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ABSTRACT

Global distributed thematic mapping in public clouds requires
optimized data flows. These optimized flows can be the re-
sult of the analysis by Machine Learning (ML) of a deeply
sensorized mapping system. In this sense, distributed global
mapping requires a monitoring system that allows to under-
stand the internal working of the system and enables the im-
plementation of corrective actions to increase system perfor-
mance. This work presents an implementation of a system
monitoring framework and the obtained analysis results.

Index Terms— System monitoring, big data, web map-
ping

1. INTRODUCTION

Performance-optimized tasks are required to make the best
use of large scale geospatial computing infrastructures [1, 2,
3]. Improvements in the performance can result in a drop in
overall computational and financial costs. This optimization
can be the result of the analysis of the motorization system:
contributions such as [4] describe the typical complexities and
uncertainties in this kind of infrastructures, like resource con-
tention and its uncertainty or robustness, to address real-time
problems through robust big data solutions.

Recent advances in Remote Sensing technology have im-
proved the volume of the available image data. In this contri-
bution, we consider the data available in the Open Data Eu-
skadi repository 1. The ortho-imagery, acquired annually by
an air-borne camera, is characterized by a spatial resolution of
25 cm in each direction. As a consequence of technological
limitations in the acquisition and storage systems, the num-
ber of available channels is limited to three. The available
coverage spans to the whole extension of the Basque Coun-
try, resulting in around 1500 GeoTIFF products with a size of
about 33Gb each, as per figure 3. The need for an effective
divide and conquer approach based on data tiling and parallel
processing is evident in this context.

1http://opendata.euskadi.net/

2. SYSTEM DESCRIPTION

The prototype presented in [5] is a web map server with inte-
grated machine learning — including classification and clus-
tering — capabilities, able to create thematic coverage maps.
The prototype is if needed able to distribute processing loads
by big data frameworks like Apache Spark [6], taking full ad-
vantage of distributed in-memory computing.

Fig. 1. Prototype UI for real time execution of supervised
classification tasks across the map. The thematic coverage
tiling process is similar to typical tiled map navigation data
service, yet it includes components that allow causal users
to define thematic classes of interest that might be unique to
their interests and activities.

The operation of the prototype for supervised classifi-
cation can be described as follows. A trained classification
model is distributed to each worker operating in the infras-
tructure for the generation of the thematic map. While inter-
actively navigating the map, each tile of the thematic coverage
map is created by a worker node in a lazy mode, based on the
HTTP requests put forward by an HTML-based Graphical
User Interface implementing a standard web map navigator.
As can be see in figure 1, the thematic coverage tiling process
is similar to typical tiled map navigation interfaces, yet it in-
cludes components that allow causal users to define thematic

http://opendata.euskadi.net/


classes of interest that might be unique to their interests and
activities. To obtain each tile, different features are computed
according to the training, in order to process them by the
distributed trained classification model.

The architecture of the server side (figure 2) starts con-
ceptually with data archives in charge of storing the original
data. The data can in turn be analyzed by a scalable set of
processors co-located with the archive. External users can
access either the original or the processed data, as well as ex-
ploit higher-level descriptions of data content also available
as Services defined by the system, by accessing application
servers dedicated to specific data exploitation scenarios such
as those dedicated to specific applications in forestry or in the
exploitation of marine resources.

Computing resource consumption measures like CPU and
memory need to be monitored closely in order to analyze the
behavior of the system in the face of varying user demand.
Further measures corresponding to the inner operations of the
training and classification system can be very useful to obtain
intermediate information or to improve the performance of
the prototype.

The monitoring of these metrics is the focus of the present
work.

Fig. 2. System architecture. Archives in charge of storing
the original data are served by a scalable set of processors co-
located with the archive. External users can access either the
original or the processed data, as well as exploit higher-level
descriptions of data content also available as Services defined
by the system.

Fig. 3. Available GeoTIFF product map. The ortho-imagery,
acquired annually by an air-borne camera, is characterized by
a spatial resolution of 25 cm in each direction. As a con-
sequence of technological limitations in the acquisition and
storage systems, the number of available channels is limited
to three. The available coverage spans to the whole extension
of the Basque Country, resulting in around 1500 GeoTIFF
products with a size of about 33Gb each.

2.1. Monitoring subsystem

The proposed monitoring system tries to optimize the dis-
tributed thematic mapping process by minimizing the impact
on the system performance: because the user interface of this
prototype is web based, processing time acquires a unusual
relevance in machine learning processes where time limita-
tions usually play a less prominent role [7].

The main task of the server is to create thematic coverage
tiles based on common machine learning models, to build a
coherent coverage map.

System quality as related to the classification results mea-
sured with metrics like Precision, Recall and F1 are not the
object of the current contribution: they have been extensively
described in [5] and [8].

The monitoring of the computing performance of the dif-
ferent modules in the system is here understood as an internal
description of the operation of the system, rather than being
related to external ground truth maps. From an architectural
point of view, the analyzed performance metrics are recol-
lected in each worker node and aggregated in a specialized
node of the infrastructure destined to this task. Using a spe-
cialized web based user interface dedicated to the administra-
tion of the system, these values can be monitored in real time
as per Figure 4.

Whenever required, these metrics could be represented
and analyzed statistically using multi-variate analysis and rep-
resentation methods, to analyze the behavior of the system



Fig. 4. Real time monitoring system UI. The UI allows to
follow the operation of the prototype in real time, contribut-
ing to its understanding and allowing operators to optimize its
processing mechanisms.

and to try and determine the most appropriate actions that al-
low the improvement of the performance of the system in any
of the presented contexts.

3. MONITORING RESULTS

As stated, the generated metrics are collected to serve the in-
ternal optimization of the system.

Yet, when the system is applied to a specific dataset, their
content is naturally related to the characteristics of this data.

A specific case is reported in relation to figure 5.
The model learning time is in this case reported for each

visited tile across a scene covering the city of Donostia/San
Sebastián. The considered machine learning model is an in-
stance of the K-Means algorithm [9]. For investigating the
observable variations if the classification costs in the proto-
type, the model is re-trained separately on each one of the
coverage tiles — naturally resulting in incompatible assign-
ments across the whole coverage. The measured processing
times are represented in terms of a heatmap-like layer that we
superimpose to a map of the processed area, as in figure 5.
Variations in processing time seem to be explicable in terms
of the variability of the input data: very flat areas result in
slower analysis operations (a result that can easily be repli-
cated in the case of many k-means implementations), or per-
haps natural areas characterized by more inherent complexity
generate data that has more variation to be accounted for in

the analysis.

4. CONCLUSIONS

Optimizing the exploitation of big data infrastructures for dis-
tributed thematic mapping at global scales requires an optimal
use of the resources to reduce computational and financial
costs.

A monitoring system allows to control these infrastruc-
tures so that they can attain better performance by apply-
ing appropriate measures, allowing operators to develop own
metrics in addition to the classics that enrich the knowledge
of the system.

This understanding of system performance effects can
leverage the exploitation of machine learning methodologies
able for instance to identify the most important metrics or
to synthesize summary measures with increased information
content.

This better knowledge of the inner workings of the system
can produce a better performance of the monitored system
and therefore the capability of analyzing much more extended
coverage maps with reduced computational costs.
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Fig. 5. K-Means clustering model learning time is represented for each visited tile across a scene covering the city of Donos-
tia/San Sebastián. For investigating the observable variations if the classification costs in the prototype, the model is re-trained
separately on each one of the coverage tiles — naturally resulting in incompatible assignments across the whole coverage. As
is typical for k-means implementations, variations in processing time seem to be explicable in terms of the variability of the
input data: very flat areas result in slower analysis operations (a result that can easily be replicated in the case of many k-means
implementations), or perhaps natural areas characterized by more inherent complexity generate data that has more variation to
be accounted for in the analysis.
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