” in “2014 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS 2014)” (2014), pp. 4930–4935

48 Ahrens, D., Frey, A., Pfeiffer, A., Bertram, T., Ahrens D.a Frey, A.. P.A.. B.T..: “Objective

Evaluation of Software Architectures in Driver Assistance Systems”Comput. Sci. - Res. Dev., 2013,

28, pp. 23–43.

49 AUTOSAR: “AUTOSAR Specifications,” http://www.autosar.org/specifications/, accessed January

2016

50 Nikolic, Z.: “Embedded Vision in Advanced Driver Assistance Systems,” in Kisačanin, B., Gelautz,

M. (Eds.): “Advances in Embedded Computer Vision” (Springer International Publishing, 2014),

pp. 45–69

51 Butler, R.W., Finelli, G.B.: “The Infeasibility of Quantifying the Reliability of Life-Critical Real-

Time Software”IEEE Trans. Softw. Eng., 1993, 19, (1), pp. 3–12.

52 Koopman, P., Wagner, M.: “Challenges in Autonomous Vehicle Testing and Validation”SAE Int. J.

Transp. Saf., 2016, 4, (1), pp. 15–24.

53 Stein, F.: “The challenge of putting vision algorithms into a car,” in “2012 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition Workshops” (2012), pp. 89–94

This paper is a postprint of a paper submitted to and accepted for publication in IET Intelligent Transport Systems and is subject to Institution

of Engineering and Technology Copyright. The copy of record is available at IET Digital Library http://dx.doi.org/10.1049/iet-its.2016.0026

27

54 Birch, J., Rivett, R., Habli, I., et al.: “Safety cases and their role in ISO 26262 functional safety

assessment,” in Bitsch, F., Guiochet, J., Kaâniche, M. (Eds.): “Computer Safety, Reliability, and

Security” (Springer Berlin Heidelberg, 2013), pp. 154–165

55 Elektrobit: “EB Assist ADTF,” https://automotive.elektrobit.com/products/eb-assist/adtf/, accessed

January 2016

56 Intempora: “RTMaps,” https://intempora.com/products/rtmaps.html, accessed January 2016

57 MISRA: “MISRA Homepage,” http://www.misra.org.uk/, accessed January 2016

58 Vondrick, C., Ramanan, D., Patterson, D.: “Efficiently Scaling Up Video Annotation with

Crowdsourced Marketplaces,” in Daniilidis, Kostas and Maragos, Petros and Paragios, N. (Ed.):

“Computer Vision – ECCV 2010” (Springer Berlin Heidelberg, 2010), pp. 610–623

59 Vicomtech-IK4: “Viulib’s Video Annotator,” http://www.viulib.org, accessed January 2016

60 “IEEE Guide — Adoption of the Project Management Institute (PMI) Standard A Guide to the

Project Management Body of Knowledge (PMBOK GuiDE) — Fourth Edition” (2011)

61 Geiger, A., Lenz, P., Urtasun, R.: “Are we ready for Autonomous Driving? The KITTI Vision

Benchmark Suite,” in “Conference on Computer Vision and Pattern Recognition (CVPR)” (2012),

pp. 3354–3361

62 Aeberhard, M., Rauch, S., Bahram, M., et al.: “Lessons Learned from Automated Driving on

Germany ’ s Highways”IEEE Intell. Transp. Syst. Mag., 2015, 7, (1), pp. 42–57.

63 Cruden: “Racer,” http://www.racer.nl, accessed January 2016

64 Vanholme, B., Gruyer, D., Glaser, S., Mammar, S.: “Fast prototyping of a Highly Autonomous

Cooperative Driving System for public roads,” in “2010 IEEE Intelligent Vehicles Symposium”

(2010), pp. 135–142

65 TASS: “PreScan,” https://www.tassinternational.com/prescan, accessed January 2016

66 Gruyer, D., Choi, S., Boussard, C., Andréa-novel, B.: “From Virtual To Reality , How To

Prototype, Test And Evaluate New ADAS : Application To Automatic Car Parking,” in “2014 IEEE

Intelligent Vehicles Symposium” (2014), pp. 261–267

67 Broggi, A., Member, S., Buzzoni, M., et al.: “Extensive Tests of Autonomous Driving

Technologies”IEEE Trans. Intell. Transp. Syst., 2013, 14, (3), pp. 1403–1415.

68 Teich, J.: “Hardware / Software Codesign : The Past, the Present, and Predicting the Future”Proc.

IEEE, 2012, 100, (Special Centennial Issue), pp. 1411–1430.

This paper is a postprint of a paper submitted to and accepted for publication in IET Intelligent Transport Systems and is subject to Institution

of Engineering and Technology Copyright. The copy of record is available at IET Digital Library http://dx.doi.org/10.1049/iet-its.2016.0026

28

69 SAE J3016_201401: “Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle

Automated Driving Systems”, 2014

70 Henzinger, T. a: “Two challenges in embedded systems design: predictability and

robustness.”Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci., 2008, 366, (1881), pp. 3727–36.

71 Saussard, R., Bouzid, B., Vasiliu, M., Reynaud, R.: “Towards an Automatic Prediction of Image

Processing Algorithms Performances on Embedded Heterogeneous Architectures,” in “2015

International Conference on Parallel ProcessingWorkshops (ICPPW)” (2015), pp. 27 – 36

72 Saussard, R., Bouzid, B., Vasiliu, M., Reynaud, R.: “The embeddability of lane detection

algorithms on heterogeneous architectures,” in “IEEE International Conference on Image

Processing (ICIP)” (2015), pp. 4694 – 4697

73 Saussard, R., Bouzid, B., Vasiliu, M., Reynaud, R.: “Optimal Performance Prediction of ADAS

Algorithms on Embedded Parallel Architectures,” in “2015 IEEE 17th International Conference on

High Performance Computing and Communications (HPCC)” (2015), pp. 213–218

74 Petit, J., Shladover, S.E.: “Potential Cyberattacks on Automated Vehicles”IEEE Trans. Intell.

Transp. Syst., 2015, 16, (2), pp. 546–556.

75 “Autonomous Vehicles Need Experimental Ethics: Are We Ready for Utilitarian Cars?”arXiv

Prepr. arXiv1510.03346, 2015.

10. Appendices

Table 8 Details about the articles included in the systematic review

Article Year Application Platform FPS. Resolution

[15] 2012 FCW and LDW DSP: TMS320 DM6437 32 ?

[40] 2012 Night-time taillight detection Mobile device with 1GHz CPU and Android 3.0 8 320x240

[31] 2012 Traffic sign recognition Smartphone: Iphone 3GS 0.5 ?

[43] 2012 Surround view camera FPGA + CPU 30 480x204

[41] 2012 Night-time taillight detection ARM+DSP: TI OMAP3530 12 720x480

[25] 2013 LDW FPGA 40 752x320

[26] 2013 LDW FPGA with a softcore processor: MicroBlaze 22 320x240

[16] 2013 Vehicle detection DSP+Micro.: TIDM3730 30 320x240

[44] 2014 Surround view camera 2 DSP C66x cores 30 1280x720

[32] 2014 Traffic sign recognition FPGA + soft-core processor: Xilinx Virtex 6 12.4 ?

[47] 2014 Full stereo pipeline FPGA and mobile CPU 60 752x480

This paper is a postprint of a paper submitted to and accepted for publication in IET Intelligent Transport Systems and is subject to Institution

of Engineering and Technology Copyright. The copy of record is available at IET Digital Library http://dx.doi.org/10.1049/iet-its.2016.0026

29

[33] 2014 Traffic sign recognition FPGA+PowerPC: Virtex4 ? ?

[17] 2014 Vehicle detection PCM-9362 Intel embedded platform 18 640x480

[27] 2014 Lane keeping and lane

changing

DSP: eZdspF2812 ? ?

[28] 2015 LDW ARM+FPGA: Xilinx Zynq 30 320x240

[18] 2015 Vehicle detection Embedded computer: Nexcom VTC 7120-BK 84 320x240

[19] 2015 Vehicle detection Mobile device developed by Nokia ? ?

[20] 2015 Vehicle detection Mobile devices: Sony Xperia Zl and Gsmart

M1V2

30 640x480

[21] 2015 Vehicle detection DSP 14 640x480

[29] 2015 LDW Snapdragon 600 embedded processor 16.63 640 × 480

[37] 2015 Pedestrian detection DSP: TI DM648 DSP ? 720x480

[42] 2015 Taillight detection and

traffic sign recognition

CITRIC Smart Camera Platform 5.46 ?

[45] 2015 Free space detection FPGA+DSP ? ?

[22] 2015 Vehicle detection Multi-core processor, accelerators, and a RISC

core: TMPV7506XBG SoC

10 640x480

[22] 2015 LDW Multi-core processor, accelerators, and a RISC

core: TMPV7506XBG SoC

30 640x480

[34] 2015 Traffic sign recognition DSP +ARM: TI DM6467 43 1920 × 720

[23] 2015 FCW+LDW Tablet: LG Optimus V900 Pad 6-8 384 × 216

[30] 2015 LDW TDA2x SoC: 2 DSP, 2 ARM cores, 4 HW

accelerators

25 ?

[24] 2015 LDW iMX6Q board with an ARM9Q ? ?

[38] 2015 Pedestrian detection and

license plate recognition

GPU+Micro.: NVIDIA Jetson 30.73 800x480

[39] 2015 Pedestrian detection 2 mobile devices: Samsung Galaxy Tab Pro T325

tablet and Sony Xperia Z1 smartphone

20 640x480

[35] 2015 Traffic sign recognition FPGA+Micro: Xilinx Zynq ? ?

[46] 2015 Driver fatigue and

distraction monitoring

Smartphone: Xiaomi Redmi 1S 6 320x180

[36] 2015 Traffic sign recognition FPGA+Mircro.: Spartan-6-FPGA 60 1920x1080

