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Abstract Industry 4.0 methodological advancements
based on continuous analytics and on the sensorization of
manufacturing lines make it possible to design and develop
integrated systems for measurement and verification of
the impact of implemented energy conservation measures
(ECM) in industrial plants. The pilot study presented here
has focused on developing a model of the energy consump-
tion of the injection machines in a manufacturing facility.
The energy savings are calculated by comparing energy con-
sumption of the post- and pre-ECM periods, adjusted so that
the comparison ismade in the pre-ECMoperating conditions.
The contribution of the model is to reduce the uncertainty,
i.e. to provide narrower limits for the possible values of the
estimate of consumed energy, by taking advantage of the fact
that the period in which the energy savings are to be mea-
sured is usually quite larger than the time intervals in which
the energy performance measurements are taken. This better
approximation of the range of possible values for the estimate
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is achieved by combining traditional statistics and machine
learning methods.

Keywords Measurement and verification · Adjusted
baseline calculation · Energy savings · Statistical learning

1 Introduction

Product manufacturing is a branch that has to constantly
improve its competitiveness by increasing quality and reduc-
ing cost. Interactive simulation techniques contribute to this
improvement by identifying potential optimisations without
incurring in heavy physical testing processes [1–3]. There are
many different approaches in the literature that are based in
physical simulations and deterministic models that optimise
industrial processes in terms of quality, time, raw material,
etc. From a design perspective, Cherifi et al. [4] propose the
use of methodologies such as TRIZ [5] to introduce new fac-
tors in the design process.

On the other hand, current machine tool industry is creat-
ing devices fully equipped with sensors that provide massive
and heterogeneous data that, in many cases, it is diffi-
cult to incorporate in existing deterministic/physical models.
However, this data can contain highly valuable information
that properly characterised and modelled could dramatically
improve optimisation processes. Furthermore, existing mod-
els can be extended to include new aspects of design into
the same designing process, for example, energy consump-
tion aspects could be introduced in quality/time/rawmaterial
design models.

As a specific use case of this approach, we propose the
use of probabilistic methods to model the energy consump-
tion behaviour and perform predictions, increasing in this
way the competitiveness of aluminium injection processes.
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As one of the main limitations of probabilistic methods is
the uncertainty, this paper is focused on measuring, delim-
iting and reducing this uncertainty in order to provide a
satisfactory confidence level in optimisation and design
processes.

The term measurement and verification (M&V) refers
to the measurements and calculations necessary for reli-
ably quantifying savings delivered by an energy conservation
measure (ECM) [6]. Savings are determined by comparing
measured use before and after implementation of an ECM,
making appropriate adjustments for changes in conditions
[6,7]. The most common approach is to develop a model of
energy consumption before the ECM is implemented and,
then, compare the metered use after the ECM is imple-
mented to the estimate resulting from applying the model
to the post-ECM data. Care must be taken to measure the
uncertainty of the estimate. The usual method for energy
consumption modelling is to aggregate the data by period of
comparison (e.g. month) and build a linear regression model
with the aggregated data. Then, the uncertainty is measured
using traditional statistics and linear regression theory. The
range for the estimate provided by these tools can be quite
wide. Although consensus is widespread on the societal and
industrial potential of the results of policies focusing on the
implementation of ECMs, there has not been much work
directed at providing a narrower range of possible values.
This is important because the narrower the range of possible
values the more precisely the savings can be quantified. And
conversely, when the range of possible values for the esti-
mate is wide it might not be possible to determine whether
energy consumption has decreased or increased.

This paper presents a method for modelling the energy
consumption of a metal mold injection machine and estimat-
ing the range of possible values at a given level of confidence
for any period of time containing a large number of mea-
surement intervals. In the case study presented in the results
section, the boundary of the savings determination is the
motor of the injectionmachine, which in the reporting period
has been retrofitted with an ECM. This paper is only con-
cerned with the performance of the systems affected by the
ECM.

In M&V terminology, the baseline period is the period of
time selected as representative of facility operations before
retrofit and the reporting (post-retrofit or post-ECM) period
is the time following a retrofit during which savings are to
be determined [8]. Additionally, the baseline model is the
set of arithmetic factors, equations, or data used to describe
the relationship between energy use or demand and other
baseline data and the adjusted baseline is the application
of the post-retrofit independent variable data to the base-
line model to determine the baseline energy use or demand
adjusted to post-retrofit conditions [8]. The proposedmethod
uses the baseline data for fitting the model and then applies

themodel to the reporting period data to estimate the adjusted
baseline against which to measure the energy savings. The
contribution of the model is to combine traditional statistics
and machine learning methods to take advantage of the fact
that the period in which the energy savings are measured (the
reporting period) is usually quite larger than the time intervals
in which the energy performance measurements are taken to
provide narrower limits for the possible values of the esti-
mate of energy consumed during the reporting period. The
proposedM&Vmethod is amenable to automation in energy
management systems.

2 Related work

The international performance measurement & verification
protocol (IPMVP) is a standard first issued in 1996 that
“provides an overview of current best practice techniques
available for verifying results of energy efficiency, water
efficiency, and renewable energy projects” [9]. The proto-
col is complemented by the American Society of Heating,
Refrigeration and Air-Conditioning Engineers (ASHRAE)
Guideline 14 ‘Measurement of Energy and Demand Sav-
ings’ [8]. IPMVP serves as a framework to determine energy
savings resulting from the implementation of an energy effi-
ciency program whereas ASHRAE’s guideline focuses on
the technical details and helps formulate a M&V plan [9].
ASHRAE’s guideline 14 is designed for M&V applied to
buildings, not industrial processes [10]. The IPMVP proto-
col defines four different M&V options: partially measured
retrofit isolation (A), retrofit isolation (B), whole facility (C),
and calibrated simulation (D). This paper focuses on option
B, retrofit isolation, defined in the protocol [9] as follows:

Savings are determined by field measurement of the
energy use of the systems to which the ECM was
applied, separate from the energy use of the rest of
the facility. Short-termor continuousmeasurements are
taken throughout the post-retrofit period.

At the end of 2014, the International Organization for
Standardizationpublished thefirst editionof ISO50015:2014
Energymanagement systems—measurement and verification
of energy performance of organizations—general principles
and guidelines [11]. ISO 50015:2014 can be applied along-
side ISO 50001:2011 Energy management system. The latter
specifies the requirements for establishing, implementing,
maintaining and improving an energy management system
[12], whereas the former establishes general principles and
guidelines for the process of M&V of energy performance
of an organization or its components [11].

There has been much work published regarding energy
modelling and M&V of energy savings in buildings (see, for
example, [13,14]). In that context, the possibility of reducing
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uncertainty in energy-use predictions using measured data
with finer time resolutions has been explored in combina-
tion with Gaussian Process modelling of energy use [13,15].
There are not so many publications in the context of industry
and manufacturing processes, even though one of the pil-
lars of the Industry 4.0 movement is the analysis of data
(including sensor and meter data). In the context of energy
efficiency, the case for metering in industrial facilities has
already been made elsewhere [16]. The US Department of
Energy’s Superior Energy Performance Measurement and
Verification Protocol for Industry (SEPMVPI) [17] estab-
lishes a protocol forM&Vin industrial settings. This protocol
requires the facility to conform to the ISO 50001 standard.
Previously, therewas no establishedmethod ofmeasuring the
energy consumption of machine tools [18]. This paper pro-
poses another method for reducing uncertainty based on fine
resolution measurement data in an industrial environment.

3 Method

This method requires the system of interest (i.e. the injection
machine or one or more of its components) to be fitted with
an energy meter that takes measurements at regular intervals.
It also requires that the system logs all changes from active
to inactive state, and viceversa. Active time is used as a sub-
stitute for production. Shut-down periods are excluded from
the data.

3.1 Mean active power in a measurement interval

The mean active power (kW) measurement in an interval
is modelled as the regression line [19] of the time (in h)
the injection machine spends in an active state within the
measurement interval. If the active time is denoted as X and
the mean active power is denoted as Y , then the model is
shown in Eq. 1 where α and β are the parameters of the
model, α + βX is the linear regression estimate, and ξ is
the error term. If more than one component of the injection
machine have been sensorised, then there needs to be a linear
regression model per component.

Y = α + βX + ξ (1)

3.2 Prediction error estimation

Traditionally in linear regression, the range of possible values
for the estimate for a given confidence level depends on the
standard error of the estimate (SEŶ ) and is calculated with
Eq. 2, where n is the size of the sample used to fit themodel, q
the number of independent variables in the regressionmodel,
and t is the t-distribution quantile for a given confidence
level and the degrees of freedom (DF) of the model (i.e.

DF = n−q −1) [20]. The formula for the standard error of
the estimate is shown in Eq. 3. Note that SEŶ is calculated
using the sample data used for fitting the model.

α + βX ± (t × SEŶ ) (2)

SEŶ =

√
√
√
√

∑n

i=1
(Yi − α − βXi )

2

n − q − 1
(3)

However, as the model trained with the data from one
period will be applied to the other period (the test set), it is
interesting to find out the mean error of the estimate on the
test set. Following a machine learning [21,22] approach, the
prediction error is estimated through tenfold cross-validation
[23] using the data for the training period. For each fold i ,
the mean prediction error or residual, μi , and its variance,
σ 2
i , are calculated. Then, the expected prediction error of the

model on the test set, μ, is the arithmetic mean of the mean
errors for the folds (μi ) and its variance, σ 2, the arithmetic
mean of the variances (σ 2

i ) [24].

3.3 Model fitting

Once the model’s prediction error has been estimated, the
linear regression model is fitted using all of the period data.
The SEPMVPI protocol allows three primary methods for
applying an adjustment model.

The forecast method compares the observed reporting
period energy consumption to the adjusted baseline period
energy consumption by training the model with the baseline
period data and applying it to the reporting period conditions.
The adjusted baseline period energy consumption is the esti-
mated energy consumption that would have been expected at
reporting period conditions (e.g. production levels and exter-
nal factors), if the baseline operating equipment and practices
were still in place [17].

The backcast method compares the observed baseline
period energy consumption to the adjusted reporting period
energy consumption by training the model with the reporting
period data and applying it to the baseline period conditions
to estimate the energy consumption that would have been
expected at baseline production levels and external factors, if
the reporting-period operating equipment and practices were
in place.

Finally, the standard conditions method compares the
adjusted reporting-period consumption to the adjusted base-
line period consumption at a standard set of production levels
and external factors (collectively known as standard condi-
tions). This method is equivalent to fitting a forecast model
and applying it at standard conditions to calculate the baseline
period energy consumption. Then, fitting a backcast model
and applying it at standard conditions to calculate the report-
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ing period energy consumption. And, lastly, comparing the
two energy consumptions calculated.

3.4 Energy consumption in an interval

Given the mean active power (kW) in an interval, the mean
energy consumed (kWh) in the interval is the product of the
mean active power by the duration (in h) of the measurement
interval (i.e. the period). If the energy consumed is denoted
by E and the period of the measurements by tm (which is
constant as the sensor takes measurements at regular inter-
vals), then the energy consumed is calculated as in Eq. 4.

E = tmY = tm(α + βX + ξ) (4)

3.5 Energy consumption for a period of time longer
than a measurement interval

The mean energy consumed in any period of time that con-
tains more than one measurement interval [e.g. an 8-h work
shift such as (2015-09-01 06:00, 2015-09-01 13:59)] is the
sum of the energy consumed in the measurement intervals
contained in the period. If the energy consumed in the period
P is denoted by Ep, the interval duration by tm (which is
constant, as mentioned earlier), the timestamp at which each
measurement was taken by ti , and the number of intervals in
the period by Np, then the energy consumed in the period is
given in Eq. 5, where the first term in the sum is the energy
consumption estimate and the second is the error term.

Ep = tm
∑

ti :ti∈P

(α + βXti ) + tm
∑

ti :ti∈P

ξti (5)

By the central limit theorem (CLT), if there is a suffi-
ciently large number of measurement intervals in the period
of interest then

∑

ti :ti∈P ξti follows a normal distributionwith
expectancy Npμ and variance Npσ

2. 99.73 % of the values
of a normal distribution are within three standard deviations
of the mean. Therefore, 99.73 % of the values for the energy
consumption in the period will be in the interval shown in
Eq. 6. The endpoints of the interval are the 99.73% lower and
upper limits of the energy consumption range, respectively.

Ep ∈
⎡

⎣tm
∑

ti :ti∈P

(α + βXti ) + tm(Npμ − 3
√

Npσ),

tm
∑

ti :ti∈P

(α + βXti ) + tm(Npμ + 3
√

Npσ)

⎤

⎦

(6)

whereas the range of possible values for the consumed energy
given by traditional linear regression methods would be the
one shown in Eq. 7.

tm
∑

ti :ti∈P

(α + βXti ) ± Nptm(t × SEŶ ) (7)

When the number of measurement intervals in the period
of interest is large enough so that the CLT applies, the range
obtained with this method (Eq. 6) is narrower and provides a
better estimate than the range obtained with traditional linear
regression (Eq. 7).

3.6 Measurement of energy savings

The IPMVP protocol states that, in general, ‘energy savings
are calculated by comparing the observed energy consump-
tion during the reporting period to the adjusted baseline’
[9]. This can be applied directly to the forecast method, as
shown in Eq. 8 where SAV Ereporting denotes the energy
savings during the reporting period. The adjusted baseline,
Ereporting , is the energy consumption estimate given by the
forecast model applied to the active time data of the report-
ing period andOreporting is the observed energy consumption
during the reporting period.

SAV Ereporting = Ereporting − Oreporting (8)

When using the backcast method, the savings are calcu-
lated by comparing the observed energy consumption during
the baseline period to the energy consumption estimate given
by the backcast model applied to the active time data of the
baseline period [17]. Using the standard conditions method,
the savings are calculated by comparing the energy consump-
tion estimates given by the backcast and forecast models
applied to the standard conditions [17].

4 Results

The proposed method has been tested with the data for
the motors of an injection machine following the fore-
cast method of the SEPMVPI. The forecast method is,
according to ASHRAE [8], the most common method of
adjustment. Mean active power demanded by the motors has
been recorded at a period of observation of two minutes.
The injection machine also automatically logs when there
is a change in state, from active to inactive and viceversa.
Thus, it is possible to calculate how long the machine has
been in an active state within each of the mean active power
measurement intervals.

The dates are 2015-09-14 to 2015-09-18 with 3299
records for the baseline and 2015-09-21 to 2015-10-02 with
6065 records for the reporting period.
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Fig. 1 Observed mean active power by measurement interval active
time and regression line fitted with baseline data (Eq. 9) with lower and
upper limits for the possible values of the estimate calculated with Eq.
2

4.1 Model fit

The regression line for the mean active power fitted to the
baseline data is shown in Eq. 9 and Fig. 1. This figure also

shows the upper and lower limits of the range for the possi-
ble values of the estimate for the 99.73 % confidence level
calculated with Eq. 2. The root-mean squared error is 5.516
(15.7 % of the mean value, 35.14). The prediction error esti-
mated using cross-validation has a mean of −0.00078 and
variance 31.

Y = 19.82 + 522.8X + ξ (9)

Figure 2 shows the observed and estimated energy con-
sumption for 8-h shifts for both periods, baseline and
reporting, calculated with the proposed method. Table 1
shows the numerical results. The total reporting period

Table 1 Energy savings estimate for the full reporting period under
consideration

Observed consumption (kWh) 5212.29

Consumption estimate (kWh) (adjusted baseline) 6938.66

99.7 % lower bound for the estimate 6895.48

99.7 % upper bound for the estimate 6981.52

Savings (kWh) 1726.37

Savings percentage wrt the adjusted baseline 24.88

% Lower 24.41

% Upper 25.34

Fig. 2 Estimated and observed
energy consumption by 8-h
shifts for the baseline and
reporting periods using the
proposed method (eq. 6)
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energy consumption is 5212.29 kWh and the adjusted base-
line consumption is 6938.66 kWh. Therefore, the savings
are 1726.37 kWh, i.e. 24.88 % of the adjusted baseline con-
sumption. The percentage saving is 24.41 % with respect
to the lower bound and 25.34 % with respect to the upper
bound.

4.2 Comparison

This section compares three approaches for calculating
energy savings using a training and test set partition of the
baseline data. The first approach is the most used in industry
and uses aggregate data to fit the linear regression model.
In this case, the data (consumed energy and active time) has
been aggregated by 8-h shift, the linear regression model has
been fitted to this aggregate data, and the range of possible
values for the estimate has been calculated usingEqs. 2 and 3.
The result is shown in Fig. 3a.

Figure 3b shows a comparison of the consumed energy
range obtained using the proposed method (Eq. 6) and the
aggregate of linear regression estimate ranges for unag-
gregated data (Eq. 7). It can be seen in this figure that
the estimates themselves are quite similar but the proposed
method provides amuch narrower range of values. The range
of values provided by traditional linear regression methods
is too wide to be of use in practice.

4.3 Model validation

This section will show that the model is a valid model for
calculating adjusted consumption according to the validation
criteria specified by the SEPMVPI [17].

This protocol states that the variables considered for
inclusion in the model must include production quantities,
weather, input quantities and input characteristics, such as
moisture content. The proposed method uses active time
as a substitute for production as they are highly correlated
in this case. Specifically, Pearson’s linear correlation coef-
ficient between active time and part production in an 8-h
shift is 0.9671 overall, 0.9853 for the baseline period and
0.9636 for the reporting period. The advantage of using active
time is that data collection is easier, as the timestamp of
active/inactive changes of state is recorded automatically,
and, it is possible to calculate active time for any length
of measurement interval. Production data, however, is only
recorded once at the end of each 8-h shift. Both the intercept
and the active time predictor variable in the linear regres-
sion model are significant with p value 0 and 0 (up to the
computer’s 64-bit floating point precision), respectively.

Regarding weather conditions, the two periods are close
in time (three consecutive weeks) so it can be assumed that
weather and environmental conditions are similar and, thus, it
is not necessary to include this variable in themodel. Temper-
ature data from the US Department of Commerce National
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Fig. 3 Comparison of traditional linear regression and machine learn-
ing possible value ranges for the consumed energy estimate for a training
and test set partition of the baseline data by 8-h shifts. a Consumed

energy estimate using linear regression on data aggregated by 8-h shift.
b Consumed energy estimate using the proposed method
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Fig. 4 Temperature
measurements for the
Bilbao/Airport station retrieved
from NOAA for baseline and
reporting periods, where TMIN,
TAVG, and TMAX are the daily
minimum, average, and
maximum temperatures,
respectively
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Oceanic and Atmospheric Administration (NOAA) database
for the station located at Bilbao (Spain) airport (41.1 km
from Abadiño, where the plant is located) has been used to
check this assumption. Figure 4 shows that both periods have
very similar temperatures, so the extrapolation of the base-
line model to the reporting period is reasonable. In order for
the model to be applicable year-round, weather-related pre-
dictor variables would need to be included in the model and
the model would need to be fitted with full-year data. Lastly,
in the periods considered the injection machine is producing
the same part, thus input quantities and input characteristics
are the same in both periods.

The mean active power measurements contain outliers,
mostly very low readings that often but not always occur
when active time is low (as can be appreciated in Fig. 1).
These outliers have not been removed from the data because
it is deemed important that, as a next step, they are analysed
further. However, the effect of these outliers on the reliabil-
ity of the model estimates has been studied. In Fig. 3b it
can be appreciated that there are two shifts for which the
observed energy consumption is outside the range provided
by the proposed method. The two troughs below the CLT
lower limit (shifts 2015-09-15 06:00 and 2015-09-16 14:00)
correspond to the two 8-h shifts for which the observed mean
active power distributions have considerably lower values, as
can be seen in Fig. 5. However, there are other shifts which
have a considerable number of outliers and for which the

estimate provided by this method is a good approximation to
the observed energy consumption, which is well within the
range of values provided by the method. Therefore, it is not
the presence of outliers that is compromising the reliability of
the model, but the presence of shifts with a notably different
distribution of mean active power readings within the same
period. These shifts have a lower aggregate active time. How-
ever, shift 2015-09-14 06:00 has an aggregate active time
similar but lower than that of shift 2015-09-16 14:00 and
its mean active power readings distribution is not as posi-
tively skewed and its energy consumption estimate is a good
approximation of the observed consumption. These events
will be studied further in future work.

Regarding model testing (section 3.4.5. of the protocol),
the p value of the F test of the overall model fit is 0 (up
to the computer’s 64-bit floating point precision) and the
threshold to be valid is 0.1. The active time predictor vari-
able has a p value of 0 (up to the computer’s 64-bit floating
point precision) and, thus, below the threshold of 0.2. Lastly,
the coefficient of determination (R2) of the model is 0.5019
(above the 0.5 threshold).

For the model to be valid for calculating adjusted energy
consumption, the average of the predictor variables used to
calculate the adjusted consumption from the model must fall
within either the range of observed data that went into the
model or three standard deviations from the mean of the data
that went into the model [17]. In this case, the range of the
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Fig. 5 Observed mean active
power distributions by 8-h shift
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only predictor variable, active time, is [0, 0.03333] for both
the baseline and reporting periods (as can be seen in Fig. 1).
As the model satisfies all the requirements of the validation
tests set by the SEPMVPI protocol, it can be concluded that
it is a valid model.

5 Conclusion

Traditionalmanufacturing industry is going throughaprocess
of significant evolution brought about by technological
developments. Companies need to adapt to remain compet-
itive. One such change is the quantitative monitorisation
of all processes with the objective of improving effi-
ciency. This monitorisation provides data, which then has
to be transformed into actionable information. In the M&V
field, measured data has to be processed with the objec-
tive of quantitatively estimating energy savings. In order
to do this, the baseline energy consumption needs to be
modelled.

This paper presents a method for developing a baseline
model for an injection machine based on high frequency
energy metering. The proposed method achieves an excel-
lent fit for the baseline data and, thus, provides the means to
estimate the adjusted baseline against which the energy con-

sumption for the reporting period can be compared. Themain
contribution of the proposed method is that it also allows
narrowing the range of possible values for the estimate and,
therefore, the energy savings can be estimated better.

It is interesting to note that the baseline energy con-
sumption can be modelled based only on the active time
for baseline and reporting periods with similar environmen-
tal conditions (e.g. climate...) and production characteristics
(e.g. production of the same part). To develop a baseline
model applicable year-round, it will be necessary to include
other factors, such as climate and production details, in the
model.
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