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Abstract. Short time readmission prediction in Emergency Depart-
ments (ED) is a valuable tool to improve both the ED management
and the healthcare quality. It helps identifying patients requiring fur-
ther post-discharge attention as well as reducing healthcare costs. As
in many other medical domains, patient readmission data is heavily im-
balanced, i.e. the minority class is very infrequent, which is a challenge
for the construction of accurate predictors using machine learning tools.
We have carried computational experiments on a dataset composed of
ED admission records spanning more than 100000 patients in 3 years,
with a highly imbalanced distribution. We employed various approaches
for dealing with this highly imbalanced dataset in combination with dif-
ferent classification algorithms and compared their predictive power for
the estimation of the ED readmission probability within 72 hour after
discharge. Results show that random undersampling and Bagging (RUS-
Bagging) in combination with Random Forest achieves the best results
in terms of Area Under ROC Curve (AUC).
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1 Introduction

In hospitals inside public and private healthcare systems, there is a growing
concern on the quality and sustainability of the service. The readmission events,
defined as the recurrent visits of a patient in a time span smaller that a given
threshold, has become one of the quality measures, both regarding patient at-
tention and economical factors. In some countries, insurance companies have set
a time threshold below which they decline to answer for the cost of the patient
care, and the hospital must assume it. Therefore, the prediction and prevention
of these events is becoming economically critical for some institutions. In other
countries, healthcare quality is the primary concern, so that preventing read-
missions is a measure of improved patient attention. Readmission predictors are



built by machine learning techniques, as specific two-class classifiers. A specific
issue building these predictors from data is that the readmission events are much
less frequent than normal admissions, i.e. the datasets are class imbalanced.

In supervised classification, data imbalance occurs when the a priori probabil-
ities of the classes are significantly different, i.e. there exists a minority (positive)
class that is underrepresented in the dataset in contrast to the majority (nega-
tive) class. In healthcare, as well as in other fields (e.g. fraud detection or fault
diagnosis), instances of the minority class are outnumbered by the negative in-
stances. Also, the minority class is the target class to be predicted because it is
related to the highest cost/reward events. Most classification algorithms assume
equal a priori probability for all the classes, so when this premise is violated the
resulting classifier is biased towards the majority class. The resulting classifier
has a higher predictive accuracy over the majority class, but poorer predictive
accuracy over the minority class.
The degree of class imbalance is given by the imbalance ratio (IR), defined as
the ratio of the number of instances in the majority class and the number of
those in the minority class. Some studies have shown that classifier performance
deteriorates even with modest class imbalance in the training data [11].
Although imbalanced data classes have been recognized as one of the key prob-
lems in the field of data mining [14], it is not usually taken into account in
the literature of readmission risk prediction, despite some authors [2] have en-
countered class imbalance problems when building their predictive models. Some
works such as [12, 15, 1] point out the existence of the class imbalance problem
and propose methods to circumvent it. Nevertheless, only simple preprocessing
approaches such as oversampling and under sampling are considered. Recent
works [8, 10] in the field of disease risk prediction have attacked the problem
of class imbalance using different preprocesing and ensemble techniques such as
SMOTE or RUSBoost among others.
The main contributions of this paper are:

– A methodology proposal for overcoming the class imbalance problem based
on RUSBagging

– An experimental study using real-world data where we compare the perfor-
mance of different methods

The paper is organized as follows. In Section 2 we present our dataset as well
as the methodological approach followed in order to build our models. Next, we
describe the evaluation methodology and the experimental results. In Section 4
we discuss the conclusions and future work.

2 Materials and Methods

2.1 Experimental dataset

We used a pseudonymised dataset composed of 99858 admission records recorded
between January 2013 and April 2016 in the Hospital José Joaqúın Aguirre of



the Universidad de Chile, which is part of the public health system of Chile.
The variables recorded in the dataset are divided into three main groups: i)
Sociodemographic and administrative data, ii) Health status iii) Reasons for
consultation or diagnoses made at admission. Records with missing values are
discarded for this study. Table 1 shows the characteristics of the dataset and the
distribution of 72-hour readmissions among different variables1.

2.2 Data pre-processing

Data was provided in a large ASCII text file containing 156120 admission records
corresponding to 102534 different patient identities. After parsing the data, we
built a dataset combining admission and patient-related data. Next, we cleaned
the data by removing inconsistent and missing samples. Missing values where
imputed using the arithmetic mean for continuous variables and the mode for
categorical variables.
For each admission of a patient to the ED we calculated the number of days
elapsed since his last visit. In order to build our model following a binary classifi-
cation approach, the target variable meaning was set to readmitted/not readmit-
ted. Those patients returning to the ED within 72 hours after being discharged
where considered readmitted, otherwise they were considered not readmitted.
Notice that a patient returning the very first day after discharge and another one
returning the third day are both considered as readmitted. On the other hand, a
patient returning the 73rd hour from discharge is considered as not readmitted.

2.3 Evaluation metrics

The evaluation metrics that we have used are: sensitivity, specificity, accuracy
and Area Under ROC Curve (AUC), defined as follows:

– Accuracy. In binary classification, accuracy is defined as the proportion of
true results among the total population:

Accuracy =
ΣTN +ΣTP

ΣTN +ΣTP +ΣFN +ΣFP
, (1)

where TN is a true negative, TP a true positive, FN is a false negative and
FP a false positive. In heavily umbalanced datasets it is not very meaningful
because a simple strategy such as assigining each test sample to the majority
class provides high accuracy.

– Sensitivity. Sensitivity is a classification performance measure defined as the
proportion of correctly classified positives:

Sensitivity =
TP

TP + FN
, (2)

Sensitivity provides more informative about the success on the target class.

1 Most common categorical values are only shown



Table 1. Characteristics of the dataset

Variable All patients Readmitted Not readmitted p-value
n=99858 n=3425 n=96433

age, mean (SD) 41.0 (22.4) 36.1 (22.9) 41.2 (22.4) <0.001
male sex (%) 44956 (45.0) 1624 (1.6) 43332 (43.4) 0.004
daytime (%) 69321 (69.4) 2171 (2.2) 67150 (67.2) <0.001
evaluation, mean (SD) 5.0 (3.3) 4.8 (3.5) 5.0 (3.3) 0.040
fragility idx, mean (SD) 0.0 (2.5) 0.0 (2.3) 0.0 (2.5) 0.991
triage (%) <0.001

I 182 (0.2) 2 (0.0) 180 (0.2)
II 12694 (12.7) 317 (0.3) 12377 (12.4)
III 77813 (77.9) 2718 (2.7) 75095 (75.2)
IV 9131 (9.1) 387 (0.4) 8744 (8.8)
V 38 (0.0) 1 (0.0) 37 (0.0)

pathology (%) <0.001
Gineco-obstetrics 236 (0.2) 6 (0.0) 230 (0.2)
General medicine 77192 (77.3) 2458 (2.5) 74734 (74.8)
Pedaitrics 7094 (7.1) 563 (0.6) 6531 (6.5)
Traumatology 15336 (15.4) 398 (0.4) 14938 (15.0)

destination (%) <0.001
External center 3372 (3.4) 116 (0.1) 3256 (3.3)
Home 71999 (72.1) 2703 (2.7) 69296 (69.4)
Hospital 14700 (14.7) 61 (0.1) 14639 (14.7)
Left without being seen 9787 (9.8) 545 (0.5) 9242 (9.3)

reason for consultation (%) <0.001
Cephalea 6421 (6.4) 192 (0.2) 6229 (6.2)
Pain - abdomen gen. 9861 (9.9) 404 (0.4) 9457 (9.5)
Pain - epigastrium 3177 (3.2) 143 (0.1) 3034 (3.0)
Pain - lumbar 2964 (3.0) 107 (0.1) 2857 (2.9)
Pain - foot 2909 (2.9) 92 (0.1) 2817 (2.8)
General malaise 3027 (3.0) 78 (0.1) 2949 (3.0)
Other 10867 (10.9) 374 (0.4) 10493 (10.5)
...

saturation, mean (SD) 96.6 (9.6) 96.2 (12.1) 96.6 (9.5) <0.001
tad, mean (SD) 74.1 (22.3) 67.6 (29.4) 74.3 (21.9) <0.001
tas, mean (SD) 125.8 (35.9) 114.5 (48.8) 126.2 (35.3) <0.001
temperature, mean (SD) 35.9 (4.5) 35.5 (5.9) 35.9 (4.4) <0.001
heart rate, mean (SD) 87.2 (22.3) 92.7 (29.1) 87.0 (22.0) <0.001
breath rate, mean (SD) 17.0 (5.6) 15.1 (7.6) 17.0 (5.5) <0.001
Prevision (%) 0.408

2 5943 (6.0) 180 (0.2) 5763 (5.8)
5 3641 (3.6) 108 (0.1) 3533 (3.5)
6 27903 (27.9) 1022 (1.0) 26881 (26.9)
9 11060 (11.1) 432 (0.4) 10628 (10.6)
18 44464 (44.5) 1468 (1.5) 42996 (43.1)
35 1011 (1.0) 30 (0.0) 981 (1.0)
37 1103 (1.1) 33 (0.0) 1070 (1.1)
48 2074 (2.1) 70 (0.1) 2004 (2.0)
...



– Specificity. Specificity is defined as the proportion of negatives that are cor-
rectly identified as such:

Specificity =
TN

TN + FP
, (3)

– AUC. The Area Under ROC Curve (AUC) shows the trade-off between the
sensitivity or TPrate and FPrate (1 - specificity):

AUC =
1 + TPrate − FPrate

2
(4)

where the True Positive rate is equal to the Sensitivity and the False Positive
rate is defined as FPrate = ΣFP

ΣFP+ΣTN .

Table 2. Confusion matrix for a binary classifier

Predicted

Positive Negative

Actual
Positive

True Positive
(TP)

False Negative
(FN)

Negative
False Positive

(FP)
True Negative

(TN)

2.4 Learning from Imbalanced Data

The main issue of learning from imbalanced datasets is that classification learn-
ing algorithms are often biased towards the majority class and hence, there is
a higher misclassification rate of the minority class instances (which is usually
the most interesting ones from the practical point of view). Figure 1 depicts
a taxonomy of methods developed to deal with class imbalance[9] where three
main techniques are identified, namely preprocessing, cost-sensitive learning and
ensemble techniques. We give a quick overview of the different strategies.

Preprocessing
Methods following this strategy carry out resampling of the original dataset

in order to change the class distribution. Resampling techniques can be divided
into three groups: i) Undersampling techniques, consisting on deleting instances
of the majority class, ii) Oversampling techniques, that replicate or create new
instances of the minority class, such as the Synthetic Minority Over-sampling
Technique (SMOTE) [4], and iii) Hybrid techniques, those that combine both
resampling techniques.



Fig. 1. Taxonomy of Class imbalance problem addressing techniques as proposed in [9]

Cost-sensitive learning
The strategy followed by cost-sensitive learning methods is to assign different

cost values to each class misclassifications, so that the bias towards the majority
class is balanced by the lower cost of misclassifications. A cost matrix is build
assigning cost values to the entries of the confussion matrix giving (see Table
2). The usual approach is to heavily penalize misclassifications of the minority
class. They are categorized into the following groups:

– Direct methods, that introduce the misclassification cost within the classifi-
cation algorithm.

– Meta-learning, where the algorithm itself is not modified. Instead, a prepro-
cessing (or postprocessing) mechanism is introduced to handle the costs.
Meta-learning methodologies can be divided into two categories, namely
thresholding and sampling.

Ensemble classifiers
Ensemble methods rely on the idea that the combination of many ”weak”

classifiers can improve the performance of a single classifier [6]. They are di-
vided in two groups, namely cost-sensitive ensembles and data and algorithmic
approaches.

– Cost-sensitive ensemble techniques, are analogous to cost-sensitive methods
mentioned earlier, although in this case, the cost minimization is undertaken
by the boosting algorithm.

– Data and algorithmic approaches, which embed a data preprocessing tech-
nique in an ensemble algorithm. Depending on the ensemble algorithm they
use, three groups are identified: i) Boosting, ii) Bagging and iii) Hybrid.



Bagging [3] consists in creating bootstrapped replicas of the original dataset
with replacement (i.e. different copies of the same instance can be found in the
same bag), so that different classifiers are trained on each replica. Originally each
new data-set or bag mantained the size of the original data-set. Nevertheless,
UnderBagging and OverBagging strategies embed a resampling process, so that
bags are balanced by means of undersampling or oversampling techniques. To
classify an unseen instance, the output predictions of the weak classifiers are
collected performing a majority vote in order to produce the joint ensemble pre-
diction. In this group we find, among others, algorithms like SMOTEBoost [5] or
UnderBagging [13] which embed undersampling within the ensemble algorithm.
We propose RUSBagging which carries out a random undersampling for each
bag generated in the ensemble creation. An individual weak classifier is trained
from the data in each bag.

3 Experimental results

In this section we present the results obtained when trying to predict the read-
mission risk before 72 hours over the dataset presented in the previous section.
We have tested two data balancing methods: random undersampling (RUS) and
random undersampling embedded in a bagging approach. We used the following
well-known classification algorithms, implemented in the open source machine
learning library scikit-learn4:

1. Decision Tree (DT), setting Gini impurity as splitting criterion
2. Random Forest (RF), setting Gini impurity as splitting criterion and number

of estimators=10

The models were evaluated using 10-fold cross-validation, performing 10 inde-
pendent executions. Accuracy, specificity, sensitivity and AUC were calculated
for each execution, so average and standard deviation were computed. In order
to statistically compare results we employed an Analysis of Variance (ANOVA)
approach.
The following data balancing approaches were compared: i) Original dataset with
its imbalanced class distribution, ii) Undersampling with random undersampling
and iii) RUSBagging. Table 3 shows the average accuracy, sensitivity, specificity
and AUC along with its respective standard deviation, for each method and
classifier.

3.1 Comparison of classifiers

According to the results shown in Table 3, both classification algorithms, Ran-
dom Forest achieve significantly better results (p¡0.001) than Decision Trees
looking at the AUC. Though DT performs better in the original dataset (anyhow
both classifiers perform poorly), when preprocessing and ensemble approaches

4 http://scikit-learn.org/



Table 3. Mean (± standard deviation) of performance metrics for each data balance
method and classifier model configuration

method classifier accuracy specificity sensitivity AUC

None DT .9293 ± .0006 .9599 ± .0006 .0673 ± .0030 .5136 ± .0017
RF .9655 ± .0001 .9997 ± .0001 .0012 ± .0003 .5005 ± .0002

RUS DT .5578 ± .002 .5574 ± .002 .5674 ± .012 .5624 ± .005
RF .6622 ± .0016 .6676 ± .0018 .5086 ± .0096 .5881 ± .0043

RUSBagging DT .6530 ± .0011 .6576 ± .0012 .5244 ± .0079 .5910 ± .0037
RF .7679 ± .0014 .7796 ± .0015 .4359 ± .0041 .6078 ± .0020

Fig. 2. ROC curve for DT using under-
sampling, RUSBagging and original

Fig. 3. ROC curve for DT and RF algo-
rithms using RUSBagging method

are utilized RF performs much better. As shown in Figure 3, the AUC is significa-
tively greater for RF when RUSBagging is used, however, sensitivity is sacrificed
if compared with DT. Overall, results are poor, however they compare well with
the state of the art in readmission prediction. In a recent review [7], most studies
reported performances measured by AUC near 0.5, with some outliers achieving
a maximum of 0.7.

3.2 The effect of preprocessing and ensemble methods

Several conclusions can be extracted from the results shown in Table 3.

– The models trained without modifying the original class distribution were
clearly biased towards the majority class. Although accuracy scores were high
(>90%), specificity was close 100% while sensitivity tended to zero. Thus,
according to the AUC scores, models performed similar or just slightly better
than a random classifier.

– Using random undersampling for class balancing had a direct effect in the
performance of the resulting model. Results show that both DT and RF
get better AUC scores, 0.56 and 0.58 respectively, and sensitivity increases
considerably. However, as could be expected, both accuracy and specificity
tend to decrease.



– RUSBagging, which embeds random undersampling within a bootstrap ag-
gregating algorithm, outperforms both previous methodologies. According
to the AUC scores, the combination of RUSBagging and Random Forest
shows the best performance with a mean of 0.60.

– The performance of the models considering the AUC metric, suggests poor
discrimination ability. Nevertheless, a systematic review on risk prediction
models for hospital readmission documented similar AUC scores (ranging
from 0.50 to 0.70) in most of the studies [7].

4 Conclusions and future work

In this paper we have presented the results of readmission prediction based on a
real dataset from a hospital in Santiago, Chile. To overcome the class imbalance
problem we propose an approach called RUSBagging, that carries out random
undersampling for each bag in a bagging ensemble training.

Results show that RUSBagging in combination with Random Forest signif-
icantly improves predictive performance in the context of a highly imbalanced
dataset. Nevertheless, our model has shown limited predictive ability for clinical
purposes, what seems to be related with the inherent dfficulties and limitations
of the readmission risk prediction problem. We have attacked one major issue
(data imbalance) but others such as the appriate selection and measurement of
varaibles remain untouched in this paper. In order to validate the usefulness of
our presented approach, we plan to gather and include additional baseline status
and administrative data, to perform a prospective study. Future work will also
include an extension of our comparative study including new methodologies and
classifiers.
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