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Abstract

In this paper we present a robust and lightweight method for the automatic
fitting of deformable 3D face models on facial images. Popular fitting tech-
niques such as those based on statistical models of shape and appearance
require a training stage based on a set of facial images and their correspond-
ing facial landmarks, which have to be manually labeled. Therefore, new
images in which to fit the model cannot differ too much in shape and ap-
pearance (including illumination variation, facial hair, wrinkles, etc) from
those used for training. By contrast, our approach can fit a generic face
model in two steps: (1) the detection of facial features based on local image
gradient analysis and (2) the backprojection of a deformable 3D face model
through the optimization of its deformation parameters. The proposed ap-
proach can retain the advantages of both learning-free and learning-based
approaches. Thus, we can estimate the position, orientation, shape and ac-
tions of faces, and initialize user-specific face tracking approaches, such as
Online Appearance Models (OAM), which have shown to be more robust
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than generic user tracking approaches. Experimental results show that our
method outperforms other fitting alternatives under challenging illumination
conditions and with a computational cost that allows its implementation in
devices with low hardware specifications, such as smartphones and tablets.
Our proposed approach lends itself nicely to many frameworks addressing
semantic inference in face images and videos.

Keywords: Face model fitting, Head pose estimation, Facial feature
detection, Face tracking

1. Introduction

Generic face model fitting has received much attention in the last decade.
Face model fitting can be seen as a basic component in many Human-
Computer Interaction applications since it enables facial feature detection,
head pose estimation, face tracking, face recognition, and facial expression
recognition. In general terms, two main kinds of approaches have been pro-
posed: (i) learning-free and (ii) learning-based. The latter need a training
stage with several images to build the model, and therefore depend on the
selection of images for a good fitting in unseen images.

Learning-free approaches rely heavily on some radiometric and geometric
properties associated with face images. These approaches exploit generic
knowledge about faces, which often includes the position, symmetry, and
edge shape of facial organs. They can locate facial features through low-level
techniques (e.g. gradients, filtering), usually focusing on detecting individual
face features (irises, nose, lips, ...) [1, 2, 3, 4]. Most of the learning-free
approaches do not provide a full set of extracted face features, in contrast
with learning-based techniques.

For instance, in [5], the authors exploit a range face image in order to de-
tect the nose tip for frontal and non frontal faces. In [6], the authors attempt
to detect eyes and mouth using the distance vector field that is formed by
assigning to each pixel a vector pointing to the closest edge. Distance vector
fields employ geometrical information and thus can help avoiding illumina-
tion problems in the critical step of eye and mouth region detection. In [7],
a gradual confidence approach concerning facial feature extraction over real
video frames is presented. The proposed methodology copes with large vari-
ations in the appearance of diverse subjects, as well as of the same subject in
various frames within real video sequences. The system extracts the areas of
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the face that statistically seem to be outstanding and forms an initial set of
regions that are likely to include information about the features of interest.
In this approach, primary facial features, such as the eyes and the mouth,
are being consistently located. In [8], the authors divided the face feature
extraction into three main steps. The first step is preprocessing. The goal
of this step is to get rid of high intensity noise and to transform the input
image into a binary one. The second step includes a labeling process and a
grouping process. This step tries to generate facial feature candidates block
by block. Finally, a geometrical face model is used to locate the actual posi-
tion of a face. In [9], the authors showed that the eyes and mouth in facial
images can be robustly detected. They used these points to normalize the
images, assuming affine transformation, which can compensate for various
viewing positions. In [10], a real-time face detection algorithm for locating
faces, eyes and lips in images and videos is presented. The algorithm starts
from the extraction of skin pixels based upon rules derived from a simple
quadratic polynomial model in a normalized color space.

As can be seen, learning-free approaches can be very appealing. However,
they suffer from some shortcomings. Firstly, most of them assume that some
conditions are met (e.g., face images are taken in laboratory conditions, up-
right faces, etc). Secondly, most of these approaches focus on the detection
of few facial features (mainly the eyes and the mouth). Very little attention
was made to the detection of a rich set of facial features. Thirdly, accurate
localization of the detected face features is still questionable.

On the other hand, learning-based approaches attempt to overcome the
above mentioned shortcomings. Three subcategories are proposed: param-
eterized appearance models, discriminative approaches, and part-based de-
formable models.

Parameterized appearance models build a statistical model of shape and
appearance on a set of manually labeled data [11, 12, 13, 14, 15]. In the
2D data domain, Active Shape Model (ASM) [16, 11], Active Appearance
Model (AAM) [13, 14] and more recently, Active Orientation Model (AOM)
[15] have been proposed. The ASM approach builds 2D shape models and
uses their constraints along with some information on the image content near
the 2D shape landmarks to locate points on new images. The AAM builds
both the shape and the full texture variations [13, 14]. The AOM approach
[15] follows the scope of AAM, but using gradient orientations instead of the
texture and an improved cost function, which generalizes better to unseen
identities. In the 3D data domain, 3D morphable models (3DMM) have been
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proposed [17, 12], which include the 3D shape and texture models, built from
3D scans of data.

Discriminative approaches learn a correspondence between image features
and landmark positions or motion parameters [18, 19, 20, 21]. Typical facial
feature point detectors apply a sliding window-based search in a region of
interest of the face [18]. However, this is a slow process, as the search time
increases linearly with the search area. More recently, there have been a
number of approaches aimed at eliminating the need for an exhaustive sliding
window-based search, by using local image information and regression-based
techniques built over the ASM framework [19, 20, 21], achieving state-of-
the-art performance in the problem of 2D facial feature detection. In [22]
discriminative methods and parameterized appearance models are unified
through the proposed Supervised Descent Method (SDM) for solving Non-
linear Least Squares problems, obtaining extremely fast and accurate fitting
results.

Finally, part-based deformable models maximize the posterior likelihood
of part locations given an image, in order to align the learned model [23,
24, 25, 26]. In recent years, the Constrained Local Model (CLM) approach
has attracted interest since it circumvents many of the drawbacks of AAM,
such as modeling complexity and sensitivity to lighting changes. CLM uses
an ensemble of local detectors in combination with a statistical shape model,
extending the basic idea of ASM. It obtains remarkable fitting results with
previously unseen faces [24]. In [25] a component-based ASM and an inter-
active refinement algorithm are proposed, which provides more flexibility for
handling images with large variation. In [26], a globally optimized tree shape
model was presented, which not only finds face landmarks but also estimates
the pose and the face image region, not as the previously mentioned methods,
which all require a preliminary face detection stage [27] and do not estimate
the head pose from 2D image data. In [28] a hybrid discriminative and part-
based approach is proposed improving the results obtained by [24, 26] in the
task of landmark localization.

In order to extend the face landmark estimation from 2D to 3D (2.5D),
different alternatives have been proposed. In [29] a non-rigid structure-from-
motion algorithm is proposed to construct the corresponding 3D shape modes
of a 2D AAM during the training stage, in order to estimate the head pose
angles from the 2D fitting procedure. However, the used 3D shape bases
account simultaneously for shape variability (inter-person variability) and
facial action (intra-person variability), with the two kinds of variability being
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thus represented as interdependent, making the explicit recovery of only the
facial actions impossible.

Recently, some works focused on combining AAM principles with some
prior knowledge about 3D face shape [30, 31, 32, 33]. In [31], the authors
proposed a 3D AAM which estimates the classic shape and appearance pa-
rameters together with the 3D pose parameters. The mean 3D face model
is simply obtained from the mean 2D shape by exploiting an offline 3D face
template. In [33], the authors proposed to minimize the sum of two criteria:
the classic AAM criterion and the point-to-point discrepancy between the
Candide-3 model [34] vertices and the 2D shape.

On the other hand, approaches based on Online Appearance Model (OAM)
[35, 36] allow a more efficient person-specific face tracking without the need
of a prior training stage. For instance, [35, 36] obtains a fast 3D head pose
estimation and facial action extraction with sufficient accuracy for a wide
range of applications, such as live facial puppetry, facial expression recogni-
tion, face recognition, etc. However, this approach requires an estimate for
head pose estimation for the first frame in the video sequence so that the
person-specific texture can be learned and then updated during the tracking
(i.e., parameter fitting for the rest of the video sequence). In [32] a holistic
method for the simultaneous estimation of two types of parameters (3D head
pose and person specific shape parameters that are constant for a given sub-
ject) from a single image is proposed, using only a statistical facial texture
model and a standard deformable 3D model. One advantage of the proposed
fitting approach is that it does not require an accurate parameter initializa-
tion. However, this approach also requires a training stage, similar to the
one of statistical shape and appearance models, with identical drawbacks.

In this paper, we propose a learning-free approach for detecting facial
features that can overcome most of the shortcomings mentioned above. The
proposed framework can retain the advantages of both learning-free and
learning-based approaches. In particular, the advantages of learning-based
approaches (i.e., rich set of facial features, real-time detection, accurate lo-
calization). In addition to these, the proposed approach will have the two
advanges that are associated with learning free approaches1. First, there is
no tedious learning phase. Second, unlike many learning approaches whose

1These are obvious advantages if the system should be used on mobile devices such as
smart phones and tablets.
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performance can downgrade if imaging conditions change, our proposed ap-
proach is training free and hence independent of training conditions. Our
proposed approach has two main components. The first component is the
detection of fiducial facial points using smoothed gradient maps and some
prior knowledge about face parts in a given face region. The second compo-
nent is the 3D fitting of a deformable 3D model to the detected points. In
this component, a 3D fitting scheme is devised for estimating the 3D pose
of the face as well as its deformable parameters (facial actions and shape
variations) simultaneously. A byproduct of this fitting is that another subset
of facial features can be obtained by simply projecting the 3D vertices of the
adapted 3D model onto the image. We stress the fact that the deformable
model used is a generic model having generic parameters allowing a 3D fitting
to different persons and to different facial actions. Thus, we can estimate the
position, orientation, shape and actions of faces, and initialize user-specific
face tracking approaches, such as OAM, with better precision than the state-
of-the-art approaches, under challenging illumination conditions, and with a
computational cost that allows its implementation in devices with low hard-
ware specifications, such as smartphones and tablets. The exploitation of a
generic 3D deformable model is crucial for having an efficient and flexible
fitting method.

Our proposed approach lends itself nicely to many frameworks addressing
semantic inference in face images and videos, such as face and facial feature
tracking, face recognition, face gesture analysis, and pose invariant dynamic
facial expression recognition [37], to mention a few.

This paper is organized as follows. Section 2 gives insight on how to detect
facial features from an image at a low computational cost. Section 3 explains
the method we propose to locate and deform the 3D face object in order
to fit the detected facial features. Section 4 shows the experimental results
we obtain compared to state-of-the-art alternatives. Finally, in section 5 we
discuss the obtained results and the future work. Additionally, Appendix A
explains the 3D deformable face model we use in this work.

2. Lightweight facial features detection

Our approach for fitting 3D generic face models consists in two steps:
(1) the detection of facial features on the image and (2) the adjustment of
the deformable 3D face model such that the projection of its vertices onto
the 2D plane of the image matches the locations of the detected facial fea-
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tures. The latter is explained in section 3. For the first step, one can also
apply learning-based approaches mentioned in section 1, which provide with
a rich set of facial features, to a monocular image or even to a combination
of monocular image and its corresponding depth map in order to measure 3D
data. However, as we want to make our approach applicable to any person
with any appearance in uncontrolled environments, we prefer to avoid us-
ing the learning-based techniques as they require a training stage with a set
of facial images which constrain their applicability. In this work we do not
consider profile views but those in which the perspective includes both eyes,
even if they are occluded, for example, by eyeglasses. The proposed approach
requires a initial stage of face detection, which, depending on the approach
taken, might also require a facial training stage, such as [38, 39]. Neverthe-
less, these face detection techniques do not constrain the search as much as
the facial features detection methods would do under different illumination
conditions, facial expressions and appearances; therefore we consider them
acceptable for our purpose. Furthermore, these approaches have been proved
to be robust and do not need any retraining. We can also apply the same de-
tection techniques (i.e., [38, 39]) for localizing facial parts such as eyes, nose
and mouth, but we do not consider their detection as a strict requirement
because we also consider low resolution facial images or partially occluded
ones, which would prevent the detectors to find them properly. However, we
include these as potential reinforcing checks, since they can locate the facial
parts with higher precision in more favorable circumstances.

Figures 1 and 2 and algorithm 1 show the whole fitting process step by
step, where the term ROI refers to a region of interest (the sought region)
and SROI to a search ROI. The input data related to eyes, nose and mouth
can be ROI or SROI, depending on whether they have already been detected
by the corresponding object detector or not, as mentioned above. Algorithm
1 aims to detect 32 facial points in any input image (Fig. 3). These 32 points
form a subset of Candide-3m vertices (Appendix A). Their 2D positions are
fixed within their corresponding regions taking into account the scale of the
regions and the in-plane rotation of the face (roll angle). Thus, by finding the
ROI of a face part as well as the roll angle, the 2D points of that face part will
be automatically and rapidly estimated. This process is good enough to allow
an OAM tracker such as [36] to fit the 3D model on subsequent frames with
a visually alike correlation between the model and the face images (Fig. 4).
This is especially the case of contour points, which help in the initialization
but do not match with real landmarks, which cannot be determined with
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high certainty on a face image even by trained observers. Once a face region
has been located on an image (e.g., using [38, 39]), all 32 point positions are
always estimated, even if they are not really visible on the image, due to
occlusions.

Algorithm 1 Lightweight facial features detection algorithm

1: procedure FacialPointDetection( faceROI, lEye(S)ROI,
rEye(S)ROI, nose(S)ROI, mouth(S)ROI, peakValX, peakValY, binThresh
)

2: for each eye do
3: if ¬ eyeROI then
4: eyeROI ← ROIBoundDetection( eyeSROI, peakValX, peakValY ) . (algorithm 2)
5: end if
6: end for
7: θ ← Estimate roll rotation angle derived from eyeROIs
8: eyePoints ← Estimate eye point positions in a fixed way derived from (eyeROIs and θ)
9: for each eyebrow do

10: rotEyebrowSROI ← Get the eyebrow search region derived from (faceROI and eyeROI )
and rotate it (−θ)

11: rotEyebrowROI ← ROIBoundDetection( rotEyebrowSROI, not used, peakValY ) .
(algorithm 2)

12: eyebrowPoints ← Estimate eyebrow point positions in a fixed way derived from rotEye-
browROI and apply θ rotation and transform to global image coordinates

13: end for
14: for mouth and nose do
15: if ¬ partROI then
16: rotPartSROI ← Rotate partSROI (−θ)
17: rotPartROI ← ROIBoundDetection( rotPartSROI, peakValX, peakValY ) .

(algorithm 2)

18: else
19: rotPartROI ← Rotate partROI (−θ)
20: end if
21: partPoints ← Estimate part point positions in a fixed way derived from rotPartROI and

apply θ rotation and transform to global image coordinates

22: end for
23: contourPoints ← ContourPointDetection( faceROI, eyeCenters, lEyeLCorner, rEyeR-

Corner, mouthCorners, binThresh ) . (algorithm
5)

24: return (eyePoints and eyebrowPoints and mouthPoints and nosePoints and contour-
Points)

25: end procedure

First, the eye points are estimated, then the eyebrows, then the mouth,
then the nose and finally the contour points. The search regions are derived
from the detected face and eye regions (Fig. 1). In case eyeROIs have
not been detected by an external detector (i.e., they have not been input to
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algorithm 1), algorithms 2, 3 and 4 are applied to estimate their boundaries2.
Then, we determine the eye point positions and the face projection roll angle
θ, derived in a proportional and fixed way from the geometry of those ROIs.
Fig. 5 shows that the eye center positions correspond to those of the eyeROI
centers, that eye widths and heights are equal in both sides with a proportion
obtained from the mean ROI sizes, where θ is measured, and how the rest of
eye points are located. As we rely on face detectors, the roll angle variation
has a limited range, and therefore the eyes have well-defined search regions.
Thanks to the eyes displaying approximate radial symmetry we do not need
the roll estimation for their localization.

For the estimation of the facial features in eyebrows, mouth and nose,
their corresponding ROI boundaries are used as reference, also in a fixed
way. These boundaries are also obtained through algorithms 2, 3 and 4,
taking into account the influence of the roll angle θ. In the specific case of
eyebrows, as some people have bangs occluding them, or even no eyebrows,
we do not calculate the boundaries in X direction, but fix them according to
the search region width and the expected eyebrow geometry in the 3D model.
The parameters peakValX and peakValY are thresholds for the normalized
gradient maps for detecting the horizontal and vertical boundaries. In our
experiments we use peakValX = 20 and peakValY = 50 in all cases.

The double sigmoidal filtering applied to the search regions (algorithm 2)
allows us to reduce the influence of directional illumination, while the squared
sigmoidal gradient calculation accentuates the likely edges, and neglects the
edge direction information, and considers only the edge strength [40]. The
estimation of the contour point positions is done in a fixed way too, taking
into account the eye and mouth positions. Algorithm 5 returns 8 contour
points: the forehead center, the left and right cheek, 4 facial corners and
the chin bottom point. Even though none of these points are fiducial points,
they are useful for 3D model fitting and tracking. In the case of the facial
side corners estimation, the image region that goes from the facial region
boundary to its corresponding mouth corner is analyzed, assuming that a
noticeable X gradient appears in that region in one of the sides but not in
the other, when the subject exhibits a non-frontal pose, which corresponds
to the face side boundary (e.g., see Fig. 2-(5)). For this we calculate the

2Note that algorithms 2, 3 and 4 are also used for estimating the ROI boundaries of
eyebrows, nose and mouth. Algorithm 2 invokes both algorithms 3 and 4.
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squared sigmoidal gradient in X, and assume that those side points lie on it.
These side points subsequently allow us to better estimate the pitch angle of
the face. However, there might be cases in which both sides have a noticeable
gradient in X, which may correspond not only to the face side boundary but
to other features such as beard, or local shadows. In order to filter these
cases we assume that the side that should take into account the gradient to
estimate the X positions is that in which the mean positions are closer to the
face region boundary, while for the other side the X positions are those of the
boundary itself (see Fig. 2). The parameter binThresh is the binarization
threshold for the normalized gradient map in X. In our experiments we use
binThresh = 150.

Algorithm 2 ROI boundaries detection algorithm

1: procedure ROIBoundDetection( SROI, peakValX, peakValY )
2: dsSROI ← Apply double sigmoidal filter to SROI
3: ssySROI ← Apply squared sigmoidal Y gradient to dsSROI
4: ( bottomY and topY ) ← YBoundDetection( ssySROI, peakValY )

. (algorithm 3)
5: ( leftX and rightX ) ← XBoundDetection( ssySROI, peakValX, bot-

tomY, topY ) . (algorithm
4)

6: return (leftX and rightX and bottomY and topY )

7: end procedure

Algorithm 3 ROI Y boundaries detection algorithm

1: procedure YBoundDetection( ssySROI, peakValY )
2: for each row in ssySROI do
3: w ← (ssySROIheight/2− |ssySROIheight/2− y|) · peakValY

4: wVertProjrow ← (w ·
∑width

x=1 ssySROIx)
5: end for
6: Normalize wVertProj values from 0 to 100
7: maxLowY ← Locate the local maximum above peakValY with the lowest

position in wVertProj

8: topY← (maxLowY + ssySROIheight/4)

9: bottomY← (maxLowY− ssySROIheight/4)

10: return (bottomY and topY)

11: end procedure
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Algorithm 4 ROI X boundaries detection algorithm

1: procedure XBoundDetection( ssySROI, bottomY, topY, peakValX )
2: for each col in ssySROI do
3: w ← (ssySROIwidth/2− |ssySROIwidth/2− x|) · peakValX

4: wHorProjcol ← (w ·
∑topY

y=bottomY ssySROIy)
5: end for
6: Normalize wHorProj values from 0 to 100
7: (leftX and rightX)← Locate the first value above peakValX starting from

the left and right sides in wHorProj
8: return ( leftX and rightX )

9: end procedure

Algorithm 5 Contour features detection algorithm

1: procedure ContourPointDetection( faceROI, eyeCenters, lEyeL-
Corner, rEyeRCorner, mouthCorners, binThresh )

2: faceVector← (lEyeCenter + rEyeCenter−mouthLCorner−mouthRCorner)/2
3: foreheadCenter← (lEyeCenter + rEyeCenter + faceVector)/2
4: lCheek← (lEyeLCorner + lEyeCenter− faceVector)/2
5: rCheek← (rEyeRCorner + rEyeCenter− faceVector)/2
6: ssxFaceROI ← Apply squared sigmoidal X gradient to faceROI and normalize between 0 and

255

7: for each facial side do
8: ssxFacialCornerROI ← Get region between mouthCorner and faceROI outer boundary
9: binFacialCornerROI ← Binarize ssxFacialCornerROI with binThresh and remove clusters

(obtained through [41]) with area < 0.8 · ssxFacialCornerROIheight
10: facialUCornery ← 0.75 · ssxFacialCornerROIheight
11: facialUCornerx ← Get X centroid of white pixels at facialUCornery in binFacialCornerROI

12: facialLCornery ← 0.25 · ssxFacialCornerROIheight
13: facialUCornerx ← Get X centroid of white pixels at facialUCornery in binFacialCornerROI

14: facialCorners← Transform to global image coordinates
15: end for
16: facialCorners ← Check which side from facialCorners mean X position is further from its corre-

sponding face region boundary, and then set their X positions in the boundary

17: chinBottom ← Calculate the intersection between the bottom of faceROI and the line traced by
faceVector

18: return ( foreheadCenter and lCheek and rCheek and facialCorners and chinBottom )

19: end procedure
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3. Deformable model backprojection

Once facial features have been located on the image, the next stage is
to determine which position, orientation, shape units (SUs) and animation
units (AUs) (Appendix A) fit them the best possible. The detected 32 facial
features form a subset of the Candide-3m face model. We use the existing
correspondence between the 3D model points and the 2D facial features to
make the face model fitting more efficient. The 3D face model is given by
the 3D coordinates of its vertices Pi, i = 1, ..., n, where n is the number of
vertices. Thus, the shape, up to a global scale, can be fully described by a
3n-vector g, the concatenation of the 3D coordinates of all vertices (Eq. 1),
where g is the standard shape of the model, the columns of S and A are the
shape and animation units, and τs ∈ Rm and τa ∈ Rk, are the shape and
animation control vectors, respectively.

The configuration of the 3D generic model is given by the 3D face pose
parameters (rotations and translations in the three axes) and the shape and
animation control vectors, τs and τa. These define the parameter vector b
(Eq. 2).

g = g + Sτs + Aτa (1)

b = [θx, θy, θz, tx, ty, tz, τs, τa]
T (2)

A shape unit provides a way to deform the 3D model in order to adapt
inter-person parameters such as the eye width, the eye separation distance,
etc. (see Appendix A). Thus, the term Sτs accounts for shape or inter-
person variability, while the term Aτa accounts for the facial or intra-person
animation. Hence, in theory, for face tracking, the shape units would remain
constant, while the animation units could vary. However, it is challenging to
separate perfectly both kinds of variability defining the generic face model
such as they would fit any kind of human face. This is due to the neutral facial
expression which are significantly different from person to person. Therefore,
in our initialization process we have to take into account both the shape and
animation units, without an explicit distinction between them. Only, after
the initialization we can assume that during the tracking stage the shape
units remain constant. Furthermore, we consider a subset of the animation
units in order to reduce the computational load [36].

In Eq. 1, the 3D shape is expressed in a local coordinate system. However,
one should relate the 3D coordinates to the 2D image coordinate system. To
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this end, we adopt the weak perspective projection model. We neglect the
perspective effects since the depth variation of the face can be considered
small, when compared to its absolute depth from the camera. Therefore, the
mapping between the 3D face model and the image is given by a 2×4 matrix
M, encapsulating both the 3D face pose and the camera parameters. Thus,
a 3D vertex Pi = [Xi, Yi, Zi]

T ⊂ g will be projected onto the image point
pi = [ui, vi]

T ⊂ I (where I refers to the image), as defined in Eq. 3.

pi = [ui, vi]
T = M[Xi, Yi, Zi, 1]T (3)

The projection matrix M is given by Eq. 4, where αu and αv are the
camera focal length expressed in vertical and horizontal pixels, respectively.
(uc, vc) denote the 2D coordinates of the principle point, rT1 and rT2 are the
first two rows of the 3D rotation matrix, and s is a global scale (the Candide
model is given up to a scale).

M =

[ αu

tz
s rT1 αu

tx
tz

+ uc
αv

tz
s rT2 αv

ty
tz

+ vc

]
(4)

The core idea behind our approach for deformable 3D model fitting is to
estimate the 3D model configuration by minimizing the distances between the
detected facial points (dj = [xj, yj]

T ⊂ I, where j = 1, ..., q and q ≤ n) and
their counterparts in the projected model. Algorithm 6 shows the proposed
method, which we call deformable model backprojection, as we are inferring
the configuration of a 3D deformable model from sparse data corresponding
to one of its 2D projections. The more data we detect on the image (32 points
with the method proposed in section 2), the more shape and animation units
we will be able to vary in the model. The minimal condition to be ensured
is that the points to be matched should not lie on the same plane. Thus, our
objective is to minimize Eq. 5, where pj is the 2D projection of the 3D point
Pj. Its 2D coordinates depend on the model parameters (encapsulated in b).
These coordinates are obtained via equations 1 and 3. The weight elements
wj refer to confidence values (0 ≤ wj ≤ 1) for their corresponding dj. This
confidence depends on the method used for the detection of points. For our
approach (section 2), we recommend to set the higher weights (e.g, 1) to
eye points, mouth points, nose top and base points, and the forehead center
point; in a second level (e.g., 0.8) the eyebrow points and the rest of contour
points; and finally in a third level (e.g., 0.2) the left and right nostrils. We
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apply the POS algorithm 3, in order to get an initial guess of the position
and orientation of the face object, before the optimization procedure starts.

b∗ = arg min
b

q∑
j=1

wj · [({dj}x − {pj(b)}x)2 + ({dj}y − {pj(b)}y)2] (5)

The degrees of freedom from the Candide model (to be optimized) are set
in a normalized framework, so that their variations are not biased towards any
in particular. Empirically, we found out that it was better to keep constant
the translation estimated by POS algorithm since the sensitivity of LM is
very high to these global parameters. For this reason we keep constant the
position obtained through POS and optimize the rest of parameters, which
can better accomplish this requirement.

Algorithm 6 Deformable model backprojection algorithm

1: procedure ModelBackprojection( g, w, S, A, d )
2: (θ0

x and θ0
y and θ0

z and t0x and t0y and t0z) ← Apply POS algorithm [42] to

g with d

3: b ← Starting from (θ0
x and θ0

y and θ0
z and t0x and t0y and t0z and τs =

0 and τa = 0) minimize Eq. 5 through the Levenberg-Marquardt algo-
rithm [43], taking into account equations 1 and 3 for the update in the
iterative optimization process. The position is kept constant (tx = t0x, ty =
t0y, tz = t0z).

4: return b

5: end procedure

4. Experimental results and discussion

In order to evaluate the suitability of our approach for the initialization
of an OAM-based 3D face tracking, we have used the CMU Pose, Illumi-
nation, and Expression (PIE) database [44]. In our experiments we have
focused on the images in which the flash system was activated in order to
get challenging illumination conditions while subjects maintained a neutral

3POS is a pose solver based on a linearization of the perspective projection equations,
which corresponds to a single iteration of POSIT [42].
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facial expression. This database also contains other images in which subjects
show different expressions under uniform and sufficient ambient light, i.e.,
without the flash system activated. We have ignored them because we are
more interested in the challenging situation of the variate illumination condi-
tions. In our context, in which we expect to fit the face model for a posterior
OAM-based tracking, we can assume that in the first frame the person will
have the mouth closed, which is valid for many applications. Nevertheless,
we cannot ignore the high illumination variability, normally present in real
world situations. For our study we have selected the cameras in which the
subject has frontal-like views, considering the neighboring top, bottom and
side views (each separated by about 22.5◦) with respect to the frontal view
(Fig. 6). Besides, we have also ignored the images with no illumination at
all, which do not make sense in our test. Finally, we have used in total 7134
images for the test (68 subjects × 5 cameras × 21 flashlights − 6 missing
images in the database). We manually configured the Candide-3m model on
each of the faces as ground truth data, then applied the automatic fitting
approach (described in sections 2 and 3) and measured the fitting error with
respect to the ground truth as a percentage, in the same way as [18, 19].
This is described by Eq. 6, where pfit

i and pgt
i correspond to the fitted and

ground truth projections of point i respectively, and lgt and rgt to the ground
truth left and right eye center projections. In the case that no face region
is detected or one is incorrectly detected within an image we exclude that
image from the evaluation. Note that the fitting error is computed for all
vertices of Candide-3m.

e =

∑n
i=1 ‖pfit

i − pgt
i ‖/n

‖lgt − rgt‖
· 100 (6)

We have compared six alternatives in the test: (1) HA (Holistic Approach)
[32], (2) CLM (Constrained Local Model) [24] with head orientation obtained
by [29] 4, (3) SDM (Supervised Descent Method) [22] with head orientation

4The implementations of CLM (https://github.com/kylemcdonald/FaceTracker)
and SDM (http://www.humansensing.cs.cmu.edu/intraface) also provide with the
head orientation, obtained through [29] for CLM and [42] for SDM. In these two methods,
given the 2D points and the head orientation, we apply the rest of our backprojection
approach to place the 3D object, i.e. we only adjust the head position and the facial
deformations to the 2D detections, not the orientation. The orientation would be that of
[29] and [42], respectively.

15



obtained by [42], (4) FFBP (Facial Feature Backprojection), our approach
combining both the proposed facial features detector and the backprojection,
(5) CLMBP, the CLM approach but replacing its estimated orientation by
our full backprojection approach and (6) SDMBP the SDM approach but
with our full backprojection approach.

For all approaches we measured the fitting error obtained using all the
Candide-3m points, not only those that are detected. The weights we used
for the partial backprojection in CLM and SDM and the full backprojec-
tion in CLMBP and SDMBP are all equal to 1, except for the eyebrows
and contours, which have 0.8. Note that this challenging illumination test is
unfavorable for the HA approach (fully appearance-based approach), which
relies on a PCA model obtained from a training stage with a database of
facial images. It is affected by illumination variation at the same level of
pose variation. Therefore, in order to obtain the best possible results from
this approach, we train user-specific PCA models with all the images corre-
sponding to the same subject from the images in which we want to fit the
face model. The initial guess is done in the same way as in [32], by setting
the face model in a neutral configuration, with a position and scale directly
related to the size of the detected face region. For the optimization we adopt
a differential evolution strategy with exponential crossover, a random-to-best
vector to be perturbed, one difference vector for perturbation and the follow-
ing parameter values: maximum number of iterations = 10, population size
= 300, F = 0.85, CR = 1. We also limit the random numbers to the range
[−0.5, 0.5]. We assume that the position is obtained correctly in the initial
guess and exclude it from the optimization.

In all the methods we solve the same number of shape and animation units
(12 SUs and 3 AUs), maintaining the rest of Candide-3m parameters to a
value of 0. Considered SUs correspond to Eyebrows Vertical Position, Eyes
Vertical Position, Eyes Width, Eyes Height, Eyes Separation Distance, Nose
Vertical Position, Mouth Vertical Position, Mouth Width, Eyebrow Width,
Eyebrow Separation, Nose Width and Lip Thickness, while the selected AUs
correspond to Brow Lowerer, Outer Left Brow Raiser and Outer Right Brow
Raiser. Thus, the LM minimization in algorithm 6 attempts to simultane-
ously estimate 21 unknowns (3D pose and facial deformations).

Table 1 shows the results obtained in the test for the six considered al-
ternatives. Thus, through this comparison we can evaluate the performance
of our full approach (i.e., FFBP, which combines the feature detection and
the deformable backprojection), but also the deformable backprojection itself

16



Table 1: Fitting errors comparison obtained in the CMU PIE database illumination vari-
ation images.

C05 C07 C09 C27 C29 GLOBAL
Mean Stdev Mean Stdev Mean Stdev Mean Stdev Mean Stdev Mean Stdev

FFBP 16.02 7.28 12.48 5.84 16.83 7.52 13.57 6.34 15.93 8.58 14.93 7.35
CLMBP 11.55 9.74 8.52 5.12 10.96 7.18 8.73 6.07 11.49 9.72 10.23 7.87
SDMBP 9.13 3.76 8.24 3.05 9.06 4.87 8.23 2.83 9.24 3.63 8.78 3.72
CLM 18.29 8.97 13.44 5.11 12.27 6.82 11.32 5.80 12.11 9.57 13.44 7.82
SDM 9.79 4.10 10.18 3.44 8.03 4.99 7.25 2.67 10.05 4.24 9.05 4.14
HA 37.60 20.20 31.06 16.40 30.26 15.80 32.06 16.54 31.39 15.67 32.42 17.16

Table 2: Fitting errors of facial parts obtained with FFBP in the CMU PIE database
illumination variation images.

C05 C07 C09 C27 C29 GLOBAL
Mean Stdev Mean Stdev Mean Stdev Mean Stdev Mean Stdev Mean Stdev

Eyes 8.62 6.65 7.56 5.46 8.85 6.91 7.14 5.52 8.06 8.67 8.03 6.75
Eyebrows 12.54 6.65 11.53 6.02 13.69 6.41 10.98 5.39 12.40 9.22 12.21 6.91
Nose 12.42 7.42 9.28 6.29 11.00 8.14 8.84 6.21 10.88 8.58 10.46 7.48
Mouth 12.75 10.19 9.97 8.02 11.93 9.40 10.10 9.11 11.02 10.58 11.13 9.54

(i.e., the approaches that include the suffix BP), with respect to other alter-
natives. As can be seen, the results we obtain with the full approach (FFBP)
have less error than HA and have similar values to those of CLM, with the
advantage of not being dependent on the quality of a trained model for the
fitting. On the other hand, this comparison also shows that our deformable
backprojection approach improves the fitting quality (CLMBP vs CLM and
SDMBP vs SDM ). Below we will demonstrate that under a face tracking set-
ting FFBP (with OAM) behaves better than CLM and is computationally
lighter allowing its utilization on mobile devices.

Table 2 shows the fitting errors obtained with FFBP for the points cor-
responding to each facial part separately. It can be observed that the lowest
errors correspond to the eyes. This was expected since eye regions can be
found in a specific area which usually presents significant gradient levels with
similar patterns from face to face. This is in contrast to other facial regions
such as the mouth. Fig. 7 shows examples of 3D face model fitting obtained
with FFBP, with its fitting stages shown in Fig. 8.

Additionally, we have done an evaluation of our approach combined with
OAM (FFBP-OAM ) in a tracking scenario using the camera of the iPad 2. In
this test we have only integrated in the device FFBP-OAM and CLM in its
original form (i.e., with its own model, without transferring its tracked points
and orientations to Candide-3m). The computation power required by HA
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Table 3: Average computation times (in ms) obtained with FFBP-OAM and CLM [24]
on iPad 2.

Initialization Frame-to-Frame Tracking
FFBP-OAM 60 42
CLM [24] 250 88

was too high compared to the others and the code of SDM was implemented
exclusively for desktop computers, which prevented us to integrate them
in the device. In this comparison, the users faces have severe occlusions
at certain times, and the faces show different positions, orientations and
expressions. Thus, we evaluate how the full system (initialization + tracking)
behaves in these circumstances, (here the initialization refers to the proposed
detection of features and the backprojection), where it has to (1) detect and
fit the 3D model when a new face appears in front of the camera, (2) it has to
track the face over time while it is visible and (3) detect the tracking lost (the
face is occluded) and reinitialize the detection and tracking when the face
becomes visible again. Fig. 9 shows how both approaches behave under a
severe occlusion. In this case, CLM does not detect the occlusion properly, it
does not restart the face detection process until the face is visible again, and
keeps fitting the graphical model to neighboring regions not corresponding to
the face. On the contrary, FFBP-OAM detects properly the occlusion time
and stops tracking and then resets the tracking again once the face is visible
again. The metrics inherently available in model-based tracking approaches,
such as OAM, in order to better evaluate the differences between the reference
model and the current observation is a clear advantage over other alternatives
for this kind of situations. The full sequence, which includes more occlusion
moments, is available as supplementary material.

The computation times obtained in this test are shown in table 3. For the
initial fitting CLM needs an average time of 250 ms, whereas our approach
needs an average time of about 60 ms, both with a detected face region of
about 200×200. Moreover, during the tracking stage CLM needs an average
of 88 ms to fit the model whereas the OAM tracking [36] requires only about
42 ms. Table 4 shows the computation times obtained on iPad 2 for the
proposed facial feature detection and model backprojection separately. Fig.
10 shows images of our full system running on an iPhone 5. These results
prove the better suitability of our approach for 3D deformable face model
fitting when compared to other state-of-the-art alternatives.

Finally, we include another test in which we analyze the suitability of our
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Table 4: Average computation times (in ms) obtained with FFBP in the facial feature
detection and model backprojection stages on iPad 2.

Facial Feature Detection Model Backprojection
FFBP 22 38

approach for the estimation of facial actions (intra-person variability) in a
video sequence in which a face performs exaggerated facial expressions. In
this test, the observed face starts with a neutral face and therefore our full
approach combined with OAM (FFBP-OAM ) can be used. We compare it to
other two alternatives that involve the use of our backprojection, applied to
every frame of the sequence, and that can estimate the positions of sufficient
mouth contour points to infer facial actions in the lower face region, i.e.,
CLMBP and SDMBP. Thus, with these three approaches we estimate 26
unknowns (6 pose parameters, 12 SUs and 8 AUs) in the Candide-3m model.
Considered SUs are the same as those in the test with the CMU database,
while AUs correspond to Jaw Drop, Lip Stretcher, Brow Lowerer, Lip Corner
Depressor, Outer Left Brow Raiser, Outer Right Brow Raiser, Left Eye Closed
and Right Eye Closed.

Fig. 11 shows some samples of this comparison, while Fig. 12 shows the
Jaw Drop AU and upper/lower lips distance variations. The full sequence,
in which the frame-to-frame transition can be better observed, is available as
supplementary material. In the three cases, the processing is done in images
of resolution 320x240, and the results are visualized in images of 640x480.
It can be observed how the three alternatives can estimate exaggerated AUs
from the sequence. The trained CLM in CLMBP includes contour facial
points, while the trained SDM from SDMBP does not, and therefore the
Candide-3m model adjusts better to the real contour of the person in the
former, when those contour points are well adjusted. However, the CLM was
trained with not so big mouth variations and therefore the point adjustment
is not accurate around the mouth, especially when the mouth is fully open.
In any case, with the three alternatives the AU variation is distinguishable
and therefore action activation moments can be detected with appropriate
thresholds. The frame-to-frame transition in the case of FFBP-OAM is much
smoother than in the other two cases, and is therefore better suited for video
sequences.
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5. Conclusions

In this work, we proposed a robust and lightweight method for the au-
tomatic fitting of 3D face models on facial images. Our approach consists
of two steps: (1) the detection of facial features on the image and (2) the
adjustment of the deformable 3D face model so that the projection of its
vertices into the 2D plane of the image matches the locations of the detected
facial features. For the first step, instead of using popular techniques such as
those based on statistical models of shape and appearance, we propose using
a filtered local image region gradient analysis, which has the following advan-
tages: (1) it is computationally lightweight, (2) it does not require a previous
training stage with a database of faces and therefore it is not biased by this
circumstance, (3) it is efficient as the 32 estimated points correspond directly
to a subset of the generic 3D face model to be fitted and (4) it can cope with
challenging illumination conditions. For the second step, the core idea is to
estimate the 3D model configuration by minimizing the distances between
the detected facial points on the image and their counterparts in the pro-
jected model, through the assumption of weak perspective and a lightweight
iterative approach that estimates all the considered face model variations.

We have proved the potential of our learning-free facial point detection
and of our deformable backprojection approaches, by comparing their capa-
bilities with respect to state-of-the-art alternatives with the challenging CMU
PIE database illumination variation images and also in a tracking scenario
using the camera of the iPad 2, in combination with OAM. Furthermore, we
also have shown the possibility of integrating our approach in devices with
low hardware specifications, such as smartphones and tablets, with state-of-
the-art accuracy and improved performance when compared to other recent
alternatives.

Our proposed approach needs as input one snapshot together with a de-
tected face region. Therefore, it dispenses with tedious learning processes as
well as the dependency on the associated learning conditions. The current
limitations of the proposed method are purely related to the face pose. In-
deed, relying on a face detector and the Candide-3m model, although the
method does not require a frontal face, the 3D orientation of the face should
not be arbitrary. We expect that the working ranges of the proposed method
are around (-20◦, +20◦) for the roll angle and around (-30◦, +30◦) for the
out-of-plane rotations.

Future work may focus on the extension of our system’s scope to wider
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head orientation angle ranges, lower image resolutions and also to other types
of deformable objects apart from human faces, as well as handling partial
occlusions.
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Appendix A. Modifications to Candide-3

Our main interest in this work is to fit a 3D generic face model on a facial
image under uncontrolled illumination using a learning-free computationally
lightweight method. The low computation requirement comes from the fact
that we expect to allow the final application to run in devices with low
hardware specifications, such as smartphones and tablets. The 3D generic
face model we adopt is a modified version of Candide-3 [34]. We will refer
to this as Candide-3m. The modifications consist primarily in simplifying
and streamlining the model in order to enhance the fitting and tracking
capabilities of the original model. Fig. A.13 shows the Candide-3m geometry
compared to the original model. Fig. A.14 shows the added and modified
shape units (SUs) and animation units (AUs) with respect to Candide-3.

The Candide-3m model has the following modifications with respect to
Candide-3:

• The geometry around the eyes has been simplified by removing the
vertices that form the eyelids.

• The triangulation around the eyes and mouth has been tweaked, to
make the mesh density more uniform in those areas and to fit the new
vertex list.
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• The SUs have been changed in order to make them more appropri-
ate for the initialization procedure proposed in this work: (1) Cheeks
Z, Chin Width and Eyes Vertical Difference SUs have been removed,
maintaining the rest, and (2) three more have been added, called Eye-
brow Width, Eyebrow Separation and Nose Width.

• The AUs have also been changed in order to allow a more expressive
tracking through an OAM approach such as [36]: (1) All MPEG-4 FAPs
have been removed, (2) the Upper Lip Raiser, Lid Tightener, Nose
Wrinkler, Lip Presser and Upper Lid Raiser animation unit vectors
(AUVs) have been removed, and (3) the Outer Brow Raiser AUV has
been splitted in left and right AUVs, and (4) the Eyes Closed AUV has
been split into left and right AUVs and reorganized according to the
new vertex list.
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Figure 1: Proposed fitting approach. From left to right and top to bottom: (1) The
detected face region and the faceROI derived from it (thicker line), (2) faceROI and
the eyeSROIs derived from it (thicker line), (3) faceROI, the estimated eyeROIs and
the eyebrowSROIs and mouthSROI derived from them (thicker lines), (4) faceROI, the
estimated eyeROIs and the mouthSROI derived from them (thicker line), (5) the detected
facial features and (6) the fitted 3D face model projection.
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Figure 2: Facial features detection procedure steps. From left to right and top down: (1)
eye points detection, (2) eyebrow points detection, (3) mouth points detection, (4) nose
points detection, (5) contour points detection and (6) face model fitting on the detected
facial features.

Figure 3: The detected 32 facial points. Note that the words left and right are relative to
the observer rather than the subject.
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Figure 4: Images of the face model adjustment through OAM tracking [36] in a video,
after applying the proposed initialization procedure in the first frame.

Figure 5: Eye points geometry derived in a fixed way from the estimated eyeROIs.
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Figure 6: The considered viewpoints corresponding to subject 04000 of the CMU database
with the flashlight 21 activated.
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Figure 7: Examples of 3D face model fitting obtained with FFBP in the CMU PIE
database illumination variation images.

Figure 8: FFBP fitting stages, from left to right: (1) Facial feature detection, (2) POS
backprojection (only 3D pose) and (3) LM optimization (3D pose and 15 facial parameters.
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Figure 9: Comparison between CLM and FFBP-OAM on an iPad 2 under a severe oc-
clusion. The full sequence is available as supplementary material.

Figure 10: The full system running on an iPhone 5 at 24 FPS.
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Figure 11: Comparison between CLMBP, SDMBP and FFBP-OAM in a video sequence
with exaggerated facial expressions. The full sequence is available as supplementary ma-
terial.
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Figure 12: The Jaw Drop AU and upper/lower lips distance variations with CLMBP,
SDMBP and FFBP-OAM.
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Figure A.13: The geometries of the Candide-3 and the Candide-3m face models.
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Figure A.14: The added and modified SUs and AUs in Candide-3m with respect to
Candide-3, showing their variation from -1 to 1 values, where 0 corresponds to the neutral
configuration.
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