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In this article we present the design and implementation of a mobile cardiac
monitoring system oriented to patients in Phase II and III of cardiac
rehabilitation. The complete monitoring system involves both hardware and
software design perspectives. At the hardware level, we present a T-shirt with
a 12-lead ECG system and an embedded inertial sensor for the monitoring of
activity and energy expenditure. At the software level, a modular cloud platform
performs data processing to detect relevant cardiac events and to provide
advanced visualization capabilities. As a case study, we have implemented our
system at the Cardiac Rehabilitation program at Donostia University Hospital
(Spain). Finally, the validation of the 12-lead ECG recording system is also
presented and discussed.
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Mobile Cardiac Rehabilitation System 93

INTRODUCTION

Cardiac rehabilitation (CR) programs have been shown to be beneficial for
improvement in mortality and morbidity outcomes (Taylor et al. 2004; Clark et al.
2005). They are oriented to patients affected by cardiovascular diseases (CVDs) such
as coronary heart disease, myocardial infarction, or heart failure. CR programs have
gained importance in hospitals and medical centers because CVDs are the leading
cause of death all around the world and have a great medical and economical impact
in our society. In fact, economists project that the worldwide cost of prevention and
treatment of CVDs could amount to almost $47 trillion in the next 25 years (Laslett
et al. 2010).

CR programs are based on four core components: exercise planning, nutritional
counseling, risk factor management, and psychosocial interventions (Balady et al.
2007). In addition, they are divided into three separate phases differing in the level
of supervision. Phase I begins right after the cardiac event, when patients are still
under hospitalization; during this phase patients are under constant supervision due
to their delicate condition. Phase II is initiated when patients are discharged; during
this phase they have to return to the hospital three times per week to be monitored
by physiologists in the CR department while performing certain exercises. Finally,
during Phase III patients exercise on their own (i.e., unsupervised exercise) following
the recommendations of physicians but maintaining periodic monitoring (Suaya et al.
2007).

CR programs are able to reduce further complications from CVDs. Moreover,
exercise plans optimize patients’ cardiovascular performance and restore their
confidence. However, despite the importance of CR and of its aforementioned
advantages, statistics show that a high percentage of patients are neither attending the
CR sessions of Phase II nor following the recommendations for Phase III (Bethell
et al. 2008). One of the main reasons is the commute to the hospital (McKee et al.
2013), because the time and effort required to attend the CR sessions discourages
patients. Therefore, it is imperative to enable outpatient CR and provide systems that
can monitor patients in the same manner as in a medical facility. In fact, outpatient CR
is acquiring an increasingly important role (Suaya et al. 2007) because hospitalization
periods are being reduced (Newby et al. 2000; Torp-Pedersen et al. 2011).

In our work we propose a mobile CR system that allows the remote monitoring
of Phase II and III patients. Our solution is based on mobile devices worn by patients,
which record data and send them to a cloud platform. The platform provides different
services to physicians, who can access those data and visualize them in different views. In
our approach, patients can perform the recommended physical exercises on their own,
avoiding the commute to the hospital and maintaining the same level of supervision.

The goals of our system are to (1) minimize the commuting time of CR Phase
II, (2) improve the monitoring of CR during Phase III, and (3) achieve a reduction
in associated costs. For that purpose, our approach combines both software and
hardware perspectives. At the hardware level we propose an easy-to-use wearable system
that measures both the electrocardiogram (ECG) of the patient as well as physical
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94 I. Mesa et al.

activity and energy expenditure. At the software level we propose a modular cloud
platform that analyzes these data with the aim of detecting relevant cardiac events and
presenting them to physicians. Furthermore, the latter will be able to monitor more
than one patient at the same time and, thus, the system will remain sustainable despite
the increasing number of patients. Additionally, we have implemented the complete
system, named GoCardio, as a case study in the CR program at Donostia University
Hospital in Spain.

This article is structured as follows. Firstly, we introduce some background
references relevant to CR platforms. Then, the general architecture of our mobile
monitoring system is presented. Next, the current implementation of the platform
is explained. Subsequently, the validation of one section our system is described and
the future global validation test is discussed. Finally, conclusions and future work are
summarized.

BACKGROUND

This section provides the reference background. It introduces the concepts of
electrocardiography, physical activity estimation, and data and visual analysis
techniques applied to cardiovascular data.

Electrocardiography

ECG allows a fast an accurate diagnosis of the heart’s condition. It is based on the
interpretation of the electrical signals generated by the exchange of ions during the
heart muscle’s contractions. An ECG system consists of (1) a set of surface electrodes
attached to the skin to capture the electrical activity and (2) a device that amplifies
and records these signals. The standard ECG recorded during the CR Phase I and II
requires 12 leads (i.e., I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, V6). Each of
these leads corresponds to a particular combination of the surface electrodes, and it
allows viewing the heart’s activity from a unique angle. The 12-lead ECG is essential
for the accurate interpretation of particular arrhythmias and, significant changes in
segments of the ECG signal may be isolated to a particular led set (Myers et al. 2009).

Most of the systems developed for clinical ECG signal monitoring (Shah and
Anderson 2013) are expensive, bulky, and unpleasant for the patient; hence, they
disturb the daily routines of the patient. On the other hand, some systems based on
mobile devices and designed for portable monitoring have recently entered the market,
such as Nuubo (Perez de la Isla et al. 2011), Vitaljacket (Cunha et al. 2010), and LOBIN
(López et al. 2010). However, they are based on one- to five-lead ECG configurations,
because they are mainly oriented as Holter devices. For the CR program, technological
solutions providing the remote recording of the complete 12-lead ECG while being
used by the patients on their own are still needed.
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Mobile Cardiac Rehabilitation System 95

Activity Monitoring and Energy Expenditure

When a patient’s ECG data are combined with a diary of the performed physical
activity, physicians can analyze the recovery process and detect cardiac events that only
appear under physical stress. For this reason, in the conventional CR, Phase II patients
have to attend to CR sessions in which they are told at all times what exercise to
perform. With the goal of achieving an out-of-hospital CR Phase II, it is imperative
to develop a system that is able to autonomously detect the kind of activity that the
patient is performing and its energy expenditure.

The most common and affordable method for automatic detection of the physical
activity consists in using inertial sensors such as accelerometers or gyroscopes (Godfrey
et al. 2008). Machine learning techniques can find patterns in the output data of these
sensors and learn to distinguish among the physical activities with a high success rate
(Mannini and Sabatini 2010).

On the other hand, the energy expenditure of a physical activity is measured in
terms of metabolic equivalent of task (MET), which is the ratio of the metabolic rate
during a specific physical activity to a reference metabolic rate (3.5 mL.kg−1.min−1 by
convention; Ainsworth et al. 2011). This ratio is obtained by measuring the oxygen cost
of the activity and dividing it by the resting oxygen consumption of an average person.
Nevertheless, it has been found that the MET can also be estimated by measuring the
output of inertial sensors worn by the patient (Pärkkä et al. 2007; Staudenmayer et al.
2009).

As a result, with the data provided by one inertial sensor, a classification algorithm
can predict the kind of activity that the user is doing, and a regression algorithm can
estimate the energy expenditure. This methodology has been proven valid in both
clinical settings and free-living environments (Jasiewicz et al. 2006; Saber-Sheikh et al.
2010).

Cardiologic Knowledge Mining and Visual Analytics

Due to the increasing number of CVD patients in our society, the time and effort
required by cardiologists for a proper cardiac monitoring is overwhelming. Large
amounts of cardiac data need to be analyzed per patient, where data analysis,
classification, and visualization tools might reduce the required effort.

A wide range of ECG data analysis and classification approaches can be
found in the literature (Bozzola et al. 1996; Hedén et al. 1997; De Chazal 2000;
Goldberger et al. 2000; Moody and Mark 2001; Al-Naima and Al-Timemi 2009).
The Research Resource for Complex Physiologic Signals (Goldberger et al. 2000) is
one of the most famous, where different databases and software tools are provided
to the scientific community: (1) PhysioBank, offering a large archive of characterized
physiological signal digital recordings, for both healthy subjects and patients suffering
from different pathologies; (2) PhysioToolkit, offering a library of open-source software
for physiological signal processing, analysis, and display; and (3) PhysioNet, offering
an online forum for the dissemination and exchange of recorded biomedical signals
and open-source software.
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96 I. Mesa et al.

Classification approaches for both ECG (Rodriguez et al. 2005) and activity
signals (Mannuni and Sabatini 2010) have also been published. In particular, several
authors have proposed classification methods applied to 12-lead ECG signals (Bozzola
et al. 1996; Hedén et al. 1997; Al-Naima and Al-Timemi 2009; De Chazal et al.
2000). In our work we will reuse available open-source tools for signal analysis and
classification and we will translate then to a cloud context.

We will also work on the development of new visualization paradigms for high-
level cardiac data. Visual analytics, the science of the analytic reasoning supported by
visual interactive interfaces (Wong and Thomas 2004), integrates new computational
tools for visual representation based on cognitive, perceptual, and design principles.
The application of visual analytics techniques to cardiologic data visualization is
intended to improve the efficacy and efficiency of cardiac monitoring systems and to
facilitate the human−information relation. During the last years, new theories and
paradigms have been proposed (He and Wu 2001; Rajendra Acharya et al. 2002; Gregg
et al. 2010). In our work, we will focus on visualizations that facilitate and accelerate
the monitoring of several simultaneous patients.

PROPOSED ARCHITECTURE

In this section we propose a generic architecture for mobile CR systems, oriented to
allow remote monitoring of cardiologic patients. We propose a five-layer architecture
(depicted in Figure 1) that combines both the hardware and software requirements. The
layers include the sensor layer, communications layer, data handling layer, application
layer, and user layer.

FIGURE 1 General architecture of the system.
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Mobile Cardiac Rehabilitation System 97

The sensor layer contains the necessary sensors and electronics required to obtain
ECG and physical activity information. For the acquisition of the former data, 10
wet sensors placed on the patient’s torso will record the electrical activity of the heart
(12 leads). These signals will be amplified and recorded by a special electronic system
placed in a custom T-shirt. Physical activity will be recorded by an inertial sensor placed
on the patient’s hip.

The communications layer acts as a bridge between the sensor layer and the data
handling layer. The data coming from sensors are compressed and sent to the patient’s
smartphone, which subsequently sends the data to the data handling layer located
in a cloud platform. The communications layer is in charge of the communication
channels and protocols between those layers. Because data transmission is the most
energy-demanding task of the sensor layer, the data compression aims to improve the
battery autonomy of the system.

The data handling layer is built in a cloud platform and it is in charge of
storing and processing the data. Concretely, the tasks of this layer are to (1) store
the data coming from the sensor layer; (2) analyze the ECG data, in combination
with the physical activity information, to detect relevant cardiologic episodes defined
by physicians; (3) handle the different alerts and recommendations based on the
mentioned analysis; and (4) provide the required information to the application layer.

Following our previous work on architectures for decision support systems
(Sanchez et al. 2013), an approach based on multi-agent systems is proposed in order
to provide the needed modularity and scalability. More precisely, the aforementioned
tasks of the data handling layer are assigned to five different agents (see Figure 1): (1)
information agent, (2) classification agent, (3) alert management agent, (4) interaction
and visualization agent, and (5) majordomo agent.

Interaction between agents follows a blackboard model (Craig 1995). The
majordomo agent is in charge of the blackboard management and intercommunication
of agents (i.e., it is the control shell of the blackboard system); hence, security- and
synchronization-related issues are easily solved. The other agents are responsible for
the main tasks of the layer. The information agent is in charge of the storing, accessing,
and editing of the cardiologic and activity data of each patient. The classification
agent examines these data to estimate the physical activity of the patient and, at the
same time, to classify the relevant cardiologic events. The alert management agent
scans the output of the latter agent in order to detect problematic cardiac episodes
according to custom rules specified by the patient’s physician. Finally, the interaction
and visualization agent acts as a link between this layer and the application layer.

The application layer is in charge of the interaction between the users (patients
and physicians) and the system. Patients will control the on−off switch of the system
with an application installed on their smartphone. Moreover, should the need for
guidance arise, this application will be able to help the patients with system setup.
Physicians will be provided with a web application that, thanks to the interaction
and visualization agent of the previous layer, will allow them to visualize the patients’
ECG and physical activity data, get alerts from relevant cardiac episodes, and program
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98 I. Mesa et al.

FIGURE 2 (Left) Patient placing the electrodes in front of a mirror. (Center) T-shirt with the electrodes
and wires placed. (Right) T-shirt with the coat.

custom alerts. Lastly, the user layer encompasses the patients and physicians using the
system.

SYSTEM IMPLEMENTATION

We have implemented the aforementioned architecture as a case study in the CR
program at Donostia University Hospital in Spain. In this section implementation
details of the system, named GoCardio, are presented.

Sensor Layer

The Integrated Circuit (IC) ADS1298 from Texas Instruments (Texas, USA,
www.ti.com) was selected to obtain a 12-lead ECG. This device integrates eight
instrumentation amplifiers with analogue-to-digital converters in one unique chip, as
well as a serial peripheral interface for communication.

The 10 wet electrodes that correspond to a 12-lead configuration are placed as
depicted in Figure 2. Two steps are needed to obtain the 12-lead ECG: Firstly, eight
leads are obtained directly in the analogic domain and digitalized by the ADS1298 chip.
Then, the other four leads are computed digitally combining the former ones. Table
1 presents the channel assignments and expressions to obtain each lead. The Wilson
central terminal (WCT) is a virtual ground obtained internally in the ADS1298 chip
by averaging in the analogic domain the electrodes E2, E3, and E4.

One of the key contributions during the implementation of the GoCardio system
is the design of a T-shirt prototype, which is in charge of carrying the electronics and
positioning the electrodes (depicted in Figure 2). Its main objective is to fulfill the
requirements of usability and functionality of the system established by the clinical
team.

The T-shirt consists of three parts. The first is the clothing (see Figure 2,
left), which guides the patient to place the electrodes at the required locations. The
second part (see Figure 2, center) encompasses the wires and the connectors. They
follow a specific route to reduce the signal motion artifacts produced by the physical
activity. This route was designed during the validation test described in the subsection
Validation of the ECG Amplifier. The third and final part (see Figure 2, right) is a coat
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Mobile Cardiac Rehabilitation System 99

TABLE 1 Assignment and Expression of Each One of the 12
ECG Leads

Leads obtained in the analog domain by the ADS1298

1 Lead I E3-E2
2 Lead II E4-E2
3 V1 E5-WCT
4 V2 E6-WCT
5 V3 E7-WCT
6 V4 E8-WCT
7 V5 E9-WCT
8 V6 E10-WCT

Leads obtained directly in digital domain

9 Lead III Leads II-I
10 aVL Leads I-II/2
11 aVR -(Leads II + I)/2
12 aVF Leads II-I/2

Note: E1 is used as ground.

that houses the electronics. It serves as an additional method to reduce signal motion
artifacts.

Detection of the physical activity is done using the commercial sensor
STT-IBS wireless inertial sensor manufactured by STT Engineering and Systems
(San Sebastian, Spain; http://www.stt-systems.com/). The STT-IBS is a sensor with 9
degrees of freedom and includes three accelerometers (Ax, Ay, Az), three gyroscopes
(Gx, Gy, Gz), and three magnetometers (Mx, My, Mz). This sensor is attached at the
hip securely fastened to straps, in order to minimize motion artifacts. Data are sent to
the microprocessor, which combines this inertial information with the ECG and sends
the data to the mobile phone.

Communication Layer

Collected ECG and activity data are compressed using wavelets (Addison 2005) and
sent by Bluetooth to the patient’s smartphone. We propose the use of a Bluetooth 2.1
solution due to the fact that most mobile devices provide this communication protocol
and its power consumption rate is suitable for this task. Subsequently, the smartphone
sends data to the GoCardio Cloud Platform over 3G or Wi-Fi.

Data Handling Layer

A GoCardio Cloud Platform has been developed with Amazon Elastic Compute Cloud
(Amazon EC2; Foster et al. 2008; Balduzzi 2012). Data generated in the sensor layer
are encoded with JavaScript Object Notation and stored in a MongoDB NoSQL
database (Chodorow 2013). These data are then classified by the platform. Three types
of data processing are covered in our approach: (1) heartbeat classification, (2) activity
classification, and (3) energy expenditure.
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100 I. Mesa et al.

For heartbeat classification, a training data set was generated from the MIT-BIH
Arrhythmia Database (Goldberger et al. 2000; Moody and Mark 2001). It consists
of 48 records containing approximately 110,000 beats annotated and classified in 20
different classes. Feature extraction was performed with ecgpuwave, a well-known QRS
detection and waveform limit location tool (Ashley 2004; Laguna et al. 1994). The
heartbeat classifier was built with Weka (Hall et al. 2009) applying the C4.5 decision
tree classifier, the IB1 nearest neighbor algorithm, and the naïve Bayes algorithm and
measuring their accuracy with 10-fold cross-validation.

For the physical activity information processing two different neural networks
are proposed (Staudenmayer et al. 2009). They are currently under implementation.
The first one will detect the kind of activity that the user is doing among four different
ones (i.e., walking, cycling, upper body workout, and lower body workout), and the
second neural network will estimate the energy expenditure (METs). In order to train
these neural networks, a database with example data is being created. This database is
populated with data from 50 volunteers. During the acquisition session, each volunteer
carries the STT-IBS inertial sensor and a portable gas analysis system to measure
the oxygen consumption. The subject performs four different exercise routines while
being supervised by a physician: (1) walking on a treadmill at different speeds and
with different slopes; (2) cycling a stationary bike at different speeds; (3) upper body
workout; and (4) lower body workout. Data coming from the inertial sensor are
annotated for activity recognition and data from the gas analysis system are annotated
for the energy expenditure estimation.

When risky situations are detected among the classified heartbeats and activities,
alerts are raised by the system. For that purpose, a rule-based alert management system
has been designed. Physicians can configure it by introducing the corresponding
production rules. They follow an if−then−else structure and follow a rule syntax
similar to RuleML (see Figure 3).

Application Layer

In the application layer, a physician-oriented web application has been implemented.
It covers three levels: (1) prioritization of patients, (2) evolution of a patient, and (3)
data from a patient’s monitoring session.

The first level is responsible for the visualization of the state of the different
patients at a certain time. The list of patients monitored by the corresponding physician

FIGURE 3 Example of a rule.
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Mobile Cardiac Rehabilitation System 101

FIGURE 4 Patient selection UI.

is showed by the user interface (UI; see Figure 4). For each patient, various details such
as name and ID are shown, as well as a traffic light, which encodes the risk associated
with a patient and his health status by the red, yellow, and green colors. For a large
number of patients, physicians will be able to prioritize medical efforts on patients
with an associated higher risk.

The second level shows the graphical visualization of the evolution among
different monitoring sessions of the selected patient in the previous level. In this way,
a physician will know at a glance whether a patient is getting better or worse. The
system also offers the possibility to filter the sessions both by date and by the alert
level inferred from the risk of the anomalies detected in the recording. The physician
can select a particular session for further analysis. Figure 5 shows a screenshot of an
example UI.

FIGURE 5 Summarization of ECG data of different sessions for a given patient.
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102 I. Mesa et al.

FIGURE 6 ECG visualization UI for a single session.

Level 3 shows the visualization of the data corresponding to a patient at a certain
monitoring session (i.e., different ECG leads, activity information). Once the session
to be analyzed has been selected, the system displays raw data of those leads that
the user has selected in the left side of the UI. Figure 6 depicts a screenshot of an
example UI. On the left side of the interface the distribution by type of classified beat
is shown. At the bottom of the interface, detailed information about those classified
beats and detected events is shown. Physicians obtain an overview of the entire session
and have all of the information necessary to deepen the analysis of certain parts of the
corresponding recording.
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Mobile Cardiac Rehabilitation System 103

SYSTEM VALIDATION

In this section we focus on different levels of validation of the GoCardio system.
First, the validation of the ECG processing unit is described, summarizing the most
significant results. Then the test scenario planned for a complete validation of the
GoCardio system is detailed.

Validation of the ECG Amplifier

Once the ECG acquisition equipment was set, a cardiologist approved the quality of
the ECG signal under rest conditions. The behavior of the amplifier while the user was
active was validated from measures of 11 volunteers, both male and female, under stress
conditions while biking. The custom T-shirt described previously was not included in
this study because it was under development at the time of the test. However, during
this validation different wiring configurations were tested and the current one adopted
by the T-shirt was selected, because it provided a higher signal-to-noise ratio.

Each volunteer executed the cardiac stress test twice. The first time, the stress test
was executed while measuring the ECG using a commercial amplifier. The commercial
amplifier was an adaptation for ECG of the BrainAmp amplifier provided by Brain
Products GmbH (Gilching, Germany; www.brainproducts.com/). The second time,
the amplifier developed for the GoCardio system was employed. As an example, Figure
7 shows a volunteer biking during the cardiac stress test and the V5 lead obtained with
the commercial amplifier (top) and with the GoCardio one (bottom).

FIGURE 7 ECG signal obtained with the commercial amplifier (top) and GoCardio (bottom).
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104 I. Mesa et al.

The signal-to-noise ratio of each amplifier was calculated in order to compare the
quality between them. The registered ECG under PQRST segments was considered
signal and the rest was considered noise. No statistically significant difference was
found between the two amplifiers (11 subjects, paired t -test p = 0!7341), suggesting
that the GoCardio amplifier provides standard development results in accordance with
the Quality Management System (DIN ISO 13485).

Regarding the ECG signals captured while the user was performing physical
activities, it was observed that they were strongly affected by (1) the movement of the
volunteer, (2) the location of the electrodes, and (3) the path followed by the wires.
These aspects were taken into consideration for the design of the T-shirt, which is
expected to improve the quality of the measured ECG.

Beyond this first experiment, once the T-shirt is manufactured, future tests will
be carried out in order to validate the whole sensor layer under final conditions.

Validation of the Complete GoCardio System

To validate the complete GoCardio system, a test scenario was designed that will be
conducted in the forthcoming months. The aims are twofold. Firstly, it will provide
an independent data set to validate the physical activity recognition and energy
expenditure estimation algorithms of the data handling layer. Secondly, physicians will
evaluate GoCardio as a valid tool in terms of performance, usability, and utility of the
platform.

Forty patients (20 men, 20 women) from Donostia University Hospital (Spain)
will participate in the experiment. These patients are in Phase II and III of the CR
process, and they are of different ages and physical conditions.

During the test, each participant will carry the complete sensor layer of the
GoCardio system (i.e., the ECG recording system, the T-shirt, and the inertial sensor)
and a portable gas analysis system to measure the oxygen consumption. The test will
consist of four different exercise routines that are actual workouts of the hospital’s CR
program: walking on a treadmill at different speeds and with different slopes; cycling
a stationary bike at different speeds; upper body workout; and lower body workout.

Data will be processed in the GoCardio cloud platform and the physicians will
evaluate the performance of the application. In addition, the classification rate of the
physical activity classifier and the accuracy of the energy expenditure estimation system
will be assessed.

CONCLUSIONS AND FUTURE WORK

We have presented a complete CR monitoring system that covers both hardware
and software perspectives. Our approach allows patients to perform physical exercise
on their own while they are monitored with the same rigor as in the conventional
CR of Phase II. In this way, commuting to the hospital is avoided, which is the
most problematic aspect of CR and the main reason for its lack of success. From a
clinical perspective, our system enables a supervised monitoring of CR of Phase III.
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Additionally, hospital resources are reduced in terms of equipment (e.g., treadmills,
static bikes) and staff (e.g., physicians, nurses).

At the hardware level, the proposed solution involves an inertial sensor fixed to
straps and a 12-lead ECG recording system, whose electronics are housed in a custom
T-shirt. The setup of the sensors can be done by patients with no external help, thanks
to the straps and the T-shirt. In addition, they reduce the motion artifacts that are
generated by the wires and electrodes while the patient is exercising.

At the software level, a cloud platform based on a multi-agent systems paradigm
was proposed. ECG and activity data are stored in it, and different classification and
interaction services are offered. The platform is able to detect the kind of activity that
the user is doing and the intensity level. The combination of this information with
the 12-lead ECG will provide physicians with tools able to detect cardiac events and
to analyze the evolution of the patient. Furthermore, the cloud platform assists them
by automatically detecting these events and by reducing the amount of time required
to process the data in a multipatient scenario.

Finally, in this article an implementation of the designed platform was presented.
The technical aspects of each level are described and explained, and the validation test
performed for the 12-lead ECG recording system is shown.

As future work, the complete developed platform will be validated with real
CR patients in a clinical setting. This validation will be twofold. First, the remaining
technical aspects will be validated, such as the accuracy of the physical activity estimator
or the reliability of the cardiac event detector. Second, physicians will evaluate the
system in terms of usability and utility. Finally, an economic impact analysis will be
conducted with real data in order to compare this novel cardiac rehabilitation method
against the conventional one.
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