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ABSTRACT
This paper presents work on integrating multiple computer vision-
based approaches to surveillance video analysis to support user
retrieval of video segments showing human activities. Applied
computer vision using real-world surveillance video data is an ex-
tremely challenging research problem, independently of any infor-
mation retrieval (IR) issues. Here we describe the issues faced in
developing both generic and specific analysis tools and how they
were integrated for use in the new TRECVid interactive surveil-
lance event detection task. We present an interaction paradigm and
discuss the outcomes from face-to-face end user trials and the re-
sulting feedback on the system from both professionals, who man-
age surveillance video, and computer vision or machine learning
experts. We propose an information retrieval approach to finding
events in surveillance video rather than solely relying on traditional
annotation using specifically trained classifiers.

Categories and Subject Descriptors
H.1.1 [Systems and Information Theory]: Information Theory;
I.2.10 [Vision and Scene Understanding]: Video analysis

Keywords
surveillance event detection, video analysis

1. VIDEO SURVEILLANCE EVENT
DETECTION

Efficiently and reliably finding complex events of interest in video
surveillance footage presents several challenges. These include:
the volume of data to be processed, especially in relation to the
frequency of event occurrence; the low resolution and high noise
of the video including activity occlusion and multiple co-occurring
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events; the low inter-class variance between many events and, fi-
nally, users’ misleading expectations of the computer’s ability to
accurately and confidently identify people, objects and activities.
In this paper we present the outcomes from our experiences in ap-
plying multiple computer-vision based approaches to support in-
teractive user retrieval of video segments from surveillance video
with feedback from end users including professionals from major
companies in transport and event stadium surveillance and security.

By surveillance video we are generally considering fixed CCTV
cameras placed for security observation purposes where video arch-
ives will be accessed post-event for investigative or judicial reasons.
Events of interest may include (but are not limited to): unautho-
rised access, accident, anti-social behaviour, abandoned luggage,
unauthorised photography/filming, sabotage or equipment tamper-
ing, etc. Such complex events can be identified with varying but
generally low levels of success using computer vision techniques.
Simpler analysis tasks include person detection, gesture modelling
and object detection that can then be used by semantic classifiers
for the more complex events.

In our research we aim to develop a standards-based video archive
search platform that allows authorised users to perform semantic
queries over various remote and non-interoperable video archives
of CCTV footage from geographically diverse locations. At the
core of the semantic search interface is the output of algorithms
for person/object detection and tracking, activity detection and sce-
nario recognition. The project also includes research into inter-
operable standards for surveillance video, discussion of the legal,
ethical and privacy issues and how to effectively leverage cloud
computing infrastructures in these applications.

To facilitate these aims, we took part in the TRECVid Interac-
tive Surveillance Event Detection task 2012 [16]. TRECVid is an
annual benchmarking exercise sponsored by the US National Insti-
tute of Standards and Technology (NIST) with the aim of stimu-
lating video information retrieval research and improving the per-
formance of systems using large, challenging, realistic and noisy
datasets for real world problems. Surveillance Event Detection
using CCTV footage has been a TRECVid task for the previous
five years but, due in part to the lack of significant improvements
in detection rates, was changed this year to include an interactive
element. Previously, a set of test (unannotated) videos would be
processed by one or more event classifiers and the ordered list of
possible matches would be evaluated to determine the system’s per-
formance. This year a human computer interface could be used to
find matching video segments in the test set with a 25 minute search
time limit per user per event class.



Our approach was to combine individual methods for video anal-
ysis and annotation and provide a dashboard style search interface
that enabled the user to view results for various algorithms and fil-
ter them by factors such as confidence, level of motion, camera,
number of people etc. The use of a search interface changes the
problem from a pure annotation task, where the objective for each
individual classifier is to maximise precision and recall for one or
more events over all videos, to an information retrieval task, where
fuzzy, difficult to predict factors such as user understanding and
patience, interface aesthetics, minimising false alarms and optimis-
ing for high precision in the top ranked results have the greatest
influence on the success of the system.

This paper describes the process of bringing our independent al-
gorithms together, the analysis of the surveillance video character-
istics and the discussions we held with professional end user part-
ners to establish the challenges to be faced in developing systems
to support usable, practical search systems in this field. The next
section analyses the characteristics of the TRECVid dataset, de-
scribes user profiles from our interactive retrieval evaluations and
discusses the implications of the specific characteristics of surveil-
lance event detection, as listed in this section, on an information
retrieval (IR) user model. Section 3 presents, at a high level, the
main computer vision approaches that were applied to analyse and
identify video segments to show to the user and some preliminary
evaluation scores relating to their performance. Finally the conclu-
sions and future work from our collaboration are presented.

2. TRECVID INTERACTIVE EVALUATIONS

2.1 Dataset characteristics
As listed in the first section, there are three main challenges as-

sociated with visual events in surveillance videos: low event fre-
quency, noisy and low-resolution data and difficult to describe events.
The video dataset used in the TRECVid task comprises 145 hours
of footage, captured over a number of days from five fixed cameras
in an airport, that has been previously annotated with ten events
(PersonRuns, Pointing, CellToEar, ObjectPut, Embrace, People-
Meet, PeopleSplitUp, ElevatorNoEntry, OpposingFlow, TakePic-
ture) of which three (ElevatorNoEntry, OpposingFlow, TakePic-
ture) are not currently used. 100 hours is used for training and 45
is reserved for testing of which 15 hours were used this year. The
video is provided in MPEG-2 at 25 frames per second, 720×576
frame resolution. For our submissions we used two cameras (CAM1,
CAM3) and focussed on three events – ObjectPut, PersonRuns and
Pointing. These events were performed by a single person, had a
reasonable number of training examples in the chosen videos and
were gesture-based.

Table 1 summarises the frequency and duration of events in the
training dataset (100 hours) calculated from the manual annotations
provided in ViPeR format [7] by the TRECVid organisers. Median
duration is given as there are a few very long segments in the pro-
vided annotations that we think are incorrect and therefore overly
inflate the mean.

Many approaches to event detection that use motion information
apply a sliding temporal window to segment the continuous CCTV
footage [1, 17]. The size of this window is critical; note median
ObjectPut duration is 10 frames compared with PersonRuns at 67
frames or PeopleSplitUp at 167 frames. The most common config-
uration is a sliding window size of 15 frames with steps of between
4 and 10 frames. Subsampling of the videos either by resizing the
frames to a lower resolution or by only extracting features from a
subset of frames (e.g., every second frame) is also often applied to
reduce the computational effort. The cumulative effect of these de-

Figure 1: Illustration of temporal sliding window over contin-
uous video footage

cisions sets the sampling density of the video. For example, Figure
1 illustrates a sliding temporal window of size 15 frames with a
step size of 10 frames. If applied over 1 minute of video (at 25 fps)
containing 1500 frames this would produce 120 video segments (15
frames in length) to be analysed.

60% of ObjectPut and 32% of Pointing events take place in less
than 15 frames. PersonRuns events have much longer durations
with less than half a percent (4 samples) under this threshold. In
contrast, events with duration greater than that of the sliding win-
dow will be described by a sequence of partial events spanning
multiple windows that need to be classified and fused to identify
the event’s start and end points. Smoothing the degree of varation
across a sequence of windows by using a smaller step size would
potentially improve the accuracy but would increase the computa-
tional load.

Subsampling of videos, by selecting every 2nd or 3rd frame, can
also improve computational efficiency, especially where expensive
descriptors are being calculated. However, if the duration of events
is less than 3 frames (and Table 1 shows some are) important in-
formation is lost. Some of our approaches (described in section
3) used every 2nd frame for person tracking or to calculate mo-
tion trajectories for example as it improved responsiveness. Of the
three events we investigated, over 4% of the ObjectPut events in
the training set had a duration of 2 frames or less while for Point-
ing and PersonRuns it was just under 1%. This means that some
relevant event segments will never be detected or shown to the user
– reducing the maximum possible recall for the final system. Large
window sizes are also likely to mute the important features for an
event of very short duration.

The spatial location and relative size of the person involved in
the event is also useful to consider. The region of interest (ROI)
where the actual event activity takes place is not provided in the
original annotations. We performed manual annotations on a subset
of training videos from cameras 1 and 3 for ObjectPut and Pointing
events on every second frame annotated with the event. Figure 2
shows four example heat maps indicating the normalised frequency
of each frame pixel being part of the event. These graphics show
clear hot spots for some events and differences in the location of
events within the same camera area. Section 3.2 also discusses
how this prior probability can be exploited to improve classifier
confidence.

Figure 3 shows the pixel area of the event regions as a percentage
of the total frame size (720×576) based on the approximate region
of interest dimensions from our manual annotations. The area of
the region of interest for these events is rarely more than 12% of
the total frame. While there is certainly some connection to the
camera configuration – note approximate similarity of ROI sizes
between the different events on CAM1 but less so on CAM3 (a
wider viewing area) – it’s clear that these are difficult even for peo-
ple to visually identify due to the typically short duration and the
small activity area. The heat maps show that while there are some
spots where the events most frequently occur, there’s still variation



Table 1: Characteristics of the 7 main events in TRECVid Dev08/Eval08 training video dataset

Event
Frequency (#) Duration (# frames (secs))

All CAM1 CAM3 CAM1 CAM3
median min/max median min/max

CellToEar 828 40 284 16.5 (0.66s) 5/429 17 (0.68s) 1/123
Embrace 940 27 629 66 (2.64s) 27/636 71 (2.84s) 1/2034

ObjectPut 3177 706 903 11 (0.44s) 1/625 9 (0.36s) 1/419
PeopleMeet 2719 813 906 65 (2.6s) 1/1176 106.5 (4.26s) 1/3236

PeopleSplitUp 1571 762 235 179 (7.16s) 1/7169 135 (5.4s) 1/4287
PersonRuns 673 25 218 54 (2.16s) 14/268 67.5 (2.7s) 18/276

Pointing 4097 926 1106 24 (0.96s) 1/2717 21.5 (0.86s) 1/360

Figure 2: Heat maps showing frequency of pixel involvement in
event

both within and between events and cameras. The challenge is as-
sisting the viewer to rapidly and accurately scan suggested matches.
More analysis over all events and cameras is required to determine
any significant trends.

Event frequency for the TRECVid dataset, a genuine sample col-
lected from a real life situation, shows that the occurance of events
ranges from just under 7 events per hour (PersonRuns) up to almost
41 events in an hour (ObjectPut). However, the events annotated for
the TRECVid task are somewhat artificial – a point made by our
users during the evaluations (see discussion in section 2.4) – and
therefore frequency for true events of interest in the surveillance
space is likely to be even less than that demonstrated here.

2.2 User profiles
Based on our visits to end users, we identified two main cate-

gories of user – professionals and computer experts. In this sec-
tion we describe the characteristics of each user category. Eight
users (four in each class) from four institutions completed the eval-
uation. All users were given an introduction to TRECVid and a
demonstration of the search interface. They were given time to fa-
miliarise themselves with the interface and the three events using
video loaded from the training dataset.

Professionals generally worked directly in managing surveillance
video systems or archives in a major company in transport or sta-
dium surveillance. These users had no previous experience of TREC-

Figure 3: Event region size per camera as % of total viewing
frame

Vid, evaluation workshops or of how research in information re-
trieval fields is evaluated. They view and search surveillance videos
as part of their everyday tasks and therefore have high knowledge of
surveillance video characteristics (resolution, view point etc.) and
understood how difficult and time consuming current methods are
for identifying events of interest. They gave minimal importance
to completing the task and, in some cases, found the specific events
used by TRECVid (e.g., Pointing) to be of little practical interest.
The discussions held with these users during the evaluation was
enlightening with respect to identifying their expectations of what
multimedia information retreival systems were capable of and what
events were likely to be useful for their work.

Our computer experts had experience in programming, often specif-
ically in machine learning or computer vision. They understood
the purpose of the evaluation exercise and treated it more compet-
itively. At the conclusion of the time period spent on each task a
notification dialogue would tell the user how many segments they
had selected and the amount of search time they had spent. This
was often ignored by the professionals but noted by the computer
experts. Computer experts were generally more forgiving of obvi-
ous mis-classifications and displayed more willingness to try dif-
ferent settings, camera filters and looked at results from all of the
different algorithms.

Table 2 shows the search time spent by each user type – quantify-
ing the main difference between the two classes. Note that Person-
Runs had fewer segments identified by the underlying classifiers.
Our prediction was that computer experts with superior understand-
ing of how computer vision and search systems worked would have



Table 2: Average search time (seconds) per event class for each
class of user

computer expert professional all
ObjectPut 1109 238 673

PersonRuns 187 95 141
Pointing 1020 184 602

an advantage in navigating and applying the various options and,
having more patience with underperforming algorithms, would find
more correct results.

2.3 Interaction paradigm
We’ve discussed the characteristics of the TRECVid surveillance

video dataset and looked at the relative frequency, varying dura-
tion and area of the event’s region. We’ve also described the two
main classes of user we used for the TRECVid evaluation task. In
putting together a system to support these users in finding as many
instances as possible of events in the surveillance video test set, de-
cisions and trade-offs need to be made to determine where in the
interaction paradigm the processing burden for various tasks is best
placed.

Option 1 is to optimise the underlying classification systems for
recall and allow the user to act as a filter, removing false alarms.
The system tries to reduce the amount of video the user needs to
view while avoiding losing relevant segments. The motivation is
that segments can’t be selected by the user as matches if they have
not been annotated by at least one of the underlying classification
options. Providing low-level filtering options (amount of activity,
number of people etc.) also contributes to this paradigm by giving
the user more precise control. This is the option we chose to use
for the TRECVid interface.

Maximising recall in an interactive system would seem to be an
attractive option as conventional thinking among information re-
trieval developers is that recall is paramount in applications such as
security, science, health etc. where consequences for missing infor-
mation are higher. However, direct feedback from the professional
users indicates that false alarms (incorrect suggestions) are highly
detrimental, reducing user confidence in the system performance
and limiting its practical utility. In discussion users commented
that in many scenarios they were willing to miss some examples
rather than having to deal with too many results. Further research is
required here to establish the limits of this thinking and the specific
conditions where recall can be sacrificed for higher user confidence
and more satisfactory interactions.

Option 2 would be to optimise for precision on very specific ob-
jects, events, cameras and configurations so that each classifier is
highly specialised but (hopefully) more reliable. The user would
then act as a form of late fusion, choosing the different classi-
fiers based on detecting component objects or events. The interface
would need to be carefully designed to support the professional user
by using familiar, consistent terminology and some training would
be beneficial to ensure users understand the different options avail-
able to them.

The trade-off between precision and recall is influenced by the
user characteristics and their requirements. The dataset character-
istics also bring two complicating factors when considering the de-
sign of the interaction. The first relates to the event duration and
small relative region size. For the TRECVid task we chose to dis-
play results ordered by classifier confidence in a grid using loop-

ing animated gifs downsampled to half-size and showing every 3rd

frame to exploit the users’ ability to quickly scan and identify cor-
rect results – particular the experienced professionals. As discussed
in the section 2.1, some events have durations less than 2 frames
and are very difficult to identify from a small, downsampled gif.
In addition, the mean region of interest size shows that activities in
the TRECVid dataset tended to occur in a small region and were
much harder to spot than anticipated. This trade-off for ‘human
processing’ is equivalent to the traditional one for computer vision
classifiers between ensuring good coverage through dense feature
sampling and reducing computational complexity.

The second complicating factor of the dataset was the question
of how to consistently segment the videos. In using an informa-
tion retrieval style interface that displays lists of order results, some
method was required to define start and end times of the events.
Each classifier used a different approach to determining the length
of video segments including a temporal sliding window, fixed tra-
jectory lengths, aggregating confidence values across frame-based
sequences to produce segments and using person-based tracking.
For TRECVid, it is very important that the start and end frame val-
ues are accurate as they are used automatically to assess the cor-
rectness of each result.

Overall, the effect of event duration and relative size of event
area to frame size makes it hard for a user to easily spot events
when shown an out-of-context video segment. Improvements are
likely by using fast-browsing or summarisation (without frame-
based downsampling) rather than requiring the user to filter video
segments. Based on the dataset and user characteristics and our
experiences with the professional users in TRECVid, we propose
that an interactive user information retrieval approach supported by
a structure of highly specialised semantic classifiers is likely to be
better for surveillance video due to the infrequency of events, user
dislike of false alarms and the general difficulty of automatically
identifying events. The next section presents the evaluation results
for both user classes from the interactive runs submitted to TREC-
Vid using a simple, retrieval interface with classifiers optimising
for recall.

2.4 Preliminary results and feedback
Table 3 shows the evaluation results for the interactive runs sub-

mitted to TRECVid. These comprised the set of all segments iden-
tified by users in either the computer expert or professional class
ordered by the frequency of the segments selection and the nor-
malised confidence score of the underlying classifier. #Sys is the
number of video segments identified for the event by the system,
#Cor is the number of these segments that are correct. RFA is the
rate of false alarms defined as the number of incorrectly identified
segments (#Sys-#Cor) per hour. PMiss is the number of missed
detections over the total number of observed events for the target
class (#Targ). DCR is Detection Cost Ratio which measures per-
formance in terms of the cost per unit time and is calculated as the
product of PMiss and RFA. Therefore a perfect system will receive
a DCR of 0. The video segments in the results list, defined by start
and end frame numbers, are matched with the ground truth annota-
tions using the Hungarian Solution to the Bipartite Graph [13].

The most surprising feature of the interactive results was the high
number of false alarms. Our prediction was that having a user act as
a result filter would greatly reduce the incorrect annotations. One
possibility is that the high RFA is due to the sensitivity of the event
alignment method used in the evaluation. It is likely that the event
segments found by the classifiers have a shorter duration or inexact
overlap with the groundtruth event segments. This would be inter-
esting to explore further, as for surveillance video retrieval tasks it



Table 3: summary of results for interactive runs
user, event #Targ #Sys #Cor RFA PMiss DCR
P ObjectPut 621 48 3 2.951 0.995 1.010
C ObjectPut 621 64 3 4.000 0.994 1.015

P PersonRuns 107 10 2 0.525 0.981 0.984
C PersonRuns 107 14 2 0.787 0.981 0.985

P Pointing 1063 25 12 0.853 0.989 0.993
C Pointing 1063 100 25 4.919 0.976 1.001

is less critical to find the exact boundaries of the event but rather to
identify that an event has occured, particularly if the task is inter-
active.

Our user evaluations provided us with the opportunity to meet
with professional end users from major companies in the security
and surveillance field and discuss their requirements for event re-
trieval. Many of the users we met with were unaware of TRECVid
and information retrieval research in general. The particular activ-
ities annotated in the dataset were not of interest to our users who
were often confused as to why we had annotated events such as
Pointing.

We expected that the computer experts would produce better re-
sults due to a clearer understanding of the task and a willingness
to spend more time searching for relevant segments. Contrary to
our expectations the professionals results were slightly better. This
is most likely due to the smaller number of correct results in the
segments found by the underlying classifiers and available to the
users while searching. The computer experts were also more likely
to find more segments and hence have a higher false alarm rate.

The evaluation metric is based on how closely the start and end
frames of the segment match with those identified by the humans
who created the ground truth. The various methods for segmenting
the video will have different levels of precision in determining the
exact start and end point. It is not clear if the surprising number of
false alarms, even in results chosen by our users, is due to overly
stringent restrictions on the start/end numbers by the matching al-
gorithm. For interactive retrieval of video for surveillance tasks this
level of precision may not be necessary.

3. COMPUTER VISION TECHNIQUES FOR
MULTIMEDIA IR

At the backend of our interface we applied a number of computer
vision techniques to provide semantic annotations indicating which
segments of the test videos were likely to contain an event. This
section gives high-level descriptions of these components, includ-
ing the evaluation results from processing the TRECVid dataset
without the user intervention, and outlines some future directions.

3.1 Person tracking
All events in TRECVid and most of general interest in surveil-

lance involve people and therefore person detection and tracking
is a key component. We were interested in using this to identify
regions of interest for other classifiers to analyse and to produce
raw statistics about video scenes such as the number of people
(crowded), the degree of activity or motion. In this section we de-
scribe how existing techniques were adapted to handle the type of
footage available in the TRECVid dataset.

For detection, we used HOG descriptors [3] and a pre-trained
person detector which yields a “sparse” set of detections in time,
i.e. there are a lot of misdetections. False negatives can be solved

Figure 4: Examples of Person Tracking

using tracking approaches, which are anyway needed to provide
time coherence to detections, so that we can reconstruct the trajec-
tory of objects.

For the tracking, we have implemented a Rao-Blackwellized Data
Association Particle Filter (RBDAPF) [9]. This type of filter has
been proven to provide good multiple object tracking results even
in the presence of “sparse” detections as the ones we have in these
sequences, and can be tuned to handle occlusions. The Rao-Black-
wellization can be understood as splitting the problem into lin-
ear/Gaussian and non-linear/non-Gaussian parts. The linear part
can be solved with Kalman Filters, while the non-linear one must
be solved with approximation methods like particle filters. In our
case, the linear part is the position and size of a bounding box that
models the persons. The non-linear part refers to the data associa-
tion that is the process of generating a matrix that links detections
(the HOG ones, for instance), with objects or clutter. The associa-
tion process can be strongly non-linear so that sampling approaches
can be used. In our case we have implemented ancestral sampling
[6].

The control of input/output of new persons is handled thanks to
the use of the data association filter that classifies detections ac-
cording to the existing objects, removes objects that remain unde-
tected for a sufficiently long time, and creates new objects when
detections not associated to previous objects appear repeatedly.

Preliminary results indicate that this approach is able to detect
and track up to four or five simultaneous persons whose full body
is clearly seen in the scene. With more than five persons we have
found that in these types of images multiple occlusions happen and
the full-body detector does not provide good detection results.

High-levels of occlusion and very crowded scenes remain a chal-
lenge. Figure 3 shows the pixel area of the event region relative to
the total frame size is often only between 4 and 12% and for some
configurations may be less than 5%. The relative size of people
will be even smaller and the camera configuration means that often
only the head/shoulders is consistently visable. Future plans are to
apply this work to real data from project partners, to use research
datasets such as CUHK occlusion1 to improve the ability to track
occluded persons and to examine applying fluid dynamics models
(such as [8]) to recognise other crowd-based behaviour and events.

3.2 Region-based activity recognition (rb1)
The motivation behind region-based activity recognition was to

use the output from person tracking to segment the frames and iden-
tify likely regions for further analysis. This was trialled on a subset
of the training data and used as input for the manual region of inter-
est annotation activities but due to difficulties with accurate track-
ing in crowded scenes it was found to be insufficient to apply un-
supervised on the test videos at this stage. Therefore a frame-based
approach employing a fixed grid was applied. Comparison systems
were implemented that use prior-probability based on the region of
interest data to improve overall detection scores. This section de-
1http://www.ee.cuhk.edu.hk/~xgwang/CUHK_
pedestrian.html



scribes the two frame-based methodologies for event recognition:
using Optical Flow features with a Hidden Markov Model (HMM)
classifier (rb1c) compared with dense SIFT features processed with
a Bag of Words (BoW) and applied with an SVM classifier (rb1a).

For the Optical Flow features we computed a normalised his-
togram of oriented optical flow (90 bins, equally spaced) where the
magnitude of each bin corresponded to the sum of the magitude of
the optical flow. To describe these we used 2D Zernike Moments
[24](p689) of Efros Descriptor Images [10] as follows. We calcu-
late the optical flow vector field F for each frame and split F into
two scalar fields, Fx and Fy, corresponding to the horizontal and
vertical components of the flow. Then we half-wave rectify Fx and
Fy into 4 non-negative channels: Fx+ Fx− Fy+ and Fy−. Fi-
nally, we blur with a Gaussian to remove spurious motions. These
channels, known as Efros descriptors [10] may be regarded as dis-
tinct images. As features, we calculate 2D Zernike moments of
each of the new channels (16 features per channel, per frame), re-
sulting in a 64 × 1 feature vector per frame. These features are
concatenated into a single vector (154× 1) and the feature space is
reduced to 16× 1 using principal components decomposition.

As a constrasting approach, we also extracted dense SIFT fea-
tures [2] around spatial interest points and clustered these features
to create a visual bag of words. For classification model learning
and test set evaluation, histograms of visual words are used as input
features to an SVM with radial basis function (RBF).

To generate classification models, we trained our HMM and SVM
using ground truth events from the TRECVid training dataset. Specif-
ically, we utilised the manually identified regions of interest within
each frame as a unique event instance. To apply frame-based classi-
fication to the TRECVid test data, we adopt a grid based approach.
Each frame is divided into 36 equally-sized regions and each region
is evaluated separately. After classification using both methods, we
threshold to retain only the top n video segments (ranked by confi-
dence), and link these segments temporally to derive start and end
times. The final confidence score is the mean confidence across the
linked time period. We deliberately set n high to allow high false
positive rates, in the hope that this will allow a higher proportion of
true positives to be captured and therefore be available through the
user interface.

Given that a fixed grid was used to segment the test video frames,
we were also interested in using the prior probability information
about the location of our events to improve the final confidence
measure. We represented each heat map (shown in figure 2) as
a pixel-level probability distribution whose sum is 1. Based on
this the probability of an event occuring within a single grid region
was calculated as the sum of probabilites from within that grid.
The result of this is a 6 × 6 matrix containing update weights that
we applied to adjust the final classification score (SVM classifier –
rb1b; HMM classifier – rb1d).

The next steps for this approach are to incorporate the improve-
ments in person tracking and exploiting the tracking to move from
a frame-based, fixed-grid method to motion history images (MHI)
[5]. The use of prior probability displays some promise (see sec-
tion 3.4) so we are interested in completing more events and further
testing its usefulness.

3.3 Motion trajectory (mt1)
Person-based activity recognition using motion trajectory is a

common approach [21, 17, 1] based on identifying and describing
patterns of movement. The types of events we were interested in
identifying in the TRECVid dataset involved temporal actions by a
single person, therefore classifiers using motion trajectory descrip-
tions was a clear avenue of investigation.

To represent motion, we used salience point trajectory as a low-
level feature and described it using four different descriptors. First,
in order to extract the motion trajectory, we applied a background
subtraction algorithm [12] to detect foreground regions. This pro-
cessing helps to reduce computational complexity and increases the
accuracy of point tracking by reducing the search area. Salience
points [19] are located within the foreground regions by a Harris
Corner Detector and are tracked over video sequences using the
Kanade-Lucas-Tomasi (KLT) algorithm [15]. In the experiments,
we have observed that longer salience point trajectories are likely
to be erroneous. Thus we empirically set the maximum trajectory
length to be 15 frames.

We adopted Heng et al.’s [20] approach to describe the trajec-
tory features. For each trajectory, we calculated four descriptors to
capture the different aspects of motion trajectory. Among the exist-
ing descriptors, HOGHOF [14] has shown to give excellent results
on a variety of datasets [21]. Therefore we computed HOGHOF
along our trajectories. HOG (histograms of oriented gradient) [3]
captures the local appearance around the trajectories whereas HOF
(histograms of optical flow) captures the local motion. Addition-
ally, MBH (motion boundary histogram), proposed by Dalal et al.
[4], and TD (trajectory descriptor) [20] are computed in order to
represent the relative motion and trajectory shape.

In order to represent the video scene, we have built a Bag-of-
Features (BoF) model based on our four descriptors. This requires
the construction of a visual vocabulary. In our experiments, we
cluster a subset of 250,000 descriptors sampled from the training
videos with the k-means algorithm for each descriptor. The num-
ber of clusters is set to k = 4000, which has shown empirically
to give good results in [14]. The BoF representation then assigns
each descriptor to the closest vocabulary word in Euclidean dis-
tance and computes the co-occurrence histogram over the video
sub-sequence.

For classification, we used a non-linear support vector machine
(SVM) with a Radial Basis Function (RBF) kernel. Using the
cross-validation technique, we empirically found the parameters of
cost (32) and gamma (1×10−5) of the kernel. In order to represent
the video frame, we utilized a temporal sliding window approach.
In the experiments, we set the window size to 25 frames and sliding
step size to 8 frames.

Here we have implemented an action detection algorithm that is
based on sparse motion trajectory. Since trajectory is suitable for
representing gesture-like movements, we mainly focused on build-
ing a classifier for Pointing events using this method. Although we
have not considered any spatial association between the extracted
trajectories’ descriptors, this approach performed reasonably well
on the challenging TRECVid SED dataset. In the future, we would
like to explore an alternative way to represent the video scene rather
than the Bag-of-Features (BoF) approach that ignores the spatial
information.

3.4 Evaluation
Table 4 shows the outcome of the automatic classification runs

submitted to TRECVid 2012. Section 2.4 defines the metrics (RFA,
PMiss, DCR).

The purpose of the different runs for the ‘rb1’ configuration was
to evaluate and compare two frame-based supervised-learning tech-
niques for event classification (HMM with optical flow features
and SVM with BoW), considering whether or not a priori infor-
mation could increase accuracy and reliability of event classifica-
tion. Across the ‘rb1’ experiments, the SVM incorporating a priori
information was slightly more successful.

One factor worth mentioning is the high RFA across all exper-



Table 4: Sumary of results for automatic runs
run, event #Targ #Sys #CorDet RFA PMiss DCR

mt1, ObjectPut 621 9 0 0.59027 1.000 1.0030
mt1, PersonRuns 107 20 3 1.11496 0.972 0.9775

mt1, Pointing 1063 136 16 7.87029 0.985 1.0243
rb1a, ObjectPut 621 457 11 29.25123 0.982 1.1285
rb1a, Pointing 1063 981 50 61.06030 0.953 1.2583

rb1b, ObjectPut 621 308 3 20.00364 0.995 1.0952
rb1b, Pointing 1063 950 57 58.56805 0.946 1.2392

rb1c, ObjectPut 621 730 24 46.30352 0.961 1.1929
rb1c, Pointing 1063 2174 96 136.28712 0.910 1.5911

rb1d, ObjectPut 621 876 22 56.0102 0.965 1.2246
rb1d, Pointing 1063 1286 56 80.67043 0.947 1.3507

iments. During temporal linking and thresholding, our threshold
was set intentionally to overestimate event occurrence. Future ob-
jectives include the reduction of RFA, by modification of thresh-
old values and generation of enhanced / improved event models for
classification. It is envisaged that we calculate non motion-based
descriptors for event classification, and combine these with our ex-
isting optical flow feature sets. The inclusion of the user gave a
1% improvement in the performance over the fully automatic clas-
sifiers. As discussed in section 2.4, this is considerably less than
we expected given the generous thresholding and the ability of the
user to determine an event match.

One consideration that we realised after submission was that the
ObjectPut definition used by the manual annotators sets the start
frame as when the person has released the object. We didn’t take
this into account when defining the training segment. Therefore
assumptions about the ability to detect the motion of a person’s
downward gesture before releasing the object were incorrect. This
illustrates the effect that decisions about temporal segmentation of
the video can have on performance.

The retrieval of events in surveillance video is a very challenging
task and the low absolute values for the DCR metric reflect this.
Our numbers are reasonable for the TRECVid challenge where we
ranked in the second quartile for almost all of our runs.

4. CONCLUSIONS AND FUTURE WORK
Future work will continue on improving the accuracy and re-

sponsiveness of the underlying computer vision systems and is likely
to focus more on developing specific components to work in collu-
sion with each other. We aim to complete the annotation of region
of interest and analysis of dataset characteristics and have held dis-
cussions with fellow TRECVid participants to collaboratively per-
form manual annotations. The team from the City College of New
York Media [23] have also developed an automatic method for gen-
erating heat maps similar to those we have produced. Comparison
of techniques using these approaches would be very interesting.

Also of interest is using more formal early fusion techniques.
Currently all output is presented equally to the user which caused
some inconsistencies as different methods for calculating confi-
dence values and different thresholds were used. We intend to ap-
ply fusion [22] and hierarchical modelling techniques [18, 11] to
enable classification and tracking of both low-level (person/object)
and more complex events as required by our users.

We began this work with the aim of bringing together disparate
computer vision methods to support event retrieval in surveillance
video, initially for the TRECVid 2012 challenge. Through the pro-

cess of analysis the dataset characteristics, charting the decisions
and tradeoffs during implementation and exploring our assump-
tions with professional users who manage CCTV collections in
their daily work, we have established better understanding of how
to manage the challenges presented by this type of data.

A surprising outcome was changing our expectations for a surveil-
lance retrieval system based on feedback from professional users.
They found it difficult to see the relevance in the events we were
exploring even after explaining the purpose of TRECVid and that
actions such as ‘Pointing’ were examples. It also changed our as-
sumptions about the trade-off between precision and recall. Users
have told us that false alarms (common when aiming to maximise
system recall) are more irritating than we had expected.

An information retrieval approach for finding events in surveil-
lance video will need to be responsive to users’ needs in different
scenarios and, given the data characteristics and the difficulty of
confidently and accurately finding many of the events of interest, a
hierarchical, tool-kit based approach is likely to be the most effec-
tive. This would combine a number of generic (e.g., person track-
ing) and highly specific (e.g., ‘whole arm non-aggressive pointing’)
computer vision based classifiers to enable semi-customised ser-
vices based on the needs of surveillance professionals. Our future
work will be to build upon the feedback gathered from our pro-
fessional users and develop collections of semantic classifiers to
address their requirements for video retrieval in the surveillance
domain.
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