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Abstract. Objective: Predicting Emergency Department (ED) readmissions is
of great importance since it helps identifying patients requiring further
post-discharge attention as well as reducing healthcare costs. It is becoming
standard procedure to evaluate the risk of ED readmission within 30 days after
discharge. Methods. Our dataset is stratified into four groups according to the
Kaiser Permanente Risk Stratification Model. We deal with imbalanced data
using different approaches for resampling. Feature selection is also addressed by
a wrapper method which evaluates feature set importance by the performance of
various classifiers trained on them. Results. We trained a model for each sce-
nario and subpopulation, namely case management (CM), heart failure (HF),
chronic obstructive pulmonary disease (COPD) and diabetes mellitus (DM).
Using the full dataset we found that the best sensitivity is achieved by SVM
using over-sampling methods (40.62 % sensitivity, 78.71 % specificity and
71.94 accuracy). Conclusions. Imbalance correction techniques allow to achieve
better sensitivity performance, however the dataset has not enough positive
cases, hindering the achievement of better prediction ability. The arbitrary
definition of a threshold-based discretization for measurements which are
inherently is an important drawback for the exploitation of the data, therefore a
regression approach is considered as future work.
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1 Introduction

The number of people aged over 65 is projected to grow from an estimated 524 million
in 2010 to nearly 1.5 billion in 2050 worldwide [1]. This trend has a direct impact on
the sustainability of health systems, in maintaining both public policies and the
required budgets.

This growing population group represents an unprecedented challenge for health-
care systems. In developed countries, older adults already account for 12 to 21 % of all
ED visits and it is estimated that this will increase by around 34 % by 2030 [14].
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Older patients have increasingly complex medical conditions in terms of their
number of morbidities and other conditions, such as the number of medications they
use, existence of geriatric syndromes, their degree of physical or mental disability, and
the interplay of social factors influencing their condition [9]. Recent studies have
shown that adults above 75 years of age have the highest rates of ED readmission, and
the longest stays, demanding around 50 % more ancillary tests [15]. Notwithstanding
the intense use of resources, these patients often leave the ED unsatisfied, and with
poorer clinical outcomes, and higher rates of misdiagnosis and medication errors [16]
compared to younger patients. Additionally, once they are discharged from the hos-
pital, they have a high risk of adverse outcomes, such as functional worsening, ED
readmission, hospitalization, death and institutionalization [17].

In this paper we present our recent work on ED readmission risk prediction. We
utilize historic patient information, including demographic data, clinical characteristics
or drug treatment information among others. Our work focuses on high risk patients
(two higher strata) according to the Kaiser Permanente Risk Stratification Model [11].
This includes patients with prominence of specific organ disease (heart failure, chronic
obstructive pulmonary disease and diabetes mellitus) and patients with high
multi-morbidity. Predictive models are built for each of the stratified groups using
different classifiers such as Support Vector Machine (SVM) and Random Forest. In
order to deal with class imbalance and high dimensional feature space, different fil-
tering techniques have been proposed during experimental approach.

The main contributions of this work are:

• We extend the work by Besga et al. [2] applying well-known machine learning
techniques such as class balancing and feature selection in order to obtain better
sensitivity.

• We compare two well stablished supervised classification algorithms, Random
Forests and SVM, and analyze their performance in different scenarios.

• We make use of a wrapper feature selection method that maximizes the prediction
ability while minimizes models’ complexity.

The paper is organized as follows. In Sect. 2 we present some related works on
predictive modelling for readmission risk estimation. In Sect. 3 we present the dataset
as well as the methodological approach followed in order to build our models. Next, we
describe the evaluation methodology and the experimental results. In Sect. 5 we dis-
cuss the conclusions and future work.

2 Related Work

Readmission risk modelling is a research topic that has been extensively studied in
recent years. The main objective is usually to reduce readmission costs by identifying
those patients with higher risk of coming back soon. Patients with higher risk can be
followed-up after discharge, checking their health status by means of interventions such
as phone calls, home visits or online monitoring, which are resource intensive. Pre-
dictive systems generally try to model the probability of unplanned readmission
(or death) of a patient within a given time period.
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In a recent work, Kansagara et al. [9] presented a systematic review of risk pre-
diction models for hospital readmission. Many of the analyzed models target certain
subpopulation with specific conditions or diseases such as Acute Miocardial Infarction
(AMI) or heart failure (HF) while others embrace general population.

One of the most popular models that focus on general populations is LACE [3].
The LACE index is based on a model that predicts the risk of death or urgent read-
mission (within 30 days) after leaving the hospital. The algorithm used to build the
model is commonly used in the literature (logistic regression analysis) and, according
to the published results, the model has a high discriminative ability. The model uses
information of 48 variables collected from 4812 patients from several Canadian
hospitals.

A variant called LACE + [4] is an extension of the previous model that makes use
of variables drawn from administrative data.

A similar approach is followed by Health Quality Ontario (HQO) with their system
called HARP (Hospital Admission Risk Prediction) [10]. The system aims to determine
the risk of patients in short and long term future hospitalizations. HARP defines two
periods of 30 days and 15 months for which the model infers the probability of hos-
pitalization, relaying on several variables. From an initial set of variables of 4 different
categories (demographic, feature community, disease and condition and meetings with
the hospital system) the system identifies two sets of variables, a complex and a simpler
one, with the most predictive variables. Using these sets of variables and a dataset
containing approximately 382,000 episodes, two models for one month and 15 months
are implemented. The models were developed using multivariate regression analysis.
According to the committee of experts involved in the development of HARP, the most
important metric was the sensitivity (i.e. the ability to detect hospitalizations).
Regarding this metric, claimed results suggest that both simple and complex models
achieve high sensitivity, although the complex model gets better results. The authors of
this work suggest that the simple model could be a good substitute when certain hos-
pitalization data is not available (e.g. to perform stratification outside the hospital).

A recent work by Yu et al. [5] presents an institution-specific readmission risk
prediction framework. The idea beneath this approach is that most of the readmission
prediction models have not sufficient accuracy due to differences between the patient
characteristics of different hospitals. In this work an experimental study is performed,
where a classification method (SVM) is applied as well as regression (Cox) analysis.

In [2] Besga et al. analyzed patients who attended Emergency Department of the
Araba university Hospital (AUH) during June 2014. We exploit this dataset improving
their results with further experiments.

3 Materials and Methods

The dataset, presented by Besga et al. in [2], is composed of 360 patients divided into
four groups, namely: case management (CM), patients with chronic obstructive pul-
monary disease (COPD), heart failure (HF) and Diabetes Mellitus (DM). For each patient
a set of 97 variables were collected, divided into four main groups: (i) Sociodemographic
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data and baseline status, (ii) Personal history, (iii) Reasons for consultation/Diagnoses
made at ED and (iv) Regular medications and other treatments. Dataset contains missing
values.

In order to build our model following a binary classification approach, the target
variable was set to readmitted/not readmitted. Those patients returning to ED within 30
days after being discharged are considered readmitted (value = 1), otherwise are seen
as not readmitted (value = 0).

It is noteworthy that one patient returning the first day and another returning the
30th are both considered as readmitted. On the other hand, a patient returning the 31th

day is considered as not readmitted, while in practice underwent a readmission. We
believe that having the number of days passed before readmission would have been
much more meaningful for identification and would have permitted even identifying a
more accurate prediction, including the predicted time for readmission.

All the tests were conducted using 10-fold cross-validation. The evaluation metrics
that we have used are: sensitivity, specificity and accuracy. In order to avoid any
random number generation bias, we have conducted 10 independent executions with
different random generating seeds and averaged the results obtained.

According to the data shown in Table 1 our dataset has a high dimensional feature
space. In this scenario we have carried out some feature selection techniques. The goal
is to find a feature subset that would reduce the complexity of the model, so that it
would be easier to interpret by physicians, while improving the prediction performance
and reducing overfitting.

We are going to use the following approaches: filter methods and wrapper methods.
Filter algorithms are general preprocessing algorithms that do not assume the use of a
specific classification method. Wrapper algorithms, in the other hand, “wrap” the
feature selection around a specific classifier and select a subset of features based on the
classifier’s accuracy using cross-validation [18]. Wrapper methods evaluate subsets of
variables, that is, unlike filter methods, do not compute the worth of a single feature but
the whole subset of features.

• Filter method: We have used Correlation-based Feature Selection (CBFS) method
since it evaluates the usefulness of individual features for predicting the class along
with the level of inter-correlation among them [19]. In this work we have used the
implementation provided by Weka [8].

Table 1. Distribution of variables by category

Variable No. (%) of variables
n = 96

Sociodemographic and baseline status 4 (4.2)
Personal history 43 (44.8)
Reasons for consultation 16 (16.7)
Regular medications 33 (34.3)
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• Wrapper method: We have selected SVM as the specific classification algorithm
and Area Under the Curve (AUC) as evaluation measure. Since an exhaustive
search is impractical due to space dimensionality, we used heuristics, following a
greedy stepwise approach. In this work we have used the implementation provided
by Weka.

3.1 Support Vector Machine

Support vector machines (SVM) are supervised learning models which have been
widely used in bioinformatics research and many other fields since their introduction in
1995 [7]. It is often defined as a non-probabilistic binary linear classifier, as it assigns
new cases into one of two possible classes. In the readmission prediction problem, the
model would predict whether a new case (the patient) will be readmitted within 30
days.

This algorithm is based on the idea that input vectors are non-linearly mapped into
a very high dimensional space. In this new feature space it constructs a hyperplane
which separates instances of both classes. Since there exist many decision hyperplanes
that might classify the data, SVM tries to find the maximum-margin hyperplane, i.e. the
one that represents the largest separation (margin) between the two classes.

In this work we have used the libSVM1 implementation of the algorithm, which is
the common implementation used for experimentation, and can be easily integrated to
weka [8] using a wrapper. We have used a radial basis kernel function: exp(−c*|u−v|^2)
where c = 1/num_features and C = 1.

3.2 Random Forest

Random Forest [6] is a classifier consisting of multiple decision trees trained using
randomly selected feature subspaces. This method builds multiple decision trees at
training phase. In order to predict the class of a new instance, it is put down to each of
these trees. Each tree gives a prediction (votes) and the class having most votes over all
the trees of the forest will be selected. The algorithm uses the bagging method, i.e. each
tree is trained using a random subset (with replacement) of the original dataset. In
addition, each split uses a random subset of features.

One of the advantages of random forests is that generally they generalize better than
decision trees, which tend to overfitting and naturally perform some feature selection.
They can also be run on large datasets and can handle thousands of attributes without
attribute deletion. In this work we have used Weka’s implementation of the algorithm.

1 https://www.csie.ntu.edu.tw/*cjlin/libsvm/.
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4 Results

In this section we analyze the prediction performance of different models on the
emergency department short-time readmission dataset presented in [2]. As shown in
Table 2 we have considered besides the original four subpopulations a fifth dataset that
encompasses all of them.

4.1 Class Balancing

In readmission prediction analysis like in any other supervised classification problem,
imbalanced class distribution leads to important performance evaluation issues and
problems to achieve desired results. The underlying problem with imbalanced datasets
is that classification algorithms are often biased towards the majority class and hence,
there is a higher misclassification rate of the minority class instances (which are usually
the most interesting ones from the practical point of view) [13].

As shown in Table 3, class imbalance is causing an accuracy paradox. If we just

look at the accuracy of the model we get an 83.62 % although SVM just behaves as
suing only the greater a priori probability to make the classification decision.

Resampling. There are several methods that can be used in order to tackle the class
imbalance problem. Building a more balanced dataset is one of the most intuitive
approaches. In our experiment we have used under-sampling as a preliminary approach
and continued with an over-sampling using synthetic samples.

Table 2. Comparative information about the subpopulations of the dataset

Readmission within 30 days,
no. (%) of patients

Overall no. of patients No Yes
n = 360 n = 296

(82.2)
n = 64
(17.7)

Case management 94 (26.1) 73 (77.7) 21 (22.3)
Heart failure 70 (19.4) 62 (88.6) 8 (11.4)
Chronic obstructive pulmonary disease 80 (22.2) 64 (80) 16 (20)
Diabetes mellitus 116 (32.2) 97 (83.6) 19 (16.4)

Table 3. Confusion matrix of SVM on the diabetes mellitus dataset

Predicted
Readmitted Not readmitted

Actual Readmitted 97 0
Not readmitted 19 0
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Under-sampling with random subsample. Given that there is a low number of samples
for the minority-class, which is also the most relevant for classification, we can
anticipate that reducing the amount of samples for the majority-class to be comparable
to the minority-class and avoid the class imbalance will lead to a model with poor
generalization capability.

Focusing on the diabetes mellitus subpopulation dataset, it is composed of 97
instances belonging to the not-readmitted class and only 19 of the readmitted class. An
experiment consisting of subsampling the dataset to a distribution of 1:1.5 between the
minority and majority classes, and then applying a Random Forest classifier shows the
following results in Table 4.

As seen in Table 4, although the classification sensitivity has increased, it is still
low (31.57 %) despite the sacrifice of both accuracy and specificity performance. Takin
into account the low number of instances contained in our dataset, we don’t consider
under-sampling an effective approach.

Oversampling with SMOTE. We used Synthetic Minority Over-sampling Technique
(SMOTE) [20] for oversampling the minority class. In order to avoid overfitting, we
applied SMOTE (percentage of new instances equal to 200) at each fold of the 10-fold
cross validation. If oversampling is done before 10-fold cross-validation, it is very
likely that some of the newly created instances and the original ones are both in the
training and testing sets, thus causing performance metrics being optimistic.

Our approach is to test the performance of two classifiers, namely SVM and
Random Forests, using the over-sampled dataset, in order to compare it with the results
obtained using the original imbalanced dataset. The choice of these two classifiers was
based on the fact that both SVM and RF have been widely used in the literature,
achieving good results [6]. On one hand, SVM has the advantage of been able to deal
with data which is difficult to directly separate in the feature space, while on the other
Random Forest has the advantage of the embedded feature selection process, which is
helpful in high dimensional feature spaces. The experiment will be carried out by
generating a model for each of the subpopulations on each of the specified scenarios.
Table 5 shows the results of our experiment.

Results show that class-balanced dataset achieved better sensitivity than the original
dataset. Nevertheless, both accuracy and specificity achieve worse results. It is worth
noting that while performance is similar for both classifiers using the original dataset,
SVM performs much better (in terms of sensitivity) when using the over-sampled
version. At last, we observe that sensitivity improvement is rather small and it is
obtained mainly at the expense of worsening both sensitivity and accuracy.

Table 4. Comparison of performance evaluation metrics for RF over original and
under-sampled versions of diabetes mellitus dataset

Dataset Accuracy Sensitivity Specificity

Original 84.48 10.52 98.96
Under-sampled 61.7 31.57 82.14
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4.2 Feature Selection

Our dataset has a high dimensional feature space. With the use of feature selection
algorithms we want to find a feature subset that would reduce the complexity of the
model (so that it would be easier to interpret by the physicians) while improving the
prediction performance and reducing overfitting. For that purpose we are using a filter
method, with Correlation-based Feature Selection [19] as metric and a wrapper method,
with SVM as the specific classifier, both presented in Sect. 3.

The experiment consists in training a SVM and a RF classifier using the original
feature set and the generated feature subsets. The performance of the classifiers will be
compared in terms of sensitivity, specificity and accuracy for each of the
subpopulations.

It’s worth noting that the feature selection must be done using cross-validation. If
full training set is utilized during attribute selection process, the generalization ability
of the model can be compromised.

Table 5. Performance comparison using SVM and RF classifiers on original and over-sampled
datasets

Original Over-sampled
Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy

Case
management

SVM 1 0.42 0.87 0.98 0.42 0.86
RF 1 0.42 0.87 1 0.42 0.87

Heart failure SVM 1 0 0.88 0.90 0.12 0.81
RF 1 0 0.88 1 0 0.88

COPD SVM 1 0 0.80 0.81 0.37 0.72
RF 1 0.37 0.87 1 0.43 0.88

Diabetes
mellitus

SVM 1 0 0.83 0.88 0.15 0.76
RF 1 0.10 0.85 0.96 0.10 0.82

All SVM 1 0.21 0.86 0.78 0.40 0.71
RF 1 0.28 0.87 0.99 0.28 0.86

Table 6. Performance comparison of both feature selection methods

Filter (CBFS) Wrapper (SVM)
Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy

Case
management

SVM 0.97 0.33 0.82 0.94 0.23 0.78
RF 0.86 0.42 0.76 0.89 0.38 0.77

Heart failure SVM 0.96 0.12 0.87 0.90 0.12 0.81
RF 0.96 0.25 0.88 0.98 0 0.87

COPD SVM 0.96 0.18 0.81 0.95 0.37 0.83
RF 0.89 0.18 0.75 0.92 0.37 0.81

Diabetes
mellitus

SVM 0.98 0 0.82 0.98 0.05 0.83
RF 0.98 0 0.82 0.98 0.05 0.83

All SVM 0.98 0.06 0.82 0.97 0.14 0.83
RF 0.94 0.15 0.80 0.95 0.18 0.81
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In Table 6 the results of the experiment are shown. According to these results,
although in some cases the sensibility has been increased, overall the results are not as
promising as expected. Actually, even though models are much simpler than the
original model (i.e. the one using full feature set), the prediction performance has been
reduced. Moreover, both feature selection methods have performed similarly, even if
selected feature subsets differs considerably.

5 Conclusions and Future Work

This paper has presented a work on the prediction of 30-day readmission risk in
Emergency Department. Several contributions have been presented regarding the
enhancement of predictor’s performance, with special focus on sensitivity, i.e. pre-
dictive power of the critical class of readmitting patients. First, we have conducted an
experiment that shows the performance variations produced by class-balancing tech-
niques. Second, we analyze different feature selection methods and metrics and eval-
uate their performance. Two classification algorithms have been used (SVM and
Random Forest) in order to evaluate the different approaches.

According to the results of our analysis, we conclude that although class balancing
improves sensitivity results, the dataset seems not to have enough minority-class
instances. In addition, setting 30 days as the arbitrary threshold for assigning the binary
class label may cause situations such as labelling a patient readmitted the 30th day as
“readmitted” and another readmitted the 31st day as “not readmitted”. This imposes a
clear limitation to any generated model, since actually both patients should be treated as
similar (in terms of readmission).

Future work will include addressing the problem with a regression approach,
instead of supervised classification. Thus we want to avoid the mentioned arbitrary
labelling problem. With a regression analysis approach we plan to predict not only the
readmission risk but also the approximate readmission window (i.e. the time interval
from hospital discharge and readmission).

We also plan to increase the size of the dataset, including more instances of the
minority class. Extending the samples of the readmission class we expect to achieve
better predictions and ultimately generate a better-generalizing model.
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