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Abstract—We introduce a methodology for semiautomatic the-
matic map generation from remotely sensed Earth Observation
raster image data based on user-selected examples. The methodol-
ogy is based on a probabilistic k-nearest neighbor supervised clas-
sification algorithm. Efficient operation is attained by exploiting
data structures for high-dimensional indexing. The methodology is
integrated in a Web-mapping server that is coupled to an HTML
supervision interface that supports interactive navigation as well
as model training and tuning. Quantitative classification quality
and performance measurements are extracted for real optical data
with 0.25 m resolution on a highly diverse training area.

Index Terms—Remote sensing, thematic mapping, Web-based
mapping systems.

I. INTRODUCTION

ARTH Observation (EO) data mining systems are the

subject of significant research and development efforts
[1]. Petabyte-scale raster data archive volumes are growing at
rates of about 10 GB per day and about 95% of their contents
have never been accessed by a human observer [2]. Metadata
search needs to be complemented by efficient content-based
mining tools, for instance, to provide large-scale thematic
mapping capabilities and similarity search based on user exam-
ples. This implies the development of new strategies and
algorithms that are able to characterize and search required
detailed objects/concepts. A basis for such tools is represented
by semantic labeling algorithms that build upon supervised
classification machine learning methods.

Such systems imply a potential expansion of the practice EO
data analysis and exploitation from remote-sensing scientists
and technology practitioners to application domain experts in
multiple sectors. Applications can be served in environmental
resource management, agronomy, ecology, risk management,
and transport. The resulting applicative transition represents
an evolution from Web-based cartography for casual users to
thematic cover map generation based on the needs specified
interactively by experts of different domains. This entails a
basic set of drivers for a system implementing this concept: ease
of use, scalability, and effectiveness. These three drivers can
be addressed by creating high-quality supervised classification
systems integrating them in scalable Web-server architectures
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made accessible by simple-to-use interfaces that combine a
geospatial navigation and a supervision component.

For what pertains to the actual core classification algo-
rithm, approaches to the analysis of images acquired by
remote-sensing systems include object-based, pixel-based, and
hybrid methods. Classical solutions for pixel-based approaches
include clustering and classification. Schroder et al. [3] use the
input provided by the user in a Bayesian learning framework for
supervised classification of a currently open image and also for
finding most relevant images (images with large extents of the
trained class) across an archive. Costa et al. [4] present a super-
vised per-pixel classification followed by a postclassification
processing with image segmentation and semantic map gen-
eralization. The results show that segmentation of high spatial
resolution images and semantic map generalization can be used
in an operational context to automatically produce land-cover
maps. A hybrid example can be found in [5], with the use of
images from QuickBird over Arizona to compare object-based
and pixel-based approaches. Their study demonstrates that the
object-based classifier improves significantly over classical per-
pixel results. An example of combination of techniques can be
found in the work developed by Maulik and Sarkar [6]. The
authors propose a scalable parallel clustering algorithm of mul-
tispectral remote-sensing imagery using point symmetry-based
distance. They use a K-d tree-based nearest neighbor search
algorithm to compute this distance.

Visual interaction applied to remote-sensing technologies is
another topic that is becoming of great interest for the sci-
entific community. Ho ef al. [7] introduce a framework and
class library to shorten the time and effort needed to develop
Web applications for visual geospatial analytics and provides a
collection of geographical and information visualization repre-
sentations. Keel [8] introduces an environment for the support
of remote-collaborative sense-making activities. The system
has computational agents that infer relationships among infor-
mation items by the analysis of their spatial and temporal
organization. Within this kind of work, user interaction, user
friendly environments and user interface design are issues that
acquire great relevance.

The present contribution has two main aspects: 1) an algo-
rithmic one and 2) a system development one. On the algorithm
side, we extend a probabilistic k-nearest neighbor classification
developed in the database domain to the generation of multi-
class thematic layers from user supervision. To the best of our
knowledge, this is the first time that this algorithm is considered
and evaluated for large-scale thematic map generation from
submetric resolution remote-sensing imagery. Furthermore, we
address the issue of performance in the case of large multi-
dimensional datasets by introducing efficient data structures
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based on K-d trees. On the side of system implementation, we
develop a preoperational prototype that includes a Web-based
user interface and both a Web-mapping and a supervised clas-
sification server. A user interface (UI) allows domain experts
to navigate large volumes of geospatial data and provide train-
ing to the machine learning components on the server. The
machine learning server computes thematic layers by super-
vised classification based on the efficient data structures that
it maintains.

This paper is organized as follows. Section II introduces
theoretical concepts used in the development of the presented
prototype. Section III describes system architecture, including
a description of the workflow process. Section IV presents the
created evaluation framework. In Section V, measured perfor-
mance values are presented and analyzed. Finally, conclusion is
presented.

II. METHODOLOGICAL APPROACH

Unlike [9], which considers unsupervised classification
approaches, we focus on including the user in the training
process. An interactive learning scheme allows a supervisor
to define examples by interacting with a Web-based geo-
visualization interface. Interaction events directly influence a
probabilistic model of the thematic class of interest that is built
on top of an indexing structure.

This supervised thematic mapping involves uncertainties in
the form of noise in the data and of uncertainties in the
training provided by the users. The principled management
of these uncertainties requires probabilistic classification algo-
rithms, while operational efficiency requires that such algo-
rithms are implemented on top of efficient data structures for
large N-dimensional datasets. This section presents the proba-
bilistic k-nearest neighbor algorithm selected for the thematic
mapping service, and describes its efficient implementation in
terms of K-d trees.

A. Supervised Probabilistic Classification Algorithm

The specific version of the classification algorithm that we
employ is closely related to the probability threshold k-nearest
neighbor (T-k-PNN) in [10], which is designed to return a most
probable set S from D for a given data point o; such that

SIS € D /\IS| = kand p(S) > T, where T € [0,1].

In this, the qualification probability p(S) of a k-subset S’ is
computed as

=% [

0,€8

II o 11

o;€5—{o0;} oneD—-S
x (1 — Dy(r)) dr (D)

where the distance pdf of uncertain training pixel o, is denoted
by d;(r) while its cumulative density function (cdf) is denoted
by D;(r), r € R being a value taken on by the absolute distance
r; = |o; — ¢| to the query point ¢, and where pdfs are estimated
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TABLE I
SYMBOLS FOR (1) DESCRIBING THE PROBABILISTIC k-NEAREST
NEIGHBOR SUPERVISED CLASSIFICATION ALGORITHM

Symbol Meaning
S Point class—image region class
D Uncertain database—image regions to classify
k Number of points
p(S) Quantification probability of S

T Probability threshold
_ Uncertain object of D(i =1, ...,|DJ) ¢
- —training image region
q Query point—image region with unknown class
loi—q
Distance from current region to training
PDF of r;
(distance Probability Density Function)
CDF of r;

(distance Cumulative density Function) or
Distance relative to ownership of the class.
CDF of ry,

(distance Cumulative Density Function)
or Distance relative to the other classes

by kernel-based estimation and numerically integrated in cdfs.
Table I summarizes the symbols in (1).

The merging process by (1) can be carried out based on
estimating and minimizing a per-pixel distance r;(0;, q) to the
nearest training element in either the feature or the geographic
space, resulting in a pure multiclass classification or in a multi-
class classification with a significant segmentation component
related to the spatial dimension.

The authors of the methodology [10] observe that (1) can
be understood by considering that in order for S to be a query
answer, the distance of any object o, (where o5, ¢ S) from ¢
must be greater than that of o; where o; € S. At distance r, the
pdf that object 0; € S has the kth shortest distance from q is the
product of the following factors:

1) the pdf that o; has a distance of r from ¢, i.e., d;(r);

2) the probability that all objects in S other that o; have

shorter distances than r, i.e., ]_[Ojes/\oj#oi Dj(r); and

3) the probability that objects in D — S have longer dis-

tances thanr, ie., [[, cp_g(1 — Dn(r)).

The integration function in (1) is essentially the product
of the above three factors. By integrating this function over
(0, +00), we obtain the probability that S contains the & near-
est neighbors with o; as the kth nearest neighbor. Finally, by
summing up this probability value for all objects o; € S, (1) is
obtained.

B. K-d Tree-Based Implementation

The authors observe in their contribution that (1) is inefficient
to evaluate, requiring as it does the computation of the distance
pdf and cdf of each object, a costly numerical integration over
a large range.

The exploitation of efficient data structures such as K-d trees
allows the developed system to perform efficiently to the point
of supporting efficient queries across a network environment.
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Pixel-based approaches [3] require processing very large
data volumes. In this sense, to get an efficient response to
the queries, data organization is critical. In particular, near-
est neighbor search can benefit from hierarchical indexing
structures. K-d trees are space partitioning data structures for
point organization in k-dimensional Euclidean spaces. They are
based on sets of hyperplanes each perpendicular to one of the
axes of the coordinate system. All nodes in the tree, including
root and leaves, store a point and a space-dividing hyperplane.

To efficiently find the nearest neighbors, it is necessary to
define a local search scope which is accomplished by the K-
d tree. The key benefit is the reduction in the computational
cost to find the nearest neighbor from O(n) to O(log(n)) in
the average case. This significantly improves the performance
when dealing with large data archives. The tree construc-
tion algorithm used is described in Maneewongvatana and
Mount [11].

In the thematic layer generation process, the user selects
different training regions. As we have seen, the result of this
selection is modeled as a combination of random variables
in a feature space with an associated pdf. This requires the
use of proper kernel estimation techniques to go from training
histograms obtained by selecting areas of interest to full pdf
estimations.

This approach uses different generalization radius param-
eters, for each of the training points. The final results are
obtained by operations on the generated K-d trees.

If a multiclass problem is considered, a situation in which a
same pixel is classified in different classes needs to be solved
by (1).

C. Implementation Details

In an actual optimized algorithm execution flow, (1) needs
to be computed repeatedly for all the pixel regions to be clas-
sified. A caching mechanism based on memorized functions
is used in order to avoid recomputing results, as in dynamic
programming schemes. In order to reduce processing costs,
the integral is computed as a quantized sum over the space
of distances. The processing cost is further reduced by only
computing the distances for couples that are nearby according
to batched queries to a K-d tree instantiated based on feature
values for user-provided supervision training areas.

D. Data Characteristics and Primitive Features

Advances in remote-sensing technology have improved in
quality and quantity of the images that we have available. Until
recently, the decametric resolution of this kind of images has
limited observable classes to urban areas, forest, agricultural
areas, bare soil areas, and water bodies. With metric resolution
images, the development of new strategies and methodologies
is necessary.

In this contribution, we consider data available in the Open
Data Euskadi repository.1 In this specific work, we considered
multiple test sites, with a composite size of about 25 000 x
5000 pixels, with a resolution corresponding to 25 cm in each

![Online]. Available: http://opendata.euskadi.net/
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TABLE II
PRIMITIVE RADIOMETRIC AND GEOMETRIC DESCRIPTORS WITH
EXTRACTION PARAMETERS

Descriptor Ar.lalys.1s Ang?rula.r o —
name region size  quantization
HSV 1x1 None [26]
Histograms of oriented 12 % 12 3 [27]
Gradients (HOG)

I bi
. 4 24 x 24 8 27]
Patterns (LBP)
Right-angle 12 x 12 4 28]
Detector (LSD)
Edge density 12 x 12 None [29]
Sift density 24 x 24 None [28]

direction. As is typical of image acquisition systems with very
high geometric resolution, the radiometric resolution of the
acquired data is limited to a limited number of channels.

CBIR literature typically devotes significant efforts to the
careful choice and implementation of image content descrip-
tors [12].

The literature of image analysis includes a diverse gamut of
content-based primitive feature extractors, ranging from pixel-
based descriptors like color to geometrical ones such as texture
[13]-[15]. The use of combinations of these features is also
usual [1], [16].

Global and image-level descriptors are often complemented
by local ones. While the former ones have properties desir-
able for the discrimination of the semantic context of the scene,
the latter ones enable the characterization and recognition of
specific elements of the scene. The proper composition of dis-
crimination strategies at the semantic context and at the object
level is the subject of a large corpus of research [1], [17], [18].

As indicated by state of the art results in metric resolution
classification for remote-sensing applications [19], except the
HSV color-based descriptor the considered primitive features
are region-based: histograms of oriented gradients (HOGs),
local binary patterns (LBP), a right-angle/line segment detector
(LSD), edge density, and SIFT.

In [20] land cover changes of the last 40 years in the
country of Mali are analyzed. Object-based feature extrac-
tion and supervised (maximum likelihood) and unsupervised
(ISODATA) classification are used to this end on high resolu-
tion panchromatic and multispectral remote-sensing imagery.

A framework is presented on [21] for building extraction
from visible band images. Combining supervised and unsu-
pervised classification, accurate rooftop extraction is achieved
using a Higher order Conditional Random Field.

Another framework in presented in [22], where weakly
supervised learning and high-level feature learning layers are
combined: SIFT descriptors are clustered by K -means and fed
to deep Boltzmann machines to capture structural and spatial
patterns.

In [23], the problem of learning high-level features from a
limited labeled subset in a large amount of unlabeled data is
addressed using semisupervised ensemble projection (SSEP).
The proposed method represents an image by projecting it
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TABLE III
CHARACTERISTICS OF THE TEST SITES USED IN THE EVALUATION

Site  Site Center Site Ground cover
id name (Lat/Lon) description classes
1 La Concha 43.3190, —1.9923  Bay area Bare soil, beach, buildings, pasture, roads, sea, woodland and urban area.
2 Arratz-Errek a 43.0056, —2.4737  Mountain area Bare soil, beach, buildings, fields, pasture, roads, scrubs, and, woodland
3 Barakaldo 43.2986, —3.0004  Industrial area Buildings, industrial, roads, urban and water
4 Vitoria Gasteiz ~ 42.8505, —2.6690  Mixed urban area Buildings, roads, and urban
5 Urdaibai 43.3837, -2.6905  Estuary natural reservoir  Buildings, fields, pasture, roads, urban, water and woodland.

The five test sites represent a significant degree of contextual diversity as well as a significant number of specific ground cover classes. Rectangular bounding
boxes are given as the latitude and longitude of the upper-left (north western-most) and lower-right (south eastern-most) points. Each of the five test sites
has a geographical extension of 1.2 x 1.2 km?2, which corresponds to about 23.6 Mpixels for each of the five input regions.

onto an ensemble of weak training (WT) sets sampled from a
Gaussian approximation of multiple feature spaces.

The feature extraction approach presented in [24] consists on
five steps: 1) feature extraction; 2) feature learning; 3) feature
encoding; 4) feature pooling; and 5) classification. The process
starts with low-level feature extraction by, e.g., SIFT. Then, a
set of normalized basis functions is computed by unsupervised
learning. Orthogonal matching pursuit is used for coding the
basic function set. Finally, the sparse features are pooled to cre-
ate the final representation to be fed to a support vector machine
classifier.

In [25], an extensive evaluation of SIFT local invariant fea-
tures, is conducted for the retrieval of land cover classes in
high-resolution aerial imagery, with a comparison with standard
features such as color and texture.

We establish an extraction process that defines a common
grid among the extracted descriptors, so as to allow the subse-
quent data fusion procedure. This requires a spatial resolution
rescaling that we implement as a nearest-neighbor interpolation
for lower-resolution descriptors. Descriptions for the primitive
features, with corresponding extraction parameters including
region sizes, are reported in Table II.

E. Training Strategy

As in [19], the training supervision is provided to the sys-
tem in terms of polygon-bounded regions manually defined
over specific single-class coverage areas in the input image, see
Table IV.

Sampling without replacement is used to extract an equal
number of samples (usually in the order of the tens of thou-
sands) for all training classes. The extracted sample sets are
used for estimating pdfs for the class-specific distributions via
kernel-based methods.

III. PROTOTYPE IMPLEMENTATION

While Section II describes the methodological basis of the
implemented service, this section details its implementation
strategy and its architecture in the form of collaborating Web-
based services. Proposed system architecture is presented in
Fig. 1.

As stated in the paragraphs regarding motivation in the intro-
duction, we consider a Web-based architecture for reasons of
accessibility and horizontal scalability.

TABLE IV
TRAINING PATCHES BY CLASS WITH GLOBAL TRAINING SAMPLE SIZE

Class Training patch Class Training patch
Bare soil Roads

Beach Scrubs
Buildings SR Sea

Fields Urban
Industrial i ‘7‘ Water

Pasture . Woodland .

The actual pixels for training are sampled without replacement
in a number of 1024 from the above global training polygons
which fall within the areas identified for the class in the ground-
truth map. The total size of the training sample used is therefore
of 1024 x 12 = 12 288 pixels, about 0.01% of the total size of
about 118 MPixels for the whole pixel size of the evaluation test
site set.

A. Architecture

A map sever module manages the imagery to be used by
the system, both in terms of quick-looks for representation
and training, and as output created thematic layer tiles. It is
based on TileStache, a Python-based server application that can
serve map tiles based on rendered geographic data,> Mapnik, a
free toolkit for developing mapping applications® and GDAL, a
translator library for raster and vector geospatial data formats.*
Zoom, drag, and drop operations are available. The system gen-
erates thematic tiling at different resolution levels based on
input by the user. The classification system is coupled with a
tiling service for optimizing time-to-display.

The Web-server module is based on the Flask micro frame-
work.’

The processing server module is in charge of image process-
ing and classification. It computes the needed K-d trees and

2[Online]. Available: http://tilestache.org/
3[Online]. Available: http://mapnik.org/
4[Online]. Available: http://www.gdal.org/
5[Online]. Available: http://flask.pocoo.org/
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performs the actual classification based on the pixels selected
by the user. The processing server receives processing requests
from the client module, processes them effectively and provides
the resulting tiles to the Map Server. The server also provides
an identification number to the client that allows to request the
created thematic tiles to the map server.

The client side is a Web-based graphical user interface.
This interface, with a screenshot depicted in Fig. 4, is built
around an interactive map view that supports supervised train-
ing according to the semantics of the thematic class of interest.
A configuration panel presents a description of the training
itself and allows the user to interactively manipulate some
parameters of the learned model. Interaction is managed by the
event handlers of the jQuery library.® Workflow process scheme
is presented in Fig. 2.

B. Processing Flow

In a Web-based environment, optimizing performance issues
related to data communication and memory footprint in the
client is of foremost importance. In the case in which the data
has a volume that allows to store it in the memory of a sin-
gle server [30], [31], static K-d trees can be computed. In the
case in which layer data volume hinders agile management, a
dynamic strategy is needed.

The developed solution tries to be simple and effective, creat-
ing only the needed K-d trees. The created layer is limited to the
available area around the visible map in the browser. This strat-
egy requires more communication between client and server,
for the server to create and process the necessary K-d trees. As
the user navigates the map, the client sends to the server the
information related to the visualization area.

With this information the server is able to create the K-
d trees related with the navigation. Click-and-drag operations
in the client move the map view port as is typical of Web-
based geospatial interfaces. Events that impose an extension
or a recomputation of the live area under analysis are handled
by spawning new processing requests to the server. The system
configuration aims at reducing these requests to a minimum,
while avoiding an excessive load on the client memory.

The supervisor is free to define a semantic class based on
a probabilistic composition of simpler components. each one
represented by a different K-d tree instance.

An example sequence diagram is represented in Fig. 3, from
client request to the creation of a thematic map in the user
interface. The description of the steps is as follows:

1) If they are not available, the server creates tiles corre-

sponding to the current predefined active area.

2) After this, K-d tree indexes from tiles are calculated for
training. At this point the server is ready.

3) The client requests a Web page from the Web server.

4) The Web server receives this request and responds with an
HTML Web page with the information needed to create
the map.

5) The client requests the required map tiles from the map
server.

%[Online]. Available: http://www.jquery.org

2169

e Server layer
' Client layer

Microframework

e
/" Web Process \\
server server

\ )
/
\\7;/

Fig. 1. Proposed system architecture in the form of different modular layers.
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Fig. 2. Workflow process scheme for server-side operation: the map server
component serves primitive feature tiles to the classification Web server that
operates based on training supervision by the user. The processing server
component performs the classification and serves the resulting thematic map
tiles to the user for optimizing time-to-display. A complete sequence diagram
including client-side operation is represented in Fig. 3.

6) The map server returns the needed tiles. Now the client is
ready.

7) The user navigates around the map searching for instances
of the target class.

8) The user selects pixels according to the semantics of the
search, and can subsequently tune configuration parame-
ters of the model.

9) Once the client completes the pixel selection phase,
it requests the new thematic layer of the active area.
Training and model configuration data are sent by AJAX
asynchronous requests, allowing the application not to
wait the end of response data transmission.

10) When the processing module receives the data, it checks
if needed K-d trees are created or not, to request any
required tiles to the map server.

11) Then needed K-d trees are processed with user selected
pixel data. This process creates a tile with the nearest
neighbor pixel class corresponding to the training pixels.

12) The tiles are stored in the map server.

13) Once all thematic tiles are created, an identification num-
ber is returned by the processing server to the client.
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2: Create Kld trees
11: Procesg K-d trees
Map layer
10: Request needed map tiles for K-D trees

3: Request HTML web page

13: Response thematic layer ID

10b: Response Required Map Tiles

4: Response HTML page

18: request store tiles permanently.

12: Store Thematic Tiles Temporally

Lt

19: Store Thematic Tiles Permanently

T | 5: Request needed map tiles

6: Response required map tiles

15: request thematic map tiles

16: Response required map tiles

Fig. 3. Client/server thematic map creation sequence diagram.
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Fig. 4. User interface screenshot. An interactive map viewer supports super-
vised training and output presentation. A configuration panel to the right allows
the user to interactively manipulate the parameters of the learned model.

The client receives this identification number and is able
to activate or deactivate the created thematic layer.

The client requests new thematic tiles.

The map server returns them.

The client is able to save the created thematic layer. It
locally saves the data needed to create the thematic tiles.
The client potentially creates a save request.

The processing server receives a save request and requests
to the map server to save the new tiles.

14)

15)
16)
17)

18)
19)

IV. EVALUATION METHODOLOGY

The end-to-end validation of the system naturally focuses on
the performance evaluation of the implemented classification
system, since its operation involves all subsystems in the proto-
type. This performance evaluation is conducted as is customary
by analyzing the quality of thematic map images produced
based on a well known input.

The analysis is carried out on five separate test sites located
in the Basque country region Fig. 5, each with an extension of

Fig. 5. Geographical location of test sites in the Basque country. From left to
right, top to bottom: Bilbao industrial site, Urdaibai estuary protected area site,
La Concha bay site in Donostia San Sebastin, Arratz Erreka mountain area
site and Vitoria Gasteiz urban area site. These areas include the 12 different
ground cover classes considered: beach, buildings, fields, industrial area, bare
soil, pasture, scrubs, sea, urban area, urban roads, water. See Table III for the
characteristics of the sites.

4864 x 4864 pixels (about 1.2 km x 1.2 km each). A compo-
sition is shown in Fig. 6(a).

The sites include the 12 ground cover classes considered
and corresponding to layers in reference geographical maps
extracted from the Open Data Euskadi repository’ managed
by the Basque regional government. The classes correspond to
sea, water, woodland, bare soil, urban, pasture, scrubs, fields,
industrial, buildings, roads, and beach.

A. Vector-Map-Based Ground-Truth Map Creation Procedure

This section describes the generation of ground-truth maps
from the vector maps available in the Open Data Euskadi
repository.

7[Online]. Available: http://opendata.euskadi.net/
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(d)
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Fig. 6. Classification results. (a) Composition of the five original images of the test sites relative from left to right to La Concha bay, to the Arratz Erreka high plane,
to the industrial area in the outskirts of Bilbao, to the Vitoria Gasteiz mixed urban environment and to the Urdaibai estuary protected area. (b) Corresponding
composition of the five ground-truth maps based on Open Data Euskadi WMS shape files is shown in line, while (c) classification results are in line. Line
(d) presents from left to right the original data, the vector-map-based ground-truth and the classification result at full resolution for the area marked with a red
rectangle in the Vitoria Gasteiz ground-truth map in line (b). The classified maps are with a number of pepper-and-salt effects. In addition, some spectrally similar

objects are not well identified and discriminated, such as buildings-roads-soil.

In addition to submetric resolution aerial ortho imagery of
all territory, geographical information related to ground cover
and usage is available in the form of vector maps. With this
information, it is possible to build ground-truth models of the
surface of the Basque country.

The challenge here is to complete a ground-truth model that
covers all the area in the test sites to analyze, merging different
categories in existing layers to obtain the most descriptive map
of the area. This procedure is carried out manually: some of the

categories overlap each other and some do not appropriately
cover the test sites.

The obtained ground-truth models for the test sites presented
in Fig. 6(a) are shown in Fig. 6(b).

Two fundamental problems arise with the significance of the
available ground truth with respect to the available imagery: a
temporal and a spatial one.

A first issue is the temporal date of reference for the maps.
In general, cover maps do not correspond in this respect to the
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aerial imagery. A clear example of this is visible in the low tide
image of the river mouth in the Urdaibai estuary site, which is
represented as fully flooded in the maps.

A second issue is that the level of detail of vector data maps
does not typically match that of aerial imagery with 25 cm pixel
spacing, which is bound to have impacts in the performance
measures. If Fig. 6(a) and (b) are compared, it is easy to detect
some differences: most of the green areas in the city areas are
not represented in the maps, different kinds of vegetation can
be seen in the imagery that are fused in the Arratz Erreka site
vector maps under the same label.

To overcome these limitations, in addition to the vector map-
derived ground truth, the production of a further pixel-level,
image interpretation-based ground-truth model is considered,
to be able to compare obtained results with more detail.

B. Pixel-Level, Image Interpretation-Based Ground-Truth Map
Creation Procedure

The definition of a multiple-class pixel-level ground-truth
map based on the interpretation of submetric resolution imagery
represents a significant challenge. A combination of specific
training, semiautomatic tools, and careful inspection of the
results are important components. A very good knowledge of
and accessibility to the chosen test area are needed.

An area for testing and validation has been defined on the
La Concha bay in the city of Donostia San Sebastin, where the
authors are located so that field inspections can be used when-
ever necessary to verify the obtained results. The bay gathers
different spatial contexts in a limited extension, which makes it
particularly interesting as a testing location.

A first step is the selection of a representative set of semantic
classes with clear meaning. In the case of our map, the eight
selected classes are beach, buildings, bare soil, pasture, roads,
sea, woodland, and urban area. Although these classes only rep-
resent an approximation to the twelve classes considered in the
case of the vector map-derived ground truth, we still consider
the set to be significant in the sense that the classes properly
represent all essential visible content in the input data, and it to
be orthogonal in the sense that their semantic separation is suf-
ficiently large as to avoid significant overlaps and uncertainties
in the corresponding feature space.

A well-defined procedure needs to be set up for generat-
ing an output thematic map with these characteristics from the
input data. The procedure needs to exploit semiautomatic tools
to generalize and extend training input provided by a human
supervisor in order to speed up the overall process. The training
is provided in the form of polygons covering a significant area
of a given scene object. These elementary training areas need
to have a sufficient geometrical extension to be able to express
significant statistical descriptors from them. These statistics are
computed in terms of color content as defined and simplified
by means of a vector quantization with a number of levels in
the order of the hundreds. To actually perform the geometri-
cal extension of the training polygon to the observable limits
of the considered scene object, the semiautomatic tools used
include an edge-based segmentation routine that is launched in
conjunction with every training event.
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Fig. 7. Performance results for the full set of five test sites and of the 12 ground
cover classes considered. Low values for classes like Beach and Water are
directly related to temporal variations observable in the imagery with respect
to the reference maps and to the different level of detail considered, see Fig. 4.

Once multiple tentative single-class thematic maps are
defined, a procedure is needed to carefully compose them
into a multiclass map. A further semiautomatic procedure is
employed to highlight areas assigned to multiple classes as well
as unassigned areas. The pixels in these areas are subject to an
arbitration procedure in order to assign them unambiguously to
a single ground-truth thematic class.

An extensive and labor-intensive supervised validation phase
ensues in which the produced tentative multiclass map is
inspected for dubiously labeled pixel areas.

The produced ground-truth map (Fig. 8), is currently pub-
lished as open data at the URL http://150.241.250.4:5000/
earthfacets/groundtruthmap.png. The authors hereby invite
external users, specific corrections and general suggestions for
improvement in the results or in the overall procedure.

C. Ground-Truth-Based Evaluation Procedure

The generated ground-truth map can be used for evaluating
the performance of the system. The procedure we employ to
evaluate quantitatively the obtained results can be described as
follows.

1) Load training in the form of user selected pixel data.

2) The K-d trees of the tiles that compose the analysis area

are calculated.

3) Each K-d tree is processed and a new tile is created and
stored. If the training considers a multiclass problem, a
new tile is created for each class.

4) A unique map is composed with the newly created tiles.

5) A confusion matrix is computed by comparing the classi-
fication output with the ground-truth map.

6) Performance statistics (precision, recall, F-1 measure, and
accuracy, see Section V, Section IV-D are computed from
the confusion matrix.

7) Finally, the time required for completing the process is
computed.

The designed solution allows us to experiment with different

user selection options and obtain quantitative results for these
selections in an easy and quick way.

D. Considered Performance Measures

To evaluate system performance we select the follow-
ing statistical measures of information retrieval performance:
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Fig. 8. From left to right: original image, pre-existing vector-map-based ground truth, manually produced pixel-level image interpretation-based ground truth for
the La Concha test site. The subset of the defined ground cover classes includes eight elements from the original 12: building (purple), sea (blue), bare soil (light
green), pasture (green), woodland (dark green), street (gray), urban roads (dark gray), and beach (brown). An increased level of detail is evident, particularly, in

vegetated areas between buildings and near to Bare Soil areas.

TABLE V
PERFORMANCE MEASURES FOR THE COMPLETE TEST SITE COLLECTION OF FIVE AREAS BASED ON THE VECTOR MAP-BASED GROUND
TRUTH WITH 12 GROUND COVER CLASSES

Perfor.mance Sea  Water Woodland Baresoil  Urban Pasture  Scrubs Fields Industrial Buildings Roads Beach
statistics

Precision 0.70  0.33 0.27 0.00 0.29 0.00 0.03 0.30 0.09 0.46 0.21 0.17
Recall 090 0.13 0.13 0.00 0.18 0.00 0.29 0.39 0.13 0.17 0.24 0.77
Fl1 079  0.19 0.17 0.00 0.22 0.00 0.05 0.33 0.10 0.25 0.22 0.28
Accuracy 0.83  0.70 0.58 0.83 0.57 0.86 0.80 0.68 0.72 0.66 0.61 0.74

Results are markedly inferior to the ones obtainable with reference to the manually curated image interpretation-based ground-truth map limited to the
La Concha Site, due to differences in both the time reference chosen and the level of spatial detail considered.

precision, recall, F1, and accuracy [32]. The definition of the
measures is as follows:

ip

Precision = ——— 2)
tp+ fp
tp

Recall = ——— 3
eca P 3)

Precision - Recall
Fl1=2 4
Precision + Recall )

t t

Accuracy = ptin (5)

tp+in+ fp+ fn

In the above, tp is the number of true positive cases, tn is the
number of true negative cases, fp is the number of false positive
cases, and fn is the number of false negative cases.

V. PROTOTYPE EVALUATION RESULTS
A. End to End Classifier Evaluation on Complete Test Site Set

Quantitative performance measures for the classifier on the
whole set of 12 ground cover classes as evaluated on the whole
test site set of five areas is described in Table V and Fig. 7.

The ground cover class with the best results is sea, with
scrubs, and fields showing more limited performance and with
with only limited results for classes like industrial and bare soil.

An inspection of the semiautomatic ground truth based on
existing vector-maps shows that the results are probably signif-
icantly affected by the characteristics of the original map data,
and in particular by both the limited detail available in rural
areas (hence the good results for scrubs and fields) and by the
significant overgeneralization for very diverse classes such as
industrial. Further effects include a mismatch in between the
reference dates for the maps and the image acquisition, which
shows up clearly in coastal areas subject to rapid change such
as the Urdaibai estuary.

This points to the need, addressed in upcoming sections, for
an evaluation with respect to both a vector-map-based ground
truth and a pixel-level one.

B. Evaluation of Different Feature Approaches

Classified thematic layers per each class are merged by (1)
based on estimating and minimizing a per pixel distance to the
nearest training element in either the feature or the geographic
space, resulting in a pure multiclass classification or in a multi-
class classification with a significant segmentation component
related to the spatial dimension.

An example map obtained from the N-class classification
process based only on color descriptors is presented in Fig. 5(b).
Typical accuracy measures are around 85%t for most of the
classes. A better definition of the ground coverage classes can
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Fig. 9. (a) Ground truth based on preexisting vector map, (b) supervised classification results from color descriptors only as well as from (c) the full set of
descriptors in Table II. Color encodes assigned class: building (purple), sea (blue), woodland (dark green), street (gray), urban roads (dark gray), and beach

(brown). A portion of the output pixels remains unclassified (black).

be obtained by extending the training. Unlike the old town
buildings which are well classified thanks their tiled roofs, the
newer building area is characterized by lesser performance due
to the mixed pattern of the roofs. Class street is another case
for which the diversity of the patterns implies that a good
characterization is more difficult to obtain.

The corresponding map obtained by considering all descrip-
tors jointly including all the region-based ones as per Table 11
is in Fig. 5(b) and Fig. 10. The relative quality measures
clearly show results comparable to the ones observable for the
usage of purely color-based descriptors, with improvements
for classes like beach that tend otherwise to be confused with
the colorimetrically similar yet geometrically separate building
roofs.

For the construction of a test site set, we consider five dif-
ferent geographical areas in the Basque country with different
kinds of surfaces, as per Fig. 6. The selected areas represent a
coastal bay (the La Concha beach area), a highlands area, an
industrial area in the outskirts of the city of Bilbao, an urban
area in the city of Vitoria Gasteiz, and a site in the protected nat-
ural area of Urdaibai, geographically located in correspondence
to the red points in the map in Fig. 5.

The obtained classification result is shown in Fig. 6(c).

C. Local  Classifier  Evaluation  Based on  Both
Semiautomatically Generated, Vector Map-Derived, and
Manually Curated, Pixel-Level, Image Interpretation-Based
Ground Truths

As described in Section IV-A, we complement the evaluation
of the supervised classification system with respect to a five-
site map-based ground truth with a more localized pixel-level
ground truth obtained by manual interpretation of the image
content.

Because of the difficulty of developing a pixel level ground
truth of all areas, the analysis has been limited to one site of
the five considered in previous sections. Among the five sites,
we consider the La Concha bay site since it is the most com-
plex with eight ground coverage classes: 1) beach; 2) buildings;
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0.15 -
5 M Buildings
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|l e
a0 l.R ]I - | - eac

Precision F1

Accuracy
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Fig. 10. Difference of quality measures by class for a classification based
on color descriptors exclusively and on full set of descriptors. The results
are similar, with marked improvements for homogeneous classes like beach,
and a significant decrease for buildings, characterized by a very large internal
variability that typically is not accounted for by the training.

3) bare soil; 4) pasture; 5) woodland; 6) roads; 7) sea; and
8) urban area.

The obtained results are shown in Table VI and Fig. 11.

Performance measures obtained with reference to the image
interpretation-based ground truth tend to show improvements
between 20% and 60% with respect to the ones obtained with
reference to the map-based ground truth, because of both the
availability of details that are not available in the maps and
of the fact that the time of reference considered matches the
image acquisition time, which is important in the case of rapidly
changing sites such as the Urdaibai estuary. Class pasture is
an example of this, where city gardens and other trees groups
are not identified on shape base ground truth. Urban area and
urban road classes present a decrement of precision related to
the increment of false positive cases related to the different tag-
ging in the two ground-truth maps, see top right corner of center
and right images in Fig. 8.

Thematic map generation by the system requires about one
minute for the whole 28 MPixel image considered on a 2.0-
GHz Intel TM 17 4750HQ with 8 GB of RAM and SSD disk
equipping a laptop computer.
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TABLE VI
PERFORMANCE MEASURES FOR THE LA CONCHA BAY SITE WITH RESPECT TO THE MANUALLY CURATED PIXEL-LEVEL IMAGE
INTERPRETATION-BASED GROUND TRUTH

Performance Sea Woodland Bare soil Urban area Pasture Buildings Urban roads Beach
statistics Vector Pixel Vector Pixel Vector Pixel Vector Pixel Vector Pixel Vector Pixel Vector Pixel Vector Pixel
Precision 0.99 099  0.28 048 000 006 037 022 000 055 052 066 0.03 0.16 069 0.73
Recall 0.90 0.87 034 048 000 0.08 0.15 0.14 0.00 0.07 029 030 0.05 030  0.77 0.92
Fl1 0.94 0.93 0.31 048 0.00 0.07 022 017 0.00 0.13 0.37 0.41 0.04 021 0.73 0.81
Accuracy 0.91 090 089 091 096  0.95 0.84 087 099 094 0.91 0.91 0.89 092 091 0.94

These results are obtained by only considering the La Concha Bay Test Site, hence the number of ground cover classes is reduced from the original 12 to only 8.
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N ] LT
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(b)

Fig. 11. Quality measures by ground cover class for a supervised classification
with respect to two different ground-truth maps (existing vector map-based on
the left, and manually produced pixel-level image interpretation based on the
right) (a) and the difference of obtained results (b). These results are obtained
by only considering the La Concha bay test site, hence the number of ground
cover classes is reduced from the original 12 to only 8. Although they cannot be
directly extrapolated to the full test site set, they indicate that the lack of spatial
detail and the choice of a different temporal reference with respect to image
acquisition can account for a 20 to 60% of difference in the obtained perfor-
mance measures. Ground cover class Pasture is an example of this: gardens and
small trees groups are not identified in the map-based ground truth.

VI. CONCLUSION

We have presented a prototype for thematic mapping from
remote-sensing raster data.

The prototype is based on a probabilistic k-nearest neigh-
bor supervised classification algorithm integrated in a simple
Web-based architecture, and attains fast processing perfor-
mance by exploiting N-dimensional data indexing structures,
with the final aim of allowing users to interactively navigate
and semantically map large extensions of geospatial data.

Results are promising for submetric airborne optical sensor
data. The enrichment of the ground truth with the onset of

new classes and improvement on performance measures val-
idated pixel-based ground-truth creation. Implementations on
top of “big data” cluster computing framework will need to be
considered to further enhance scalability.
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