Community-driven Extensions to the X3D Volume Rendering

Component
Ander Arbelaiz Aitor Moreno Luis Kabongo
Vicomtech-IK4 Vicomtech-IK4 Vicomtech-IK4
Paseo Mikeletegi 57 Paseo Mikeletegi 57 Paseo Mikeletegi 57

Donostia / San Sebastian, Spain 20009
aarbelaiz@vicomtech.org

Nicholas Polys
VirginiaTech
USA
npolys@vt.edu

ABSTRACT

Recent developments in Web-based volume rendering have gained
recognition by Web users and professionals in several fields. The
ISO-IEC Standard Extensible 3D (X3D) version 3.3 specifies the
integration and visual styling of volumetric data for real-time in-
teraction. The specification is an important milestone describing a
framework for expressive presentation. However, it was written
before the emergence of WebGL and the HTML5 platform. This
paper describes our work to adapt the X3D Volume rendering nodes
to the Web platform and to enhance their functionality based on
feedback provided by the X3D and X3DOM open source communi-
ties. These include: a description of a new volume data node and
an application of such node to create 4D volume rendering real
time visualizations. We present functionalities that are currently
not part of the standard: the edition of Transfer Functions, Multi
Planar Reconstruction (MPR), intersection of the volume with 3D
objects, clipping planes with volume data and control in the quality
of the generated volume visualization. These additions should be
considered for inclusion in future revisions of the X3D ISO volume
rendering component.

CCS CONCEPTS

Human-centered computing —Scientific visualization; Vi-
sualization systems and tools; Ubiquitous and mobile computing
systems and tools; «Computing methodologies — Rendering;

KEYWORDS
Extensible 3D (X3D), Volume Rendering, X3DOM, WebGL

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Web3D ’17, Brisbane, QLD, Australia

© 2017 ACM. 978-1-4503-4955-0/17/06...$15.00

DOI: http://dx.doi.org/10.1145/3055624.3075945

Donostia / San Sebastian, Spain 20009
amoreno@vicomtech.org

Donostia / San Sebastian, Spain 20009
Biodonostia Health Research Institute
Donostia / San Sebastian, Spain
lkabongo@vicomtech.org

Alejandro Garcia-Alonso
University of the Basque Country
Paseo Manuel de Lardizabal 1

Donostia / San Sebastian, Spain 20018

alex.galonso@ehu.es

ACM Reference format:

Ander Arbelaiz, Aitor Moreno, Luis Kabongo, Nicholas Polys, and Ale-
jandro Garcia-Alonso. 2017. Community-driven Extensions to the X3D
Volume Rendering Component. In Proceedings of Web3D ’17, Brisbane, QLD,
Australia, June 05-07, 2017, 9 pages.

DOIL: http://dx.doi.org/10.1145/3055624.3075945

1 INTRODUCTION

In recent years, with the adoption of WebGL in modern browsers,
research and development in Web-based hardware-accelerated vol-
ume rendering has flourished. Agreements and conventions are
required in order to sustain the exchange of volumetric content,
the interoperability between Web and non-Web applications, and
to maintain a cross-device support. Therefore we have focused in
the ISO-IEC Standard of X3D (Web3DConsortium 2017a), which is
the internationally-ratified specification allowing the interchange
and delivery of declarative volume rendering scenes over the Web.

Nowadays, the Web has become the medium to expose rich mul-
timedia content to the general public. For instance, in the medical
field, some initiatives have already emerged that are currently work-
ing towards the transition of DICOM file format support for the
Web platform (Cornerstone 2016). Using the Web as unified access
point, volume rendering could become another tool for profession-
als and casual users alike. In order to reduce the gap between the
expected capabilities of web-based tools and their desktop counter-
parts, we have engaged with the user community and assessed their
requests and priorities to deliver the best functionalities within the
current limitations of the Web platform.

The evolution of 3D graphics in the Web is slow in comparison
to traditional desktop solutions. This is mainly due to two factors: i)
security: applications developed by third-party must be sand-boxed
within the browser context and ii) wider cross-device support: they
tend to reach to a wider range of devices and GPUs. In despite of
this, the Web ecosystem has benefited from a great surge in 3D
graphics content since the introduction of the WebGL APL. This has
provided an opportunity to create communities of both users and
developers alike. They help with both the adoption and with the

Web3D 17, June 05-07, 2017, Brisbane, QLD, Australia

improvement of this technology into the future. Without a doubt,
one of the communities that has been supporting the exchange of
3D content over the net is the one behind the X3D (Extensible 3D)
ISO (Web3DConsortium 2017a).

In this paper we propose a volume data node definition to be
considered for inclusion in the X3D Volume Rendering component
to allow WebGL based ray-casting algorithms access the volumetric
data in order to compute the visualization output. Furthermore,
we will show the use of this node with one of X3D’s reference
implementations X3DOM (Behr et al. 2009) to create a 4D volume
rendering visualization.

The paper is structured as follows: Section 2 introduces previous
work and establishes a time-line of the current state of the X3DOM
Volume Rendering implementation against the X3D specification.
Section 3 presents our WebGL compatible volume data node pro-
posal. Section 4 proposes community-driven features to be included
in the standard and Section 5 finalizes with the conclusions and
future work.

2 BACKGROUND

This section describes previous work to contextualize the proposed
enhancements at Section 3 and Section 4. First, we introduce the
X3D standard and the X3D Medical Working group. Then, we
present the related work and contributions of web based volume
rendering over time.

2.1 X3D and X3D Medical Working Group

The Extensible 3D (X3D) (Web3DConsortium 2017a) is an ISO-
IEC ratified standard to represent and communicate 3D computer
graphics. It is maintained and developed by the Web3D consortium.
X3D is composed by a rich set of extensible components targeting
different computer graphics areas (e.g CAD, Geospatial, Humanoid-
animation, NURBS, etc.).

X3D has been evolving with each iteration. Due to its Compo-
nent and Profile -based architecture, new additions can be added
independently with ease and in collaboration with its correspond-
ing working group. The Web3D Consortium’s Medical Working
Group (MWG) (Web3DConsortium 2017c) specifies and implements
open standards to support cross-platform representation of medical
visualization from a wide variety of image modalities and medical
data exchange capabilities.

2.2 Related Work

X3D is actively being used in the scientific community. Researchers
are publishing modification proposals and enhancements to con-
crete components. For example, for the Geospatial Component
McCann et al. (2009) proposed enhancements to correct deficien-
cies at viewing data in a globally set context, to improve browser
rendering for terrain data and to spread the adoption of the compo-
nent.

Centered in the visualization of volume data, the Medical Work-
ing Group (MWG) has created the X3D Volume Rendering Compo-
nent (Web3DConsortium 2017) and the MedX3D profile (John et al.
2007). During the standardization process of the Volume Rendering
Component, Jung et al. (2008) presented a specialized endoscopic
training simulation system based on an extended X3D, showing one

Arbelaiz et al.

of the multiple use case cases of application for volume rendering.
Polys et al. (2011) evaluated the proposed X3D Volume Rendering
Component for its suitability in the visualization of several volume
image data types from different scientific fields. Furthermore, to sus-
tain X3D as a reproducible volume scene declaration presentation
interchange format, Polys and Wood (2012) have evaluated the vol-
ume component specification under several criteria: representation,
implementation, interaction and interoperability/integration.

Applications of X3D based volume rendering are clear in the
medicine field, from surgical planing to educational purposes. With
the price reduction and availability of stereo head mounted displays
(HMD), a new frontier of application has been opened for X3D.
Towards immersive VR environments Behr et al. (2007) presented
extensions to support different interactions and navigation tasks
and Polys et al. (2013) described the challenges and capabilities of
X3D in an immersive volume rendering implementation.

2.3 Web volume rendering evolution

Volume rendering is a computationally expensive rendering tech-
nique that can be implemented with different algorithms. Direct
volume rendering (DVR) introduces several methods that take ad-
vantage of the GPU capabilities due to the fact that DVR algorithms
present parallelizable features.

Initial approaches to bring volume rendering to the web ecosys-
tem used indirect methods: i) polygonal surface data was extracted
from the volumetric data or ii) a server-side remote rendering ap-
proach (Kaspar et al. 2013) were used.

With the arrival of WebGL to web browsers, Congote et al. (2011)
presented an interactive volume rendering ray-casting (DVR) al-
gorithm that enabled client-side rendering in the browser. This
method has been later on revised by Noguera et al. (2012) focus-
ing their work in the deployment of volume rendering techniques
into mobile devices with the OpenGL ES 2.0 API, the same API in
which WebGL 1.0 API is based on. Noguera and Jiménez (2016) have
made a survey where performance comparisons of the ray-casting
method against texture slicing methods are shown. Additionally,
Movania et al. (2012a; 2012b; 2014; 2012) have also improved the
multi-pass ray-casting algorithm with a single-pass version and
compared it with a texture slice method. Wangkaoom et al. (2015)
have made use of WebGL as a light rendering client by using a
client and server based hybrid rendering solution.

X3DOM is a DOM-based implementation of X3D (Fraunhofer
IGD 2014) that enables declarative X3D in the Web. Arbelaiz et al.
(2016b) presented a volume rendering component for X3DOM based
in Congote el al. (2012; 2011) approach. This component implemen-
tation offers X3D’s volume visualization reproducible and declara-
tive features and it has been the reference to obtain feedback from
the community (X3DOM Community 2015a,b, 2016a,b, 2017).

Additional works have addressed different challenges related to
the volume rendering component, presenting contributions and
advances in the interaction and exploration of volumetric datasets.
Yang et al. (2015) have contributed to X3DOM for weather data
visualization in conjunction with terrain data. Arbelaiz et al. (2017)
have explored the use of DICOM medical data exchange format in
combination with X3DOM for medical volume visualization.

Community-driven Extensions to the X3D Volume Rendering Component

Figure 1 shows a time-line with the presented contributions
related to WebGL based DVR (above) and some of the community
requested enhancements (below). The time-line is divided in three
periods: i) initial contributions of DVR algorithms applicable in the
Web (orange area). ii) elapsed time in which initial developments of
the X3DOM volume rendering component were made (green area).
iii) contributions to web based DVR, including contributions to the
X3DOM volume rendering component in response to community
feedback. (blue area).

3 WEB COMPATIBLE X3D VOLUME
RENDERING PROPOSAL

In this section we propose a new node to enable the interactive
visualization of volumetric data in Web based GPU accelerated
volume rendering algorithms.

First, we present the motivation behind the proposal of this node
in the Web platform at Section 3.1. Then, at Section 3.2 we describe
our proposed Web centered ImageTextureAtlas node. Finally, Section
3.3 shows the usability of this node in the Web with a specialized
use case: 4D volume rendering.

3.1 WebGL-based volume rendering

As stated in the X3D volume rendering component, volume render-
ing requires data to be represented in a volumetric form (Web3D-
Consortium 2017). In GPU based volume rendering 3D textures are
used to store volume data. Thus, it is defined in the X3D ISO that
volume data shall be declared using X3D’s Texturing3D component.
Unfortunately, the current WebGL 1.0 API does not support this
type of texture.

We have overcome this limitation of WebGL 1.0 with the method
proposed by Congote et al. (2011). Using a 2D texture we can
emulate a 3D texture by resampling the 2D texture and performing
trilinear interpolation in the fragment shader at a pixel level.

With the upcoming WebGL 2.0 API, 3D textures will be supported
by browsers, allowing to make better use of current GPU memory
capabilities. Nevertheless, our proposed ImageTextureAltas will still
be necessary for an ubiquitous volume rendering deployment, as
this method is valid for both WebGL APIs.

3.2 ImageTextureAtlas | X3DTexture2DNode

Volumetric data, specially those obtained from a MRI or a CT scan,
can be seen as a set of 2D image slices in an array. Our proposed
ImageTextureAtlas node allows to represent the 3D volume data by
composing all the 2D slices into a single 2D texture (Congote et al.
2011). Instead of adding a Z dimension to the texture, we arrange
all 2D slices into one image with a matrix configuration. Listing 1
shows the basic X3D definition of the proposed node.

Listing 1: X3D definition for the ImageTextureAtlas

Web3D 17, June 05-07, 2017, Brisbane, QLD, Australia

SFInt32 [] slicesOverX 0 [0,c0)
SFInt32 [] slicesOverY 0 [0,c0)
SFBool [] hideChildren TRUE

}

Figure 2 shows an atlas of slices for the proposed ImageTexture-
Atlas node. Listing 2 definition represents how X3DVolumeData
derived nodes, such as the VolumeData, should allow a 2D texture
input to accept the ImageTextureAtlas as a parameter.

Listing 2: Allow ImageTextureAtlas as an input to
X3DVolumeData nodes, definition example for the Vol-
umeData node

VolumeData X3DVolumeDataNode {

SFVec3f [in,out] dimensions 1 1 1 (0,c)

SFNode [in,out] metadata NULL [X3DMetadataObject]

SFNode [in,out] renderStyle NULL [
X3DVolumeRenderStyleNode]

SFNode [in,out] voxels NULL [X3DTexture2DNode,
X3DTexture3DNode]

SFVec3f [] bboxCenter 0 0 0 (—oc0,00)

SFVec3f [] bboxSize -1 -1 -1 [0,0) or -1 -1 -1

}

The surface normals of the volume data are required to apply
the volume rendering styles defined in the X3D ISO Volume Ren-
dering Component (Web3DConsortium 2017). Surface normals are
specified to be provided as an additional 3D texture. As stated
before, WebGL 1.0 does not support this texture type, so we have
to make use of the ImageTextureAtlas again. Arbelaiz et al. (2016b)
have extended the ImageTextureAtlas approach to adapt its use to
the other nodes described in the current X3D v3.3 ISO specifica-
tion (Web3DConsortium 2017). In this manner, we can proceed
to apply illustrative and non-photorealistic styles to the volume
visualization.

The surface normals are approximated with the gradient com-
putation of the volume data. The gradient computation outputs a
three component vector for each voxel in the volume. Each com-
ponent matches with the derivative of the volume data on each
axis direction. Using the same approach as before, we can create
an ImageTextureAtlas using the color channels of the 2D texture
to store the vector information. We encode the gradient vector for
each pixel in the atlas in the RGB color channels R: X, G: Y, B: Z.

As described before, we propose to update the X3D specification
to support the ImageTextureAtlas as a valid field to declare the
surface normals of a volume node. The same proposed node in
Listing 1 is valid for the surface normals input. Listing 3 shows an
example declaration of the gradient data.

Listing 3: An ImageTextureAtlas declaration for the surface
normals data

ImageTextureAtlas X3DTexture2DNode

SFNode [in,out] metadata NULL [X3DMetadataObject]

SFBool [] repeatS TRUE

SFBool [] repeatT TRUE

SFNode [] textureProperties NULL [
TextureProperties]|]

MFString [in,out] url [] [URI]

SFInt32 [] numberOfSlices 0 [0,00)

—_

<ImageTextureAtlas containerField="surfaceNormals"
url="gradient.png" slicesOverX="8"
slicesOverY="8"></ImageTextureAtlas>

The containerField and URL attributes are the only modifica-
tions required for the ImageTextureAtlas declaration. The contain-
erField attribute is used to target the volume data voxels field in
a X3DVolumeDataNode or gradient data surfaceNormlas field in

Web3D 17, June 05-07, 2017, Brisbane, QLD, Australia

Mobeen and Feng (2012a; 2012b; 2012)

Congote (2012)

oguera et al. (2012; 2012)
Congote et al. (2011)

Movania et al. (2014)

Arbelaiz et al.

Noguera and Jiménez (2016)

Yang et al (2015) Arbelaiz et al. (2016a b, 2017)

Inside volume (2015b)

- .

MPR (2016a; 2016b)

Volume + polygonal (2015a) Clip capping (2017)

X3DOM Volume Rendering development

Figure 1: Time-line of contributions to WebGL based volume rendering and community feedback

LR R RO CORCORER R w Y e
eeaaé@“’”’ %ﬁ*@ﬁ

o &
A2 W ASET BB ATE

Figure 2: A 2D image representing an ImageTextureAtlas of
the MRI ventricles dataset (Volvis 2017) (color inverted and
contrast enhanced) as a set of 2D slices tiled into a matrix
configuration

a X3DVolumeStyleNode. This also requires, for the X3DVolume-
StyleNode type nodes with a surfaceNormals attribute, to accept a
X3DTexture2DNode as an input argument like it is shown in Listing
2 for the VolumeData node.

The SegmentedVolumeData node allows the user to discern re-
gions of the volume and apply different rendering styles to each one.
The segmented region must be labeled per voxel. Consequently,
the use of an ImageTextureAtlas is mandatory in order to make the
SegmentedVolumeData compatible with WebGL 1.0.

Figure 3 shows the difference between a volume data slice (R
color channel), a segmented data slice (R color channel) and the
surface normals slice (RGB color channels).

The amount of volume data that can be stored in a 2D ImageTex-
tureAtlas is limited by the GPU’s 2D texture size limit. However,
some strategies can be followed to allow the visualization of bigger
datasets. Noguera and Jiménez (2012) used the ignored color chan-
nels (Green Blue and Alpha color channels) of a volume data atlas
to store larger datasets.

To make use of the multiple color channels from the 2D texture
the ImageTextureAtlas requires new fields. Listing 4 shows the addi-
tion of channels and sortOrder fields. The channels field defines in
which color channel of the texture volume data is being stored. The
default behavior is to store the volume data in the Red color channel
by specifying the "R" value. When, a larger volume is required to
be converted into an ImageTextureAtlas additional channels can be
specified with "R", "G", "B", "A" characters. For instance, to store up
to three times more data. A "RGBA" value in the channel field will
indicate that all color channels of the texture are being used to store
the data. Once multiple color channels are defined, the order in
which 2D slices are tiled into the atlas must be set in the sortOrder
field. The default behavior is to tile the 2D slices that represent
the Z axis of the volume data in "ROW" order. For each slice of
the ImageTextureAtlas the next slice in the Z axis is the contiguous
slice in the row of the matrix of slices. When the sortOrder is set
to "CHANNEL" the next slice of the atlas in the Z axis direction is
stored in the the contiguous color channel.

Listing 4: X3D definition for the ImageTextureAtlas with
multiple color channels

X3DVolumeDataNode X3DTexture2DNode

SFNode [in,out] metadata NULL [X3DMetadataObject]

SFBool [] repeatS TRUE

SFBool [] repeatT TRUE

SFNode [] textureProperties NULL [
TextureProperties]

MFString [in,out] url [] [URI]
SFInt32 [] numberOfSlices 0 [0,)
SFInt32 [] slicesOverX 0 [0,c)
SFInt32 [] slicesOverY 0 [0,c0)
SFBool [] hideChildren TRUE

SFString [] channels "R"

Community-driven Extensions to the X3D Volume Rendering Component

(a) Volume data

(b) Segmented data

Web3D 17, June 05-07, 2017, Brisbane, QLD, Australia

(c) Surface normals data

Figure 3: Slice types of the MRI ventricles dataset (Volvis 2017) to be converted into an ImageTextureAtlas: a) voxel data slice,

b) segmented data slice and c) gradient data slice

SFString [] sortOrder "ROW" ["ROW", "CHANNEL"]
}

Textures provide a mechanism to input data to the GPU updat-
ing directly the visualization. In the Web platform we can take
advantage of the 2D canvas API to create or modify images that can
be copied to the GPU. This is of special interest to reflect dynamic
changes in the data and, for instance, to perform the construction
of the atlas in the browser. Listing 5 shows an ImageTextureAtlas
node declaration with a canvas. Note that the hideChildren attribute
hides the atlas from the user, but makes it available to be modified
with JavaScript.

Listing 5: ImageTextureAtlas declaration linked with the 2D
HTML5 canvas API

<video autoplay loop style="width:2048px;
height:2048px; display:none">
<source src="atlas_video.mp4" type=

"

"video/mp4" >
</source>
</video>

"o

<ImageTextureAtlas containerField="voxels" url=
slicesOverX="8" slicesOverY="8"
hideChildren="true">
<canvas id="v" style="width:2048px; height:2048px;">
</canvas>
</ImageTextureAtlas>

3.3 4D volume rendering

There are a number of use cases when the volume visualization
evolves over time (4D volume rendering). For example, in the med-
ical field, 4D ultrasound imaging and MRI capture are already pos-
sible, or in the geosciences field with simulations in longer period
of times of the evolution of a system (Ho and Jern 2008). Using our
proposed ImageTextureAtlas and the capabilities of current modern
browsers, 4D visualizations can be defined.

Our approach exploits the native video reproduction and 2D can-
vas API features of HTML5 modern browsers. Figure 4 summarizes
the architecture of this approach: We create an atlas for each time
step of the 4D volume data. Then, all the atlases are converted
and encoded into a video which will be playing in a loop. This
atlas sequence video is being played in the background hidden to
the user. Listing 6 shows the definition of the video declaration in
HTMLS.

Listing 6: HTMLS5 video declaration for an ImageTextureAt-
las

With JavaScript we link the hidden video with a dynamic Image-
TextureAtlas by defining a canvas element of the same size of the
video and updating its content through the canvas 2D API with a
fixed timer. The ImageTextureAtlas follows the sames declaration
pattern as shown in Listing 5. The underlying volume rendering
implementation of X3DOM will update the texture data at the GPU
and visualizing the changes in real-time.

There are some considerations to take into account like the
potential loss of accuracy due to the employed video encoding or
the refresh time of the texture data. Nevertheless, this approach
demonstrates the current capabilities of the Web technology stack
and the proposed Web centered ImageTextureAtlas.

4 COMMUNITY DRIVEN ENHANCEMENTS
TO X3D

The X3D volume rendering component has been unchanged for a
period of time since the release of version v3.3 (Web3DConsortium
2017). This section presents some additions and enhancements
which are centered in issues and problems we have received from
Web users at the X3D and X3DOM communities. We also add
suggestions of how these enhancements could be added to the
current X3D volume rendering component specification.

4.1 Transfer function

A transfer function (TF) allows to filter and enhance intensity ranges
in the volume data by mapping each volume value to a given color
and opacity. This enables the visualization through some layers of
specific densities and the increment of the opacity in other layers.
For that purpose, a texture is used as a look-up table. It is the
most used method to add color to the volume visualization and the
default rendering style node in X3D.

Current X3D specification contemplates both 3D and 2D tex-
tures as valid input fields for the OpacityMapVolumeStyle, being the
default behavior the use of 2D TFs. The Web platform can support
natively 2D textures. However, a connection to the 2D texture that

Web3D 17, June 05-07, 2017, Brisbane, QLD, Australia

PRE-PROCESSING

X3DOM+VolumeRenderingComponent :

Arbelaiz et al.

WEB-BASED 4D VOLUME RENDERING

HTMLS5 Canvas 2D |
(ImageTextureAtlas 1
proxy)

Figure 4: Scheme of the proposed architecture for a 4D volumetric visualization with the AGECANONIX dataset (OsiriX 2017)

directly influences the TF is required in order to allow the creation
of tools such as a native HTML5 transfer function editor. Thus,
as stated in Section 3.2 and Listing 5 we have to make use of the
canvas 2D APl in order to modify dynamically the TF.

4.2 Multi-planar reconstruction (MPR)

The Multi-Planar Reconstruction (MPR) is a wide spread rendering
technique used in the medical field. Essentially, it enables the user to
define arbitrary planes through the data. The rendering algorithm
resamples the volume data to reconstruct the desired plane. Usually,
the following planes will be defined: Axial, Sagital, Coronal and
Oblique.

This technique is less memory expensive in comparison to a
full volume rendering visualization. Only the volume data in the
neighborhood of the defined plane is used in the computation. Less
powerful GPU devices, like mobile devices, will handle easier this
type of rendering.

An additional interesting enhancement to MPR is the ability to
add a transfer function (TF) in order to illustrate or filter regions in
the reconstructed planes. In fact, this is necessary in many domains,
for example, in physics simulation it is used to correlate the visual
output with the obtained results. Listing 7 shows the proposed X3D
MPR volume rendering style definition.

Listing 7: X3D definition proposal for the MPRVolumeStyle
node

SFNode [in,out] transferFunction NULL [
X3DTexture2DNode , X3DTexture3DNode]
MFNode [in,out] plane NULL [MPRPlane]

The proposed MPR node (shown in Listing 7) defines a transfer-
Function attribute with the same functionality as the one already
defined in the OpacityMapVolumeStyle. This node also defines a
planes attribute to allow the user to declare arbitrary planes. Listing
8 presents an arbitrary plane definition for the MPRVolumeStyle
node. The normal attribute defines the normal vector of the plane,
while the pos attribute establishes the position of the plane from
the origin of the volume in the normal direction.

Listing 8: X3D definition proposal for an arbitrary MPR vol-
ume plane

MPRPlane : X3DNode {

SFBool [in,out] enabled TRUE

SFNode [in,out] metadata NULL [X3DMetadataObject]
SFVec3 [in,out] normal 0 0 1

SFFloat [in,out] pos 0.0 [0,1]

}

MPRVolumeStyle X3DVolumeRenderStyleNode {
SFBool [in,out] enabled TRUE
SFNode [in,out] metadata NULL [X3DMetadataObject]

4.3 Quality control

The X3D ISO specification is an abstract declaration unaware of
the underlaying implementations. But, we consider that to deploy
X3D scenes in as many devices as possible, some performance or
implementation aware requisites should be considered.

Community-driven Extensions to the X3D Volume Rendering Component

A Web-based ubiquitous volume rendering implementation al-
lows a volumetric scene to be deployed in a wide range of devices.
From an ubiquitous deployment perspective, a scene with multiple
rendering styles may be plausible for a desktop PC with a dedi-
cated GPU, but could also be too computationally expensive for
a mobile device. Not all devices have the same GPU features and
computational power. Consequently, this situation can make vol-
ume rendering unavailable to some of these devices. In order to
allow one X3D volume rendering scene to be deployed into different
devices we suggest to add an output quality control mechanism.
This mechanism should focus on the target devices and it should
regulate the amount of computation to be performed by the device
via the concrete implementation.

A quality field could be defined with a qualitative value (pro-
vided as a profile) or with a quantitative value (provided as ranged
numerical scalar value). Listing 9 shows an additional qualitative
field for the X3DVolumeDataNode, where the quality field accepts
three levels of quality "LOW", "MEDIUM", "HIGH". In this manner,
each possible implementation of the X3D standard could adequate
the amount of computation to be performed at different levels.

Listing 9: X3D VolumeDataNode definition with output qual-
ity control

Web3D 17, June 05-07, 2017, Brisbane, QLD, Australia

same behavior. In the other hand, to explicitly enable or disable this
functionality will allow to avoid the extra computation required.
Conditional branches execution can be expensive in GPU’s and this
type of extra operations can be avoided if this feature is disabled.

Our proposal is to declare a new boolean attribute allowView-
PointInside to all nodes inherited by the X3DVolumeDataNode. List-
ing 11 shows the definition of the X3DVolumeDataNode with the
proposed attribute.

Listing 11: X3DVolumeDataNode definition allowing the
user to explore from inside the volume

X3DVolumeDataNode X3DChildNode, X3DBoundedObject
SFVec3f [in,out] dimensions 1 1 1 (0,00)

SFNode [in,out] metadata NULL [X3DMetadataObject]
SFVec3f [] bboxCenter 0 0 0 (—o0,00)
SFVec3f [] bboxSize -1 -1 -1 [0,c0)
SFBool [in,out] allowViewPointInside TRUE

or -1 -1 -1

For the VolumeData node the default definition will be the fol-
lowing:

<VolumeData allowViewpointlnside="true '></

VolumeData>

X3DVolumeDataNode X3DChildNode, X3DBoundedObject
SFVec3f [in,out] dimensions 1 1 1 (0,c)

SFNode [in,out] metadata NULL [X3DMetadataObject]
SFVec3f [] bboxCenter 0 0 0 (—o0,00)

SFVec3f [] bboxSize -1 -1 -1 [0,00) or -1 -1 -1
SFString [in,out] quality "HIGH" ["LOW", "MEDIUM", "HIGH"]

Another alternative is shown at Listing 10, where the quality
field shows a quantitative value. For implementations where the
quality of the output can not be regulated, always a "HIGH" value
or a "1.0" factor shall be expected.

Listing 10: X3DVolumeDataNode definition with output
quality control

X3DVolumeDataNode X3DChildNode, X3DBoundedObject
SFVec3f [in,out] dimensions 1 1 1 (0,)

SFNode [in,out] metadata NULL [X3DMetadataObject]
SFVec3f [] bboxCenter 0 0 0 (—o0,0)

SFVec3f [] bboxSize -1 -1 -1 [0,00) or -1 -1 -1
SFFloat [in,out] quality 1.0 [0,1]

4.4 Inside volume data exploration

Some regions of the volume data can be occluded even after filtering
the data with a transfer function (TF). Consequently, the ability to
explore the inside of the volume has been requested in the X3DOM
Community (2015b). As a response, we have already provided this
feature in X3DOM (Arbelaiz et al. 2017).

Allowing to place the viewers virtual camera inside the volume
provides a new perspective to analyze the data. The current X3D
ISO does not define the behavior of the volume rendering algorithms
in relation to the location of the camera inside the volume. We
suggest to define a new attribute to enable or disable this behavior.
In one hand, all X3D conformance implementations will follow the

By default we suggest to allow the inspection of the volume data
and if the user does not require to do so, it can be explicitly disabled.

4.5 Intersection of 3D polygonal meshes

A hybrid rendering of 3D polygonal meshes in conjunction with
a volume object can be of great interest. It opens new use cases
for several scientific fields. As a reference, Yang et al. (2015) has
already presented a GIS use case for the visualization of volumetric
weather radar data and a polygonal terrain with X3DOM.

The current X3D volume rendering component does not specify
nor describe any polygonal and volume data intersection behavior.
From a technical point of view, it is already feasible to perform such
hybrid rendering in a Web context (Arbelaiz et al. 2016a).

We suggest to add the depth information of the previously ren-
dered meshes in the scene to enable the coexistence of polygonal
meshes and volume data together. In this way, before rendering
the volumetric data, the rendering algorithms can measure any
intersection with polygonal surfaces and avoid any occluded com-
putation while also performing the blending with the polygonal
surface.

To add the scene depth information, nodes which inherit from
X3DVolumeDataNode (VolumeData, SegmentedVolumeData, IsoSur-
faceVolumeData) should allow to access the depth of the scene.
Listing 12 shows the proposed addition for the basic VolumeData
node.

Listing 12: VolumeData definition with access to the scene
depth information

VolumeData X3DVolumeDataNode {
SFVec3f [in,out] dimensions 1 1 1 (0,c)
SFNode [in,out] metadata NULL [X3DMetadataObject]
SFNode [in,out] renderStyle NULL [
X3DVolumeRenderStyleNode]
SFNode [in,out] voxels NULL [X3DTexture3DNode]
SFNode [in,out] sceneDepth NULL [X3DTexture2DNode]

Web3D 17, June 05-07, 2017, Brisbane, QLD, Australia

SFVec3f [] bboxCenter 0 0 0 (—o0,)
SFVec3f [] bboxSize -1 -1 -1 [0,00) or -1 -1 -1
}

4.6 Clipping

Clipping planes are supported in X3D since the release of X3D v3.2
(Web3DConsortium 2017b). In the specification, the behavior of clip-
ping is shown with 2D geometry examples. The X3DVolumeData
derived nodes act as Shape nodes that handle volumetric data in-
stead of geometry data. This implies that the current specification
of clipping planes should also be applied to volumes.

In a complex scenario, where both geometry and volume data are
clipped we should expect different behaviors: clipped volume data
by definition will always contain data inside the clipped region,
whereas a clipped polygonal object could be empty. A medical
application using clipping planes will probably expect intersected
3D geometry to be capped (X3DOM Community 2017). The spec-
ification should consider the possibility to cap clipped polygonal
surfaces, otherwise this behavior would remain undefined and
therefore, any X3D implementation would provide a custom and
non-standard implementation.

5 CONCLUSIONS AND FUTURE WORK

In this paper we have presented a working proposal of a Web
compatible 3D volumetric data input node, ImageTextureAtlas. Fur-
thermore, using this node we have showcased how to perform a
Web based 4D volume rendering real-time visualization.

We are aware that Web-based volume rendering can not com-
pete with desktop or server based implementations in terms of
performance. However, this is not true in terms of interoperability,
usability and accessibility.

The Web platform has experimented a rapid evolution, improv-
ing its technological offering to cope with the increasing demand
for richer multimedia and graphics content. The combination of
WebGL, JavaScript, HTML5 and HTML Canvas 2D with the X3D
standard by the Web3D Consortium have offered us the base tools
to expand the reach of volumetric real-time content to a wider
audience.

Taking into account the community feedback we have proposed
how some of their requirements could be included in the X3D
volume rendering component specification.

In the future we would like to add the proposed features in the
X3DOM Framework, acting as reference implementation to support
future inclusions of these features in the X3D volume rendering
component.

REFERENCES

Ander Arbelaiz, Aitor Moreno, and Luis Kabongo. 2016a. Deployment of Volume Ren-
dering Interactive Visualizations in Web Platforms With Intersected 3D Geometry.
In Spanish Computer Graphics Conference (CEIG), Alejandro Garcia-Alonso and
Belen Masia (Eds.). The Eurographics Association. DOI:http://dx.doi.org/10.2312/
ceig.20161312

Ander Arbelaiz, Aitor Moreno, Luis Kabongo, and Alejandro Garcia-Alonso. 2016b.
X3DOM volume rendering component for web content developers. Multimedia Tools
and Applications (2016), 1-30. DOI:http://dx.doi.org/10.1007/s11042-016-3743-1

Ander Arbelaiz, Aitor Moreno, Luis Kabongo, and Alejandro Garcia-Alonso. 2017.
Volume Visualization Tools for Medical Applications in Ubiquitous Platforms.
Springer International Publishing, Cham, 443-450. DOI:http://dx.doi.org/10.1007/
978-3-319-49655-9_54

Arbelaiz et al.

Johannes Behr, Patrick Dahne, Yvonne Jung, and Sabine Webel. 2007. Beyond the web
browser-x3d and immersive vr. In IEEE Virtual Reality 2007: Symposium on 3D User
Interfaces (3DUI), Vol. 2007. Fraunhofer IGD.

Johannes Behr, Peter Eschler, Yvonne Jung, and Michael Zéllner. 2009. X3DOM: A
DOM-based HTML5/X3D Integration Model. In Proceedings of the 14th International
Conference on 3D Web Technology (Web3D "09). ACM, New York, NY, USA, 127-135.
DOI : http://dx.doi.org/10.1145/1559764.1559784

John Congote. 2012. MEDX3DOM: MEDX3D for X3DOM. In Proceedings of the 17th
International Conference on 3D Web Technology (Web3D ’12). ACM, New York, NY,
USA, 179-179. DOI:http://dx.doi.org/10.1145/2338714.2338746

John Congote, Alvaro Segura, Luis Kabongo, Aitor Moreno, Jorge Posada, and Oscar
Ruiz. 2011. Interactive Visualization of Volumetric Data with WebGL in Real-time.
In Proceedings of the 16th International Conference on 3D Web Technology (Web3D
’11). ACM, New York, NY, USA, 137-146. DOI :http://dx.doi.org/10.1145/2010425.
2010449

Cornerstone. 2016. JavaScript library to display interactive medical images including
but not limited to DICOM. (2016). https://github.com/chafey/cornerstone

Fraunhofer IGD. 2014. X3DOM: Open-source framework and runtime for 3D graphics
on the Web. http://www.x3dom.org. (2014). http://www.x3dom.org

Quan Ho and Mikael Jern. 2008. Interacting with 4D oceanographic volume data using
GeoAnalytics tools. National Center for Visual Analytics NCVA (2008).

NW John, M Aratow, J Couch, D Evestedt, AD Hudson, N Polys, RF Puk, A Ray, K
Victor, and Q Wang. 2007. MedX3D: standards enabled desktop medical 3D. Studies
in health technology and informatics 132 (2007), 189-194.

Yvonne Jung, Ruth Recker, Manuel Olbrich, and Ulrich Bockholt. 2008. Using X3D for
Medical Training Simulations. In Proceedings of the 13th International Symposium
on 3D Web Technology (Web3D ’08). ACM, New York, NY, USA, 43-51. DOI:http:
//dx.doi.org/10.1145/1394209.1394221

Mathias Kaspar, Nigel M Parsad, and Jonathan C Silverstein. 2013. An optimized
web-based approach for collaborative stereoscopic medical visualization. Journal
of the American Medical Informatics Association 20, 3 (2013), 535-543.

Michael McCann, Richard Puk, Alan Hudson, Rex Melton, and Don Brutzman.
2009. Proposed Enhancements to the X3D Geospatial Component. In Interna-
tional Conference on 3D Web Technology, Dieter W. Fellner, Alexei Sourin, Jo-
hannes Behr, and Krzysztof Walczak (Eds.). The Eurographics Association. DOI:
http://dx.doi.org/10.1145/1559764.1559788

M. M. Mobeen and L. Feng. 2012a. High-Performance Volume Rendering on the
Ubiquitous WebGL Platform. In 2012 IEEE 14th International Conference on High
Performance Computing and Communication 2012 IEEE 9th International Conference
on Embedded Software and Systems. 381-388. DOI : http://dx.doi.org/10.1109/HPCC.
2012.58

M. M. Mobeen and Lin Feng. 2012b. Ubiquitous medical volume rendering on mobile
devices. In International Conference on Information Society (i-Society 2012). 93-98.

Muhammad Mobeen Movania, Wei Ming Chiew, and Feng Lin. 2014. On-Site Volume
Rendering with GPU-Enabled Devices. Wireless Personal Communications 76, 4
(2014), 795-812. DOI:http://dx.doi.org/10.1007/s11277-013-1354-y

Muhammad Mobeen Movania and Feng Lin. 2012. Mobile visualization of biomedical
volume datasets. . Internet. Technol. Secured Trans 1, 2 (2012), 52-60.

José M Noguera and Juan-Roberto Jiménez. 2012. Visualization of very large 3D
volumes on mobile devices and WebGL. WSCG Communication Proceedings (2012),
105-112.

J. M. Noguera and J. R. Jiménez. 2016. Mobile Volume Rendering: Past, Present and
Future. IEEE Transactions on Visualization and Computer Graphics 22, 2 (Feb 2016),
1164-1178. DOI:http://dx.doi.org/10.1109/TVCG.2015.2430343

José M Noguera, Juan-Roberto Jiménez, Carlos] Ogayar, and Rafael Jests Segura. 2012.
Volume Rendering Strategies on Mobile Devices.. In GRAPP/IVAPP. 447-452.

OsiriX. 2017. DICOM Image Library. (2017). http://www.osirix-viewer.com/resources/
dicom-image-library/

N Polys and Andrew Wood. 2012. New platforms for health hypermedia. Issues in
Information Systems 13, 1 (2012), 40-50.

Nicholas Polys, Andrew D Wood, and Patrick Shinpaugh. 2011. Cross-platform Pre-
sentation of Interactive Volumetric Imagery.

Nicholas F Polys, Sebastian Ullrich, Daniel Evestedt, Andrew D Wood, and Michael
Aratow. 2013. A fresh look at immersive Volume Rendering: Challenges and
capabilities. In IEEE VR Workshop on Immersive Volume Rendering, Orlando.

Volvis. 2017. Volumetric dataset archive. (2017). http://volvis.org

K. Wangkaoom, P. Ratanaworabhan, and S. S. Thongvigitmanee. 2015. High-quality
web-based volume rendering in real-time. In 2015 12th International Conference on
Electrical Engineering/Electronics, Computer, Telecommunications and Information
Technology (ECTI-CON). 1-6. DOI : http://dx.doi.org/10.1109/ECTICon.2015.7207091

Web3DConsortium. 2017. Extensible 3D (X3D) Volume rendering component: ISO/IEC
19775-1. (2017). http://www.web3d.org/files/specifications/19775-1/V3.3/Part01/
components/volume.html

Web3DConsortium. 2017a. Extensible 3D (X3D) specifications. (2017). http://www.
web3d.org/x3d/specifications/

Web3DConsortium. 2017b. Extensible 3D (X3D) v3.2. (2017). http://www.web3d.org/
standards/version/V3.2

http://dx.doi.org/10.2312/ceig.20161312
http://dx.doi.org/10.2312/ceig.20161312
http://dx.doi.org/10.1007/s11042-016-3743-1
http://dx.doi.org/10.1007/978-3-319-49655-9_54
http://dx.doi.org/10.1007/978-3-319-49655-9_54
http://dx.doi.org/10.1145/1559764.1559784
http://dx.doi.org/10.1145/2338714.2338746
http://dx.doi.org/10.1145/2010425.2010449
http://dx.doi.org/10.1145/2010425.2010449
https://github.com/chafey/cornerstone
http://www.x3dom.org
http://dx.doi.org/10.1145/1394209.1394221
http://dx.doi.org/10.1145/1394209.1394221
http://dx.doi.org/10.1145/1559764.1559788
http://dx.doi.org/10.1109/HPCC.2012.58
http://dx.doi.org/10.1109/HPCC.2012.58
http://dx.doi.org/10.1007/s11277-013-1354-y
http://dx.doi.org/10.1109/TVCG.2015.2430343
http://www.osirix-viewer.com/resources/dicom-image-library/
http://www.osirix-viewer.com/resources/dicom-image-library/
http://volvis.org
http://dx.doi.org/10.1109/ECTICon.2015.7207091
http://www.web3d.org/files/specifications/19775-1/V3.3/Part01/components/volume.html
http://www.web3d.org/files/specifications/19775-1/V3.3/Part01/components/volume.html
http://www.web3d.org/x3d/specifications/
http://www.web3d.org/x3d/specifications/
http://www.web3d.org/standards/version/V3.2
http://www.web3d.org/standards/version/V3.2

Community-driven Extensions to the X3D Volume Rendering Component

Web3DConsortium. 2017c. Web3DConsortium Medical Working Group (MWG). (2017).
http://www.web3d.org/working-groups/medical

X3DOM Community. 2015a. Johannes SchrAtider-Schetelig - Rendering of
volumetric and polygonal data together. (2015). https://sourceforge.net/
p/x3dom/mailman/x3dom-users/thread/CAC7R8D5gFBTeKMk36Pb0ayY_
g0gEOhHpok2io05C339mr9Akdg@mail.gmail.com

X3DOM Community. 2015b. onehalfmv2 - Moving inside a volume. (2015). https:
//github.com/x3dom/x3dom/issues/537

X3DOM Community. 2016a. Paul - MPR multiple arbitrary planes.
(2016). https://sourceforge.net/p/x3dom/mailman/x3dom-users/thread/
d9cd0469-497f-03ac-fe72-b6909b2a9b7f%40web.de

X3DOM Community. 2016b. pgruenbacher-TSUS - MPR not include tranfer function.
(2016). https://github.com/x3dom/x3dom/issues/613

X3DOM Community. 2017. PCH3DPrintLab - Section Caps for Clipping Planes. (2017).
https://github.com/x3dom/x3dom/issues/718

Yeonsoo Yang, Ankit Sharma, and Armand Girier. 2015. Volumetric Texture Data
Compression Scheme for Transmission. In Proceedings of the 20th International
Conference on 3D Web Technology (Web3D °15). ACM, New York, NY, USA, 65-68.
DOI:http://dx.doi.org/10.1145/2775292.2775323

Web3D 17, June 05-07, 2017, Brisbane, QLD, Australia

http://www.web3d.org/working-groups/medical
https://sourceforge.net/p/x3dom/mailman/x3dom-users/thread/CAC7R8D5gFBTeKMk36Pb0ayY_g0qE0hHpok2ioO5C339mr9Akdg@mail.gmail.com
https://sourceforge.net/p/x3dom/mailman/x3dom-users/thread/CAC7R8D5gFBTeKMk36Pb0ayY_g0qE0hHpok2ioO5C339mr9Akdg@mail.gmail.com
https://sourceforge.net/p/x3dom/mailman/x3dom-users/thread/CAC7R8D5gFBTeKMk36Pb0ayY_g0qE0hHpok2ioO5C339mr9Akdg@mail.gmail.com
https://github.com/x3dom/x3dom/issues/537
https://github.com/x3dom/x3dom/issues/537
https://sourceforge.net/p/x3dom/mailman/x3dom-users/thread/d9cd0469-497f-03ac-fe72-b6909b2a9b7f%40web.de
https://sourceforge.net/p/x3dom/mailman/x3dom-users/thread/d9cd0469-497f-03ac-fe72-b6909b2a9b7f%40web.de
https://github.com/x3dom/x3dom/issues/613
https://github.com/x3dom/x3dom/issues/718
http://dx.doi.org/10.1145/2775292.2775323

	Abstract
	1 Introduction
	2 Background
	2.1 X3D and X3D Medical Working Group
	2.2 Related Work
	2.3 Web volume rendering evolution

	3 Web compatible X3D volume rendering proposal
	3.1 WebGL-based volume rendering
	3.2 ImageTextureAtlas | X3DTexture2DNode
	3.3 4D volume rendering

	4 Community driven enhancements to X3D
	4.1 Transfer function
	4.2 Multi-planar reconstruction (MPR)
	4.3 Quality control
	4.4 Inside volume data exploration
	4.5 Intersection of 3D polygonal meshes
	4.6 Clipping

	5 Conclusions and Future Work
	References

