
1 23

Journal of Real-Time Image
Processing
 
ISSN 1861-8200
 
J Real-Time Image Proc
DOI 10.1007/s11554-014-0412-3

A reconfigurable embedded vision system
for advanced driver assistance

Gorka Velez, Ainhoa Cortés, Marcos
Nieto, Igone Vélez & Oihana Otaegui



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag Berlin Heidelberg. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



SPECIAL ISSUE PAPER

A reconfigurable embedded vision system for advanced driver
assistance

Gorka Velez • Ainhoa Cortés • Marcos Nieto •

Igone Vélez • Oihana Otaegui

Received: 12 September 2013 / Accepted: 6 March 2014

� Springer-Verlag Berlin Heidelberg 2014

Abstract Computer vision technologies can contribute in

many ways to the development of smart cities. In the case

of vision applications for advanced driver assistance sys-

tems (ADAS), they can help to increase road traffic safety,

which is a major concern nowadays. The design of an

embedded vision system for driver assistance is not

straightforward; several requirements must be addressed

such as computational performance, cost, size, power

consumption or time-to-market. This paper presents a

novel reconfigurable embedded vision system that meets

the requirements of ADAS applications. The developed

PCB board contains a System on Chip composed of a

programmable logic that supports parallel processing nec-

essary for a fast pixel-level analysis, and a microprocessor

suited for serial decision making. A lane departure warning

system was implemented in the case study, obtaining a

better computational performance than the rest of the

works found in the literature. Moreover, thanks to the

reconfiguration capability of the proposed system a more

flexible and extensible solution is obtained.

Keywords ADAS � System on Chip � Hardware/software

codesign � Embedded systems � Smart cities

1 Introduction

Together with the massive proliferation of smart devices

across different scales, the idea of a smart city has moved

from science fiction towards reality. The concept of smart

city emerged the last decade as a mix of ideas about how

information and communication technologies (ICTs) might

improve cities, enhancing their competitiveness and effi-

ciency, and providing new ways to solve poverty, social

deprivation and poor environment problems [12]. The term

smart city has many definitions, but in all of them the ICTs

are central to the operation of the future city [4]. The ICTs

are changing cities by making them smart, not only in the

terms of automating routine functions serving individual

persons, buildings or traffic systems, but in ways that

enable us to monitor, understand, analyse and plan the city

to improve the efficiency, equity and quality of life for its

citizens in real time [5].

Among the different ICTs, the computer vision tech-

nology can make a major contribution to the development

of smart cities. Applications such as traffic surveillance [6,

23], vehicle classification [8] or advanced driver assistance

systems (ADAS) [10, 11, 27] are becoming more and more

popular.

In particular, ADAS applications are expected to expe-

rience a significant growth in the following years, from a

demand of 60 million ADAS units in 2013 to a demand of

more than 100 million units in 2018. Furthermore, the

market research firm ABI Research predicts that the 60 %

of the world’s cars and the 80 % of the North American

and Western European cars will include features like built-

G. Velez (&) � M. Nieto � O. Otaegui

Vicomtech-IK4, Paseo Mikeletegi 57, Donostia-San Sebastián,

Spain

e-mail: gvelez@vicomtech.org

M. Nieto

e-mail: mnieto@vicomtech.org

O. Otaegui

e-mail: ootaegui@vicomtech.org

A. Cortés � I. Vélez

CEIT and Tecnun (University of Navarra), Manuel de Lardizábal

15, Donostia-San Sebastián, Spain

e-mail: acortes@ceit.es

I. Vélez

e-mail: ivelez@ceit.es

123

J Real-Time Image Proc

DOI 10.1007/s11554-014-0412-3

Author's personal copy



in Internet and smartphone connectivity in 5 years [26],

which increases even more the existing application

possibilities.

There are many design options when it comes to develop

an embedded ADAS device, but in any case, some minimal

requirements have to be fulfilled apart from the obvious

real-time performance. Nowadays, embedded systems and

software correspond some 30–40 % to the total value of the

vehicle [7], and this number is expected to grow. Thus, it is

necessary to design a low cost hardware compatible to the

maximum number of ADAS vision applications. It is also

necessary to obtain a small sized low power solution. This

is especially important for electric vehicles, where the total

weight of the on-board computing and communication

systems and their power consumption are critical factors

[28]. Furthermore, the design cycle for electronics and auto

makers has been shortened from the 60-month cycle of

about 5 years ago, to the 24–36 months of nowadays [26].

So a platform that can expedite the development process

must be found. Not only this, due to their high cost, people

cannot change vehicle frequently, so if we want to vehicles

be part of the smart city and given the rate at which ICTs

develop, the designed device should be able to be updated

easily.

There have been different approaches in the literature to

implement vision algorithms in embedded systems. For

many years, only microcontrollers and microprocessors

were used, due to their programmable functionalities [18].

There are many examples in the literature of vision systems

with a microcontroller or microprocessor implementation,

such as [1] or [33]. A similar approach is the use of digital

signal processors (DSPs) [17, 34, 37]. DSPs can do single

cycle multiply and accumulation operations and have some

parallel processing capabilities, which enhance processing

speed. Traditionally, DSPs have been used in image and

audio signal processing when the use of microcontrollers

was not enough.

However, the increase in resolution and frame rate in

recent cameras makes it difficult to achieve real-time per-

formance using only microprocessors or DSPs. Hardware

implementation represents an alternative solution, since it

can achieve a much better computational performance.

During last years, there have appeared a big number of

implementations in Application-Specific Integrated Cir-

cuits (ASIC) [9, 19] or field-programmable gate arrays

(FPGAs) [2, 13, 16, 22, 29, 36]. FPGAs have an important

advantage over ASICs: they are reconfigurable, which

gives them some of the flexibility of software.

As time goes on, more complex ADAS applications are

demanded. They not only need to do image processing, but

they also need to communicate with other devices and offer

a usable user interface. Developing the whole application

in hardware is a too cumbersome task, so hybrid solutions

have appeared which combine software and hardware

implementation.

The work in [31] describes a System on a Chip (SoC)

designed to support a family of vision algorithms. How-

ever, the system uses an ASIC, so it cannot be reconfigured

completely. This important drawback limits the capacity of

the device from being updated. In [14], a lane departure

warning system (LDWS) is implemented on an image-

processing platform. The developed custom board can only

be used for testing purposes, and the obtained performance

is not enough for a more advanced driver assistance

application. In [15], another LDWS is presented based on

software and hardware codesign. However, the FPGA is

only used to capture images from the camera, missing its

computational potential for image processing. More

recently, a generic embedded hardware and software

architecture was proposed to design and evaluate ADAS

vision applications [3]. Although the system is useful to

test some vision applications, the performance obtained in

the case study shows that the system is not enough to run

more complex applications that include I/Os management,

vehicle communications and other more demanding vision

applications.

This paper presents a novel miniaturised embedded

vision system suited for ADAS applications that is more

computationally efficient that the rest found in the litera-

ture. The proposed system uses a Xilinx Zynq-7000 SoC,

which is formed by an FPGA that harbours a dual core

ARM. The use of such a system increases significantly the

communication bandwidth between programmable logic’s

parallel computing and processor’s serial computing,

which is a great advantage over traditional hardware and

software configurations, such as two-chip solutions or

FPGAs with soft cores. Furthermore, the system is pre-

pared to be easily reconfigured, which is another major

advantage. The system was evaluated in a case study where

an LDWS application was implemented in the developed

PCB board using a hardware/software codesign method-

ology. The obtained computational time allows the system

to include another more complex vision algorithm running

in parallel.

The rest of the paper is structured as follows. Section 2

explains the methodology used to design the proposed

system. Section 3 describes the system, and Sect. 4 presents

a case study to show how the proposed system is suitable

for an ADAS vision application. Section 5 presents a dis-

cussion, and finally, Sect. 6 concludes the paper.

2 Design methodology

In traditional design methodologies for embedded systems,

hardware decisions are taken first. After an initial

J Real-Time Image Proc

123

Author's personal copy



specification, the hardware architecture is designed based

mainly on the experience of the hardware designer team.

This methodology has some important drawbacks. First, it

can delay software teams, because in some cases the

software cannot be started to develop and test until the

hardware design is available. Furthermore, it can also delay

the whole product design chain if a critical hardware design

error is detected late. Finally, there is a risk for overde-

signing or underdesigning the system due to a lack of an

initial evaluation of software’s computational requisites.

To improve the design chain, a different design meth-

odology is proposed here, based on modern hardware/

software codesign methodologies [3, 21, 32]. Before

designing the final platform, a functional software proto-

type is developed using a more flexible platform: a stan-

dard PC. After analysing and evaluating this software

prototype, the final platform’s architecture is designed.

More specifically, the proposed design methodology

consists of the following steps:

1. Determine the aims and the behavioural specification

of the whole system. In our case, the aim is to develop

an embedded device that could help to obtain a better

quality of city life improving the road traffic safety.

This device should be flexible enough to admit

different ADAS applications. In this step, the behav-

iour of the product is defined as a specification that will

guide our work in the future. Several techniques can be

applied here, such as brainstorming, questionnaires

among potential users or focus groups. It is important

to reflect in the product the needs of the user, aligned

with the main aims defined initially.

2. Develop a first functional software prototype in a PC.

Although some classic methodologies left prototyping

for the final steps, other more modern approaches, such

as design thinking, promote prototyping from the

beginning stages of the design process [25]. This

prototype can serve as a functional, but already

executable, specification of the system. In case of a

vision system for ADAS, the prototype can be

simplified using generic hardware, such as a PC. The

main input, the camera, can be replaced by previously

recorded videos, and the whole application can be

programmed using a single programming language,

such as C??. In this way, the programmed algorithms

can be debugged more easily, in a more controlled

environment.

3. Define the embedded system’s architecture. In this step

of the design, hardware and software teams work

together defining the architecture of the final platform.

This architecture must satisfy the design constraints for

real-time embedded systems: cost, size, real-time

performance and power. Additionally, the platform

must provide a fast development cycle. This last

consideration is crucial, as time-to-market is a key

factor in the automotive industry. Analysing the

algorithm features and the computational requirements

of the previously developed software prototype, an

exploration of potential solutions can be made. In the

case of an embedded real-time vision system for driver

assistance in smart cities, we propose the use of an SoC

architecture. Taking into account that real-time image

processing is a time-consuming task, a hybrid SoC

architecture can speed up significantly the execution

time. In an SoC, you can combine a programmable

logic and a processing system. Furthermore, the

reconfigurable feature of SoC architectures can be

exploited to obtain a smarter solution. This stage

includes an analysis of the algorithms to decide which

parts require hardware implementation and which parts

are run in a microprocessor. The software prototype is

written in C??, so it is easy to port it to the

microprocessor and to measure the computational

times of its different parts. Normally, the most time-

consuming parts are composed of pixel-level opera-

tions that can be significantly accelerated with a

parallel implementation in an FPGA. On the contrary,

other parts are better described in C?? and it is not

worthwhile porting them to an FPGA. The decisions

taken in this design step are crucial. Here, system’s IOs

and the communication channels of the different

modules are defined. As we are using reconfigure

hardware, some design errors are easy to solve in the

future, but in any case, it is fundamental to spend the

necessary time here to make a good architecture

specification.

4. Develop the final application. Once the architecture is

defined, the hardware team designs the board of the

embedded device. The hardware team is also respon-

sible for porting the previously selected software

modules to the FPGA. Meanwhile, the software team

modifies the source code to adapt it to the new

architecture.

5. Validate the embedded device. The software prototype

developed previously is used as a golden reference

model to compare to the results of the application

under test. This reference model together with simu-

lation tools can help reveal errors very early in the test

cycle. Once all the detected errors are fixed using

videos as input, final validation tests are run in the real

environment. In the case of an ADAS device, the

device is installed in vehicles and it is tested in a

variety of driving conditions.

This design flow should not be considered a rigid waterfall

design. The last two steps on the design chain are run

J Real-Time Image Proc

123

Author's personal copy



iteratively until a satisfactory solution is reached. Addi-

tionally, an error found in the validation step can lead to a

redesign, and decisions taken during Hardware/software

partition may also change the design.

3 System overview

Two external interfaces can be highlighted in a vision

system for driver assistance. First, a camera is needed to

acquire the images. Secondly, these systems usually

receive vehicle information which is helpful to enhance the

system behaviour. For this purpose, normally Controller

Area Network (CAN) communications are implemented.

These two interfaces are enough for vision systems which

focus only on the image processing. Nevertheless, the

system maintenance and upgrade are also very important

issues to achieve a competitive and flexible product.

Ethernet communication is a good candidate to carry out

these operations since it can make the management easier.

Taking into account aspects such as costs, power con-

sumption, computational performance, design flexibility

and time-to-market, the Xilinx Zynq-7000 Extensible

Processing Platform (EPP) has been selected as our system

platform. The Zynq-7000 provides internally several

peripherals which facilitate the interface communications,

such as Ethernet or CAN, reducing the number of external

components in the overall system. Furthermore, the Zynq-

7000 EPP is an SoC which achieves the desired software

and hardware codesign.

3.1 Hardware

The proposed system design is oriented towards an efficient

platform for different low-cost embedded ADAS such as an

LDWS, a Traffic Signs Recognition System or a Driver

Fatigue Detection System. According to the required

FPGA resources, different devices can be found within the

Zynq-7000 SoC family. To get a trade-off between system

costs and FPGA resources, the XC7Z020 has been selected.

This device is based on Artix-7 technology, which is the

cheapest one among the Series 7 FPGAs, but has all the

necessary FPGA resources for this kind of systems.

Figure 1 presents the proposed system architecture. The

Zynq-7000 EPP is composed of a Processing System (PS)

and a Programmable Logic (PL). The Dual-core ARM

Cortex-A9 and their peripherals are in the PS part whereas

the Field Programmable Gate Array (FPGA) is in the PL

part. Both the PS and PL have I/O ports to achieve external

communications. An I/O signals connector is employed to

be able to send and receive external digital signals. Some

environment information such as rain or light can also be

Ethernet connector

Image sensor

Zynq connector 

ETH PHY
CAN 

Transceiver

Analog signal 
connector

CLK sensor 
12.288 MHz

CLK ZYNQ 
33.33 MHz

CLK ETH 
25 MHz

DDR
SDRAM

1 GB

NAND 
FLASH
250 MB

JTAG 
connector

I/O
 s

ig
n

a
ls

 c
on

n
ec

to
r

PCB

ZYNQ

PS PL

Fig. 1 System architecture of

the Zynq-7000 EPP

J Real-Time Image Proc

123

Author's personal copy



received through the Analog signal connector. Further-

more, an additional Zynq-7000 EPP can be connected

through the Zynq connector to increase the system capa-

bility. Thus, the system can cover advanced processing

integrating several ADAS in the same platform with a

master-slave configuration. Both platforms will be able to

communicate through an SPI interface and the Master

Zynq-7000 EPP will be responsible for managing all the

system outputs.

The developed PCB uses two external memories: a 250

MB NAND Flash and a 1GB Double Data Rate Synchro-

nous Dynamic Random-Access Memory (DDR SDRAM)

as can be observed in Fig. 1 and also in the photos pre-

sented in Fig. 2. The NAND Flash has been selected as the

Non-Volatile Memory because, even though it has a high

number of pins, the NAND Flash provides the density

needed for this kind of applications. On the other hand, the

DDR SDRAM can be used to store the ARM application

and the embedded Operating System (OS). PS and PL

share the DDR controller, so that both of them can access

the DDR SDRAM and share data between them. The total

size of the developed PCB is 120 9 60 mm.

3.2 Software

The proposed system not only has to execute image pro-

cessing algorithms but also has to use communication and

network interfaces, and it has to be able to be updated

externally. In light of this, an Embedded Linux operating

system has been chosen to run in the ARM. The perfor-

mance decreases when using an application that runs on a

operating system instead of using a standalone application,

but on the other hand, there are great savings in develop-

ment time and in the maintenance of the system. There is a

big number of communication drivers for Linux, which

make the development of CAN or Ethernet applications

much easier. It is worth losing some computational per-

formance to shorten substantially the development time

and to gain flexibility. Furthermore, when using an oper-

ating system, the programmers can focus on the specific

image processing algorithms without having to care about

other low level details. A higher abstraction level reduces

programming errors and makes the source code more

portable.

3.3 Reconfiguration capability

One of the main strengths of the proposed embedded sys-

tem is that it is easily reconfigurable. The Zynq’s PL is

programmed via PS using a bitstream file. On each startup,

the PS programs the PL using the bitstream stored in the

NAND Flash. Thus, the way to reconfigure the PL changes

that file. A Linux operating system is running in the PS, so

it is easy to create an application that is listening for a

reconfiguration request to update the bitstream file. As

explained before, there are two main processes running in

the installed operating system. One of them is in charge of

the image processing, and the other one is in charge of the

decision making and the I/Os. The second process will be

Fig. 2 Developed PCB board: PCB Zynq (top and down)

Fig. 3 Device communications

J Real-Time Image Proc

123

Author's personal copy



constantly listening for any connection request through

Ethernet. Once properly authenticated, we can upload a

new bitstream file from a laptop, or from any other smart

device such as a mobile phone or a tablet. In the last cases,

a Wi-Fi access point shall be created using an intermediate

router. Figure 3 depicts the embedded device’s communi-

cations with other devices. The duration of PL reconfigu-

ration is in the order of seconds, so it is not a critical delay,

specially if the reconfiguration is done when the vehicle

starts.

As well as reconfiguring the PL logic, it is also possible

to update the installed application in the ARM. The initial

RAM image with the application binary is also stored in the

NAND Flash together with the Linux image. On each

startup, the bootloader reads these images and loads them

into DDR SDRAM. In the same fashion as the PL’s

reconfiguration, we can upload a new version of the Linux

kernel or a new version of the ADAS application that runs

on the PS. We only need to modify the files stored in the

NAND Flash, and after resetting the device we will have a

newly updated device.

There are potential security threats that should be con-

sidered in the development of an embedded device, such as

the cloning of the embedded device, the access to privacy

data inside the embedded system or the insertion of mal-

ware. Xilinx offers methods to obtain a secure boot with

Zynq-7000 using public and private cryptographic algo-

rithms [24]. Furthermore, the PS-PL architecture provides

the programmer with the ability to provide redundancy in

recovering from operational failure in either the PS or PL.

The PS can monitor the PL and vice versa.

4 Case study: lane departure warning system

The hardware and software architectures described in the

previous section are suitable for a variety of ADAS vision

applications. This section presents a case study for the

implementation of an LDWS.

The design of this specific application was done fol-

lowing the design methodology explained in Sect. 2. First,

the aim and the behaviour of the system were specified. In

this case, the aim is to warn the driver for unintentional

lane departures to avoid possible accidents. Thus, the

solution should be able to detect and track in real-time the

road’s lane markings and determine the position of the

vehicle inside its own lane.

Once the complete behaviour specification was done, a

functional software prototype was developed in a PC. This

prototype was tested using videos recorded on real sce-

narios. During the tests, the algorithm was adjusted until

the behavioural specification was fulfilled.

On the next step of the design chain, how this prototype

would be implemented in the embedded device was deci-

ded. The whole algorithm was first implemented in the

ARM to analyse which modules required hardware

implementation and which modules could be left in the

ARM. After this analysis, the final application was

implemented and validated in the developed PCB board.

Following this introduction comes a brief description of

the Lane Departure Warning algorithm. Then, the hard-

ware-software partitioning of the algorithm is explained.

Finally, the hardware and software used in the application

are detailed and the obtained results are discussed.

4.1 Algorithm description

The LDWS is one of the most widely used ADAS appli-

cation. There are many implementations of this ADAS

application in the literature. In our case, we have imple-

mented a vision system that models in real-time the lane

markings using a single camera [20].

The method receives as input the sequence of frames

captured with the camera and generates as output a road

model at each point in time. Figure 4 shows a block dia-

gram of the algorithm. First, there is a pre-processing stage

where the saturation of the image is analysed to feedback

dynamically the camera parameters. Then, the image is

filtered using a step row filer to detect lane markings.

The step row filter is an 1D convolution filter that

operates at each row of the original image. Its aim is to

determine which pixels of the image likely represent lane

markings. The filter has been designed to be adapted to the

perspective of the scene so that the convolution mask is

different for each row of the image. The filter function is

defined as: yðr; cÞ ¼ 2 � xðr; cÞ � xðr; c� tauðrÞÞ �
xðr; cþ tauðrÞÞ � absðxðr; c� tauðrÞÞ � xðr; cþ tauðrÞÞÞ;
where r stands for row and c for column. x(r, c) is the pixel

value at (r, c) and tau(r) is the tau value for the given row.

This variable is defined according to the perspective so that

it is larger at the bottom of the image and smaller as it get

closer to the vanishing point y value (more details can be

found at [20]). The filter generates high values for pixels

whose intensity value is higher than its lateral neighbors (at

� tauðrÞ) and these side values are similar. This provides

high values for stripes like lane markings and generates

very few false positives for other bright visual patterns that

might appear in vehicles or in the road.

The lane markings pixels are then accumulated using a

perspective LUT histogram. The search for maxima leads

to the generation of linear measurements of the state vector

that are fed into the Kalman filter tracking. Finally, there is

a semantic analysis that has as a result the information to

activate or deactivate the lane departure warning signal.

J Real-Time Image Proc

123

Author's personal copy



4.2 Hardware/software partition

In this kind of applications, a frame rate of 25 fps can be

considered as a real-time processing. Therefore, the max-

imum time to process one frame is 40 ms to achieve a real-

time system. The proposed system must fulfill some system

requirements fixed by an Industrial Project taking into

account other processes used for decision making and I/Os.

These processes are out of the scope of this paper. How-

ever, they are executed by the ARM in the PS consuming a

timing of 10 ms. Therefore, a 25 % of the timing must be

reserved for this purpose. Additionally, our system should

be able to execute in parallel the LDWS and another more

computational expensive application like a Collision

Avoidance System. Then, 20 ms, which is a 50 % of the

overall timing, must be reserved for this additional costly

application.

To achieve a real-time system, the image processing of

the LDWS is required to be executed as maximum in

10 ms. This timing budget helps us to decide the necessary

SW/HW partitioning. On the one hand, the camera inter-

face should be implemented in HW to accelerate the pixel-

level image capture. Nevertheless, this interface has to

include a data binning to obtain the appropriated

Fig. 4 Diagram of the

implemented LDWS algorithm

Fig. 5 Interfaces for the low-

cost embedded LDWS

J Real-Time Image Proc

123

Author's personal copy



resolution. On the other hand, the step row filter, required

in the LDWS, is also a pixel-level processing that con-

sumes most of the total computational time when running

the whole algorithm in the ARM. Its parallelisation is

straightforward. Therefore, it should be implemented in

HW, that is, in the PL. The rest of the algorithm can be

implemented in SW, in the ARM of the PS.

4.3 Hardware

There are different modes to communicate PS and PL as

can be seen in Fig. 5. They share the DDR controller so that

both of them can access the DDR SDRAM. PS and PL can

also communicate internally by the Advanced eXtensible

Interface (AXI) standard. The AXI is part of the Advanced

Microcontroller Bus Architecture (AMBA) and this stan-

dard searches a higher performance and an unified inter-

face. The AXI4 specification is similar to AXI but with

three sub-interfaces: Memory Map (traditional address/

data/control interface), Stream (high performance data

streaming) and Lite (simple interface reducing logic

requirements).

The I/O ports of the PS are called Multiplexed IOs

(MIOs), and the Extended Multiplexed IOs (EMIOs) cor-

respond to the I/O ports of the PL. The MIOs can be

connected to EMIOs to get dedicated communications

between the PS and PL. This communication through

external ports (MIOs and EMIOs) can be very useful, for

example, for test purposes. On the other hand, some MIOs

are used to connect the ARM to the required PS peripherals

or as specific digital I/Os. In the LDWS, the following

specific digital I/Os can be distinguished:

– System active: is the button input which indicates the

system activation.

– Left indicator: is the left vehicle indicator which marks

a voluntary lane change.

– Right indicator: is the right vehicle indicator which

marks a voluntary lane change.

– Left alarm: is an output to warn an involuntary lane

change towards the left.

– Right alarm: is an output to warn an involuntary lane

change towards the right.

– System OK: is an output to alert the driver that the

system is working correctly.

The Left alarm and Right alarm signals of the proposed

system are well known as the lane departure warning sig-

nals of the LDWS.

The embedded LDWS employs several PS peripherals

as shown in Fig. 5. For instance, the phase-locked loops

(PLLs) are used to generate from a source clock of 33.33

MHz the necessary clock frequencies for the DDR

SDRAM, the ARM processors and the PL. In LDWS, the

PL employs clock frequencies of 100 and 200 MHz, the

ARM processors work at 666.66 MHz and the DDR

SDRAM uses a clock of 533.33 MHz. However, these

values are soft configured.

The configuration of the CMOS image sensor is carried

out by the I2C Master peripheral of the PS. Nevertheless,

the image sensor is also connected to the EMIOs in the PL

since the image capture is done by the FPGA, which is

faster than a software capture [15]. Once the image sensor

is calibrated, it starts the normal operation shown in Fig. 6.

The timing diagram of Fig. 6 presents the acquisition of a

640(H) 9 480(V) image. A pulse in VSYNC signal indi-

cates that a new frame starts. HREF is a logic one during

640 cycles of PCLK. A rising edge in PCLK signal marks

that a pixel is valid. Thus, 640 horizontal pixels are

obtained. To complete the image capture, 480 periods of

HREF are needed. The LDWS requires a

320(H) 9 240(V) image to process the algorithm. There-

fore, the received image will be preprocessed before stor-

ing in the DDR.

4.3.1 PL implementation

VHDL is used to describe the designed logic in PL. There

are several tools that can generate VHDL code from C??

code, such as Matlab or Vivado HLS. These tools can

speed up the development process; however, they are not

always the best choice [30, 32]. Some important sources of

parallelism such as complex loop specifications cannot be

efficiently parallelizable [32]. In our case, the VHDL code

has been hand coded since the safety requirements of our

system do not permit us to use this kind of automatic

generation tools.

ISE Design Suite 14.5 tools of Xilinx have been used to

simulate (ISE simulator Isim), synthesize, place and route

(PlanAhead tool) our VHDL design. Additionally, EDK tools

such as Xilinx Platform Studio (XPS) and Xilinx Software

Development (XSDK) have been employed to define the

hardware platform and develop the software in PS.

The architecture of the VHDL implementation in PL is

shown in Fig. 7. The PS configures the registers of the

Xilinx AXI DMA module through AXI LITE interface,

Fig. 6 Timing diagram of the CMOS image sensor

J Real-Time Image Proc

123

Author's personal copy



which uses less lines than the AXI interface and is enough

for this configuration. Our IF_camera module receives the

camera data and processes the data binning to achieve the

desired 320(H) 9 240(V) image from the received

640(H) 9 480(V) image. When two rows of the image

have been received, the obtained 320 pixels are stored in

Block RAMs (BRAMs) of the PL. These BRAMs are read

by the AXI4 Stream Slave which sends the information to

the S_AXIS_S2MM channel of the Xilinx AXI DMA

module. It manages the addressing of the DDR SDRAM in

an efficient manner. The M_AXI_S2MM channel is the

responsible for sending the pixel data to the DDR Con-

troller using the S_AXI_HP channel which is the fastest

path to access the DDR from the PL. Thus, the captured

frame is stored in the DDR SDRAM. Then, the PS reads

the stored image, carries out a saturation analysis applying

some statistical operations over it and saves it into the DDR

SDRAM again. After these operations, the PL reads the

preprocessed image from the DDR SDRAM using the

M_AXI_MM2S channel of the Xilinx AXI DMA module

and our Step Row Filter module applies the custom filter to

the image. Finally, the filtered image is stored again in the

DDR SDRAM so that the PS reads the image completing

the LDW algorithm. Additionally, the PS is in charge of

activating the system outputs according to the algorithm

results.

Figure 8 shows an scheme of the stepRowFilter module

architecture. Each row of the 320(H) 9 240(V) image is

stored in PL. The module uses two MAC (Multiplier

Accumulator) units to process two pixels in parallel. The

selected pixels will be read from the BRAM depending on

the value of tau which is sent by the PS and they will be

multiplied by the coefficients stored in the LUT applying

the corresponding mask. Each MAC unit accumulates the

multiplication of three pixels by the three coefficients. The

result of the MAC unit is added by the subtraction of the

pixels ½i� tau� and ½iþ tau�: The sign of this sum depends

on the sign of the subtraction result. Finally, data are

compared with a threshold fixed also by PS. Thus, the

output is limited: if data are higher than the threshold, the

output will be ‘‘FF’’ and if not, it will be zero.

In addition to the camera data, PL receives a PWM

signal from a speedometer. To process this information, a

design which counts the timing of this signal at low level

has been implemented in the PL. Thus, the PL sends the

corresponding code to the PS so that it is able to calculate

Fig. 7 Architecture of the PL

for the LDW system

J Real-Time Image Proc

123

Author's personal copy



the vehicle speed. For this purpose, an AXI GPIO module

is used to send this signal through the AXI interface. The

PL also receives a rain analog signal from a rain sensor to

get environment information which can enhance the system

working. This signal is digitalised using one of the Xilinx

Analog Digital Converters (XADCs) of the PL. The 12-bits

digital data are sent to the PS using the AXI XADC module

which provides the AXI interface to the XADC converter.

Thus, the system costs are reduced considerably avoiding

the inclusion of an external ADC.

4.4 Software

The software runs in a Xilinx Zynq Linux operating system

within the ARM of the PS. This distribution’s kernel is

based on the 3.0 Linux kernel together with Xilinx addi-

tions. This distribution was chosen because it is lightweight

and it has been designed specifically for the Zynq platform.

In the initialisation, the application running in the PS

configures the camera. Once the camera is configured, the

LDW algorithm starts running in one process. This process

uses Viulib 13.10 libraries for some of its computer vision

functions. Viulib a is multiplatform SDK written in C??

that simplifies the building of complex artificial vision

applications [35].

In a separate process, the I/Os are managed and the main

decisions are taken. Both processes communicate with each

other using shared memory. When the LDW process has

finished processing a frame, it writes the output in a certain

position of the shared memory. Then, the decision making

process reads this output and together with the information

received from the vehicle it decides to activate or deacti-

vate the lane departure warning signal.

As explained in Sect. 3.3, the software can be updated

via Ethernet. Furthermore, the PS can reconfigure the PL to

adopt new applications.

Fig. 8 Architecture of the

stepRowFilter module

J Real-Time Image Proc

123

Author's personal copy



4.5 Results

An LDWS has been successfully implemented in the pro-

posed platform. From the first software prototype, the

system was tested using as input videos recorded on real

situations. The appearance of lane markings greatly varies

depending on illumination, road condition and weather, so

different videos were recorded taking into account the

combination of these conditions. The set of sequences has a

total duration of 336 min and was recorded with two types

of vehicles: car and bus.

One way to objectively evaluate the system is to check

the correct detection of lane changes. We hypothesize that

the system is able to monitorise when the vehicle is getting

out of its own lane if lane changes are detected correctly.

We have also determined the availability of the system as a

result of a self-assessment module which determines the

reliability of the detections. Below a certain threshold, the

system switches OFF, and the availability is measured as

the percentage of time in which the system is ON.

Table 1 shows the statistics of lane change detections cat-

egorised according to position, light, weather and roadway

type. The recall and precision values are computed to show the

performance of the proposed method. The recall, which is

related to the number of correctly detected events, is above

95 %, while the precision, related to the quality of the detec-

tions, is above 91 %. So it can be said that the algorithm

overcomes the difficulties of identifying unintentional lane

departures. Additionally, there is an ongoing evaluation which

is being done in the real environment. In this case, the devel-

oped device is installed in a vehicle and the images obtained

from the integrated camera are the inputs that feed the system.

The preliminary results of this ongoing validation are positive

and confirm the evaluation done previously using videos.

4.5.1 PL resources

Table 2 summarizes the PL resources used by our modules:

IF_camera and stepRowFilter. In the IF_camera module,

the received pixels to be processed are kept using Slice

Registers. The Slice LUTs are used for implementing logic

and also memory as shift registers to store the results of the

binning operations. The IF_camera module needs 32

RAMB36FIFOE1s to store the 320(H) 9 240(V) valid

pixels which are obtained from the 640(H) 9 480(V) pix-

els in the received image. The stepRowFilter module

employs two DSP48s to process the filtering of two pixels

in parallel. This custom filter is processed per row. So, in

the PL only 320 pixels for the input and 320 pixels for the

output are needed to be stored in BRAM, requiring two

RAM18E1s.

4.5.2 Performance

In Table 3, a timing profile of the LDW image processing

algorithm is presented when it is totally implemented in the

PS. The necessary time to process the LDW algorithm over

a 320(H) 9 240(V) image is 18.902 ms. Taking into

account the time budget defined previously, we only have

the 25 % of the cycle to run the image processing of LDW,

that is, 10 ms. Consequently, it is necessary to optimise the

implementation using the PL.

Filtering two pixels simultaneously in the PL, the pro-

cessing time of the Step Row Filter with a clock frequency

Table 1 Lane detection rates

for different subsets of the

considered sequences

TP true positives, FP false

positives, FN false negatives, R

recall = TP/(TP ? FN), P

precision = TP/(TP ? FP)

Length (min.) Availability (%) TP FP FN R P

Position Bus 19701400 87.48 355 44 22 0.94 0.89

Car 13902600 94.88 255 19 11 0.96 0.93

Light Sunny 15503900 91.72 288 28 11 0.96 0.91

Cloudy 13301200 87.26 259 23 18 0.94 0.92

Dusk/dawn 4602200 95.79 56 12 4 0.93 0.82

Night 102600 99.00 7 0 0 1.00 1.00

Weather Dry 23600000 91.68 401 44 21 0.95 0.90

Rain 10004000 87.89 209 19 12 0.95 0.92

Road Highway 22003000 93.22 430 42 19 0.96 0.91

Periurban 11502600 85.51 179 20 14 0.93 0.90

Total 33604100 90.55 610 63 33 0.95 0.91

Table 2 PL resources of the modules implemented in XC7Z020

IF_camera

module (%)

StepRowFilter

module (%)

Slices 79 (1) 68 (1)

Slice registers 121 (1) 145 (1)

Slice LUTs 196 (1) 120 (1)

RAMB18E1s – 2 (1)

RAMBFIFO36E1s 32 (23) –

External IOBs 53 (26) 64 (32)

DSP48E1s – 2 (1)

J Real-Time Image Proc

123

Author's personal copy



of 200 MHz is 0.95 ms. The overhead of the communi-

cation between PL and PS is 0.274 ms, which is the access

time needed to communicate PL with the DDR in different

stages. As it can be seen in Table 4, the overall processing

time of the image processing is below the target 10 ms,

achieving a time reduction of around 50 %. Furthermore,

the filtering parallelisation can be increased considerably

depending on the resources of the target FPGA. This par-

allelisation permits to process more pixels simultaneously.

In that case, the processing time reduction would be even

higher.

The obtained computational time meets the defined time

budget constraint for the LDW application. The image

processing part requires 9.596 ms of the period, and

another 10 ms are reserved for the decision making, I/Os

and other necessary functions. Additionally, 20 ms are

reserved to implement another more computational

expensive application like a Collision Avoidance System.

4.6 Comparison

Table 5 shows a comparison of the computational perfor-

mance of our LDWS implementation with other works of

the literature that implement an LDWS on an embedded

vision system based on a hybrid hardware and software

solution. It can be noted that our implementation clearly

outperforms the published computational times.

One of our major contributions is the proposal of a

hardware architecture for the processing of ADAS vision

applications. Not all the works of the literature develop

their own ad hoc hardware, normally commercial devel-

opment boards are used, which are of course not valid for

use in a vehicle. Hsiao and Yeh [14] mounted their design

on a prototyping board, which is not valid for use in the

real environment either. Furthermore, they do not offer any

value of board’s size, which is an important parameter.

Anders et al. [3] seem to develop a board, but they do not

offer enough data for comparison. The board presented in

[31] measures 53mm 9 33 mm, which is smaller than our

board. However, they do not offer any performance mea-

sure, so it cannot be compared with us fairly. Furthermore,

as it is said in Sect. 1, they use ASIC, which has an

important drawback: it cannot be reconfigured.

To sum-up it can be said that our system enhances the

state of the art in terms of performance and it offers a novel

hardware architecture for an ad hoc ADAS vision pro-

cessing hardware.

5 Discussion

This paper presents a reconfigurable embedded vision

system for ADAS applications in smart cities. The system

has been designed using a hardware/software codesign

methodology. Codesign techniques are useful to coordinate

the design tasks of hardware and software teams as well as

to obtain an efficient design chain. Traditionally, software

teams started developing once the hardware was ready.

Instead of this, codesign promotes a concurrent hardware

and software development, what can shorten the total

development time. This is specially important in the

automotive industry, where the design cycles are becoming

more and more short.

One of the most crucial stages in the system design is

the system platform selection. To choose the appropriated

platform, several important aspects such as costs, power

consumption, computational performance, etc. should be

taken into account. The proposed embedded system uses a

Zynq 7000 SoC, which is formed by an ARM Cortex-A9

based processing system (PS) and 28 nm programmable

logic (PL). This type of platforms, such as Xilinx’s Zynq

Table 3 Timing profile of the LDW image processing applied to a

320(H) 9 240(V) image implemented in the PS

Module Time (ms) Percentage (%)

Image pre-processing 5.991 31.690

stepRowFilter 10.530 55.700

Perspective histogram 2.217 11.720

Tracking 0.163 0.860

Parameters adjustments 0.001 0.005

Semantic analysis 0.000 0.000

Total 18.902

Table 4 Timing profile of the co-designed solution applied to a

320(H) 9 240(V) image

Module Time (ms) Percentage (%)

Image pre-processing 5.991 62.427

stepRowFilter 0.950 9.899

PL-DDR communication 0.274 2.862

Perspective histogram 2.217 23.101

Tracking 0.163 1.698

Parameters adjustments 0.001 0.010

Semantic analysis 0.000 0.000

Total 9.596

Table 5 Performance comparison with other works of the literature

Paper Image resolution Performance (ms)

[14] 128 9 128 45.40

[15] 256 9 256 50.00

[3] 320 9 240 45.45

Our work 320 9 240 9.596

J Real-Time Image Proc

123

Author's personal copy



7000, Altera’s Arria V SoC or Cyclone V SoC, has many

advantages. Firstly, their high interconnectivity bandwidth

allows levels of performance that two-chip solutions can-

not match. Furthermore, as they have a higher integrated

architecture, the overall power is reduced. Specifically, the

Zynq-7000 EPP offer several techniques to lower the sys-

tem power consumption. This platform allows us to switch

off the programmable logic or disable the PL clock. These

techniques can reduce significantly the dynamic power

consumption. Additionally, an SoC solution achieves to

reduce the overall system costs and the platform size since

it integrates the necessary processing parts into a chip

including also their interfaces. Therefore, the system needs

less external components and connections facilitating the

production stage.

Its reconfiguration capability is one of the most impor-

tant points of the presented embedded system. The pro-

cessor in the PS boots first, and configures the PL. The

software running in the PS can also be updated at any

moment via Ethernet. If there is a design bug, this system

permits to fix it after the product launch. Not only this, the

whole application can be dynamically programmed. For

example, we can use a different algorithm when we are

driving in a city or when we are in a rural road, or between

daytime and night-time. Instead of having all the algo-

rithms implemented in a custom hardware, the PS can

select the most appropriate algorithm, reconfigure the PL

and continue processing. An external device can also

reconfigure the application running in the PS to adapt it to

the new driving conditions.

Such a dynamic reconfiguration capability makes the

system highly flexible. The possibilities are endless. For

example, we can configure the system depending on the

city where we are driving. Using wireless connection, we

can receive information from the city we are entering and

reconfigure the system to adapt it to the new scenario. In

short, the proposed reconfigurable system can help to

develop smart cities making vehicles smarter.

The results obtained in the case study show that the

proposed system is suitable for implementing driver

assistance vision applications. The PL can speed up sig-

nificantly pixel-level operations, while the PS is in charge

of the serial processing. A total computational time smaller

than 10 ms was obtained for the LDWS algorithm,

achieving the target time budget.

6 Conclusions

There are many options to implement a computer vision

ADAS algorithm into a embedded system. Microprocessors

and DSPs provide fast developing cycles and a low level of

design complexity, but they are not enough for a real-time

performance for the most demanding applications. On the

other hand, a hardware implementation in an FPGA can

improve performance and energy efficiency, but at the

same time the development cycle increases dramatically.

System on Chips offer a trade-off between both worlds.

Their architectures permit to implement custom logic in the

PL and custom software in the PS. As the whole platform is

integrated in the same chip, it has a better performance and

power efficiency than traditional two-chip systems.

This paper presents an embedded vision system based

on an SoC platform over our own tailored PCB. The system

meets the requirements of the ADAS. The computational

performance of the proposed embedded system improves

the works found in the literature. Additionally, its recon-

figuration capabilities increase significantly the application

possibilities. In the context of smart cities, we can obtain

smarter vehicles that can adapt dynamically to their envi-

ronment. These smart vehicles would be able to improve

our driving experience, minimise traffic accidents or pre-

vent traffic congestion. In other words, they could improve

our life quality.

Acknowledgments This work has been partially supported by the

program ETORGAI 2011–2013 of the Basque Government under

project IEB11. This work has been possible thanks to the cooperation

with Datik-Irizar Group for their support in the installation, integra-

tion and testing stages of the project.

References

1. Aggarwal, A.: Embedded vision system (EVS). In: 2008 IEEE/

ASME International Conference on mechatronic and embedded

systems and applications. MESA 2008, pp. 618–621 (2008)

2. An, X., Shang, E., Song, J., Li, J., He, H.: Real-time lane

departure warning system based on a single FPGA. EURASIP J.

Image Video Process. 1, 1–18 (2013)

3. Anders, J., Mefenza, M., Bobda, C., Yonga, F., Aklah, Z., Gunn,

K.: A hardware/software prototyping system for driving assis-

tance investigations. J. Real Time Image Process. (2013). doi:10.

1007/s11554-013-0351-4

4. Aurigi, A.: Making the digital city: the early shaping of urban

Internet space. Ashgate Publishing, Farnborough (2005)

5. Batty, M., Axhausen, K., Giannotti, F., Pozdnoukhov, A., Baz-

zani, A., Wachowicz, M., Ouzounis, G., Portugali, Y.: Smart

cities of the future. Eur. Phys. J. Spec. Top. 214(1), 481–518

(2012)

6. Buch, N., Velastin, S., Orwell, J.: A review of computer vision

techniques for the analysis of urban traffic. IEEE Trans. Intell.

Transp. Syst. 12(3), 920–939 (2011)

7. Chakraborty, S., Lukasiewycz, M., Buckl, C., Fahmy, S., Chang,

N., Park, S., Kim, Y., Leteinturier, P., Adlkofer, H.: Embedded

systems and software challenges in electric vehicles. In: Pro-

ceedings of the Conference on design, automation and test in

Europe, DATE ’12, pp. 424–429 (2012)

8. Chang, S.L., Chen, L.S., Chung, Y.C., Chen, S.W.: Automatic

license plate recognition. IEEE Trans. Intell. Transp. Syst. 5(1),

42–53 (2004)

9. Darouich, M., Guyetant, S., Lavenier, D.: A reconfigurable dis-

parity engine for stereovision in advanced driver assistance

J Real-Time Image Proc

123

Author's personal copy

http://dx.doi.org/10.1007/s11554-013-0351-4
http://dx.doi.org/10.1007/s11554-013-0351-4


systems. In: Sirisuk, P., Morgan, F., El-Ghazawi, T., Amano, H.

(eds.) Reconfigurable Computing: Architectures, Tools and

Applications. Lecture Notes in Computer Science, vol. 5992,

pp. 306–317. Springer, Berlin (2010)

10. Dong, Y., Hu, Z., Uchimura, K., Murayama, N.: Driver inatten-

tion monitoring system for intelligent vehicles: A review. IEEE

Trans. Intell. Transp. Syst. 12(2), 596–614 (2011)

11. Geronimo, D., Lopez, A., Sappa, A., Graf, T.: Survey of pedes-

trian detection for advanced driver assistance systems. IEEE

Trans. Pattern Anal. Mach. Intell. 32(7), 1239–1258 (2010)

12. Harrison, C., Eckman, B., Hamilton, R., Hartswick, P., Kala-

gnanam, J., Paraszczak, J., Williams, P.: Foundations for smarter

cities. IBM J. Res. Dev. 54(4), 1–16 (2010)

13. Hiraiwa, J., Amano, H.: An FPGA implementation of reconfig-

urable real-time vision architecture. In: 27th International Con-

ference on advanced information networking and applications

Workshops (WAINA), pp. 150–155 (2013)

14. Hsiao, P.Y., Yeh, C.W.: A portable real-time lane departure

warning system based on embedded calculating technique. In:

IEEE 63rd Vehicular Technology Conference. VTC 2006-Spring

6:2982–2986 (2006)

15. Jeng, M.J., Guo, C.Y., Shiau, B.C., Chang, L.B., Hsiao, P.Y.:

Lane detection system based on software and hardware codesign.

In: 4th International Conference on autonomous robots and

agents. ICARA 2009, pp. 319–323 (2009)

16. Lee, S., Son, H., Choi, J.C., Min, K.: High-performance hog

feature extractor circuit for driver assistance system. In: 2013

IEEE International Conference on consumer electronics (ICCE),

pp. 338–339 (2013)

17. Lin, H.Y., Chen, L.Q., Lin, Y.H., Yu, M.S.: Lane departure and

front collision warning using a single camera. In: 2012 Interna-

tional Symposium on intelligent signal processing and commu-

nications systems (ISPACS), pp. 64–69 (2012)

18. Malinowski, A., Yu, H.: Comparison of embedded system design

for industrial applications. IEEE Trans. Ind. Inform. 7(2),

244–254 (2011)

19. Mielke, M., Schafer, A., Bruck, R.: Asic implementation of a

gaussian pyramid for use in autonomous mobile robotics. In:

2011 IEEE 54th International Midwest Symposium on Circuits

and Systems (MWSCAS), pp. 1–4 (2011)

20. Nieto, M., Cortés, A., Otaegui, O., Arróspide, J., Salgado, L.:

Real-time lane tracking using rao-blackwellized particle filter.

J. Real Time Image Process. (2012). doi:10.1007/s11554-012-

0315-0

21. Pedre, S., Krajnı́k, T., Todorovich, E., Borensztejn, P.: Acceler-

ating embedded image processing for real time: a case study.

J. Real Time Image Process. (2013). doi:10.1007/s11554-013-

0353-2

22. Samarawickrama, M., Pasqual, A., Rodrigo, R.: FPGA-based

compact and flexible architecture for real-time embedded vision

systems. In: 2009 International Conference on industrial and

information systems (ICIIS), pp. 337–342 (2009)

23. Sánchez-Oro, J., Fernández-López, D., Cabido, R., Montemayor,

A.S., Pantrigo, J.J.: Urban traffic surveillance in smart cities using

radar images. In: Ferrández Vicente, J.M., Álvarez Sánchez, J.R.,

Paz López, F., Toledo Moreo, F.J. (eds) Natural and artificial

computation in engineering and medical applications, lecture

notes in computer science, vol. 7931. Springer, Berlin,

pp. 296–305 (2013)

24. Sanders, L.: Secure boot of Zynq-7000 All programmable SoC.

Application note XAPP1175 (v1.0), Xilinx (2013)

25. Sandino, D., Matey, L.M., Vélez, G.: Design thinking method-

ology for the design of interactive real-time applications. In:

Marcus, A. (ed.) Design, user experience, and usability. Design

philosophy, methods, and tools, lecture notes in computer sci-

ence, vol. 8012. Springer, Berlin, pp. 583–592 (2013)

26. Schneiderman, R.: Car makers see opportunities in infotainment,

driver-assistance systems [special reports]. IEEE Signal Process.

Mag. 30(1), 11–15 (2013)

27. Shaout, A., Colella, D., Awad, S.: Advanced driver assistance

systems - past, present and future. In: 2011 Seventh International

Computer Engineering Conference (ICENCO), pp. 72–82 (2011)

28. Shreejith, S., Fahmy, S., Lukasiewycz, M.: Reconfigurable

computing in next-generation automotive networks. IEEE
Embed. Syst. Lett. 5(1), 12–15 (2013)

29. Souani, C., Faiedh, H., Besbes, K.: Efficient algorithm for auto-

matic road sign recognition and its hardware implementation.

J. Real Time Image Process. 9(1), 79–93 (2014). doi:10.1007/

s11554-013-0348-z

30. Stein, F.: The challenge of putting vision algorithms into a car.

In: 2012 IEEE Computer Society Conference on computer vision

and pattern recognition workshops (CVPRW), pp. 89–94 (2012)

31. Stein, G., Rushinek, E., Hayun, G., Shashua, A.: A computer

vision system on a chip: a case study from the automotive

domain. In: IEEE Computer Society Conference on computer

vision and pattern recognition-workshops, 2005. CVPR work-

shops, pp. 130–130 (2005)

32. Teich, J.: Hardware/software codesign: the past, the present, and

predicting the future. Proc. IEEE 100(Special Centennial

Issue):1411–1430 (2012)

33. Toral, S., Barrero, F., Vargas, M.: Development of an embedded

vision based vehicle detection system using an ARM video pro-

cessor. In: 11th International IEEE Conference on intelligent

transportation systems, 2008. ITSC 2008, pp. 292–297 (2008)

34. Turturici, M., Saponara, S., Fanucci, L., Franchi, E.: Low-power

DSP system for real-time correction of fish-eye cameras in

automotive driver assistance applications. J. Real Time Image

Process. (2013). doi:10.1007/s11554-013-0330-9

35. Vicomtech-IK4: Viulib: Computer Vision SDK. URL http://

www.vicomtech.org/viulib/ (2013)

36. Wójcikowski, M., Zaglewski, R., Pankiewicz, B.: FPGA-based

real-time implementation of detection algorithm for automatic

traffic surveillance sensor network. J. Signal Process. Syst. 68(1),

1–18 (2012)

37. Wu, B.F., Huang, H.Y., Chen, C.J., Chen, Y.H., Chang, C.W.,

Chen, Y.L.: A vision-based blind spot warning system for day-

time and nighttime driver assistance. Comput. Electr. Eng. 39(3),

846–862 (2013)

Gorka Velez received his M.Sc degree in Electronic Engineering

from the University of Mondragon (Spain) in 2007, and his Ph.D.

from the University of Navarra (Spain) in 2012. He currently works as

a researcher of the Intelligent Transportation Systems and Engineer-

ing Area of Vicomtech-IK4 research center. His research interests

include real-time systems, design methodologies and intelligent

transportation systems.

Ainhoa Cortés received her degree in Electrical, Electronic and

Control Engineering from the University of Navarra, Spain, in 2004,

and her Ph.D. in 2007. She is currently working in the Electronics and

Communications department of CEIT-IK4 (San Sebastian, Spain) and

is a lecturer at the University of Navarra (Spain). Her research

interests are in the area of the design and implementation of digital

signal processing algorithms.

Marcos Nieto received the Ingeniero de Telecomunicación degree in

2005 and the Ph.D. degree in 2010 both from the E.T.S.Ing.

Telecomunicación (ETSIT) of the Universidad Politécnica de Madrid

(UPM), Spain. He currently works in the Vicomtech-IK4 research

center, in which he is working in the area of Intelligent Transportation

J Real-Time Image Proc

123

Author's personal copy

http://dx.doi.org/10.1007/s11554-012-0315-0
http://dx.doi.org/10.1007/s11554-012-0315-0
http://dx.doi.org/10.1007/s11554-013-0353-2
http://dx.doi.org/10.1007/s11554-013-0353-2
http://dx.doi.org/10.1007/s11554-013-0348-z
http://dx.doi.org/10.1007/s11554-013-0348-z
http://dx.doi.org/10.1007/s11554-013-0330-9
http://www.vicomtech.org/viulib/
http://www.vicomtech.org/viulib/


Systems and Engineering. His actual research interests include the use

of optimization methods for probabilistic models in computer vision

as well as the design of H.264/AVC video codecs.

Igone Vélez received her M.Sc. Degree in Electronic Engineering

from the University of Navarra in 2000, and the Ph.D. in 2005. She

has been a research staff member at the Electronic and Communi-

cations department of CEIT-IK4 (Spain) since 2000 and an associate

professor at the University of Navarra (Spain) since 2005. Her

research interests include design methodologies, digital signal

processing and digital hardware design.

Oihana Otaegui received her M.S. and Ph.D. degrees in Electronic

Engineering from the Tecnun, University of Navarra, Donostia–San

Sebastian, Spain in 1999 and 2005 respectively. She is currently the

head of the ITS and Engineering Area of Vicomtech-IK4, Donostia–

San Sebastian, Spain. Her research interests include satellite naviga-

tion and transport fields.

J Real-Time Image Proc

123

Author's personal copy


	A reconfigurable embedded vision system for advanced driver assistance
	Abstract
	Introduction
	Design methodology
	System overview
	Hardware
	Software
	Reconfiguration capability

	Case study: lane departure warning system
	Algorithm description
	Hardware/software partition
	Hardware
	PL implementation

	Software
	Results
	PL resources
	Performance

	Comparison

	Discussion
	Conclusions
	Acknowledgments
	References


