
Specification of Extended Reflexive

Ontologies in the context of CDSS

Eider SANCHEZ a,b,c,1, Carlos TORO a,b, Manuel GRAÑA c, Cesar SANÍN d and

Edward SZCZERBICKI d

a Vicomtech-IK4 Research Centre, San Sebastian, Spain
b Biodonostia Health Research Institute, eHealth Group, Bioengineering Area, San

Sebastian, Spain
c University of the Basque Country UPV/EHU, Computational Intelligence Group,

Computer Science Faculty, San Sebastian, Spain
d School of Engineering, The University of Newcastle, Newcastle, Australia

Abstract. Decision recommendations are a set of alternative options for clinical

decisions (e.g. diagnosis, prognosis, treatment selection, follow-up and prevention)

that are provided to decision makers by knowledge-based Clinical Decision Sup-

port Systems (k-CDSS) as aids. We propose to follow a reasoning over domain ap-

proach for the generation of decision recommendations, by gathering and inferring

conclusions from production rules. In order to rationalize our approach we present

a specification that will sustain the logic models supported in the Knowledge Bases

we use for persistence. We introduce first the underlying knowledge model and

then the necessary extensions that will convey towards the solution of the reported

needs. The starting point of our approach is the work of Toro et al. [13] on Re-

flexive Ontologies (RO). We also propose an extension of RO, by including the

handling and reasoning that production rules provide. Our approach speeds-up the

recommendation generation process.

Keywords. Reflexive ontologies, fast query system, rule engine, autopoiesis

1. Introduction

Clinical Decision Support Systems (CDSS) are active intelligent systems that use patient

clinical data to generate case specific advice [9]. According to [5], the main task of CDSS

consists of the retrieval of relevant knowledge and patient data (coming from medical

devices, evidence provided by the medical community, and clinical guidelines and pro-

tocols) and their analysis to perform some action, often the generation of recommenda-

tions. CDSS cover a wide span of tools based on several technologies and approaches.

Particularly, [12] identifies knowledge-based CDSS (k-CDSS) as tools with specialized

problem-solving expertise which allows them to provide decision recommendations to

users. Decision recommendations are a set of alternative options for actions (e.g. diag-

nosis) that have been calculated by the system according to previously established crite-

1Corresponding Author: Eider Sanchez, Vicomtech-IK4 Research Centre, Mikeletegi Pasealekua 57, 20009

San Sebastian, Spain; E-mail: esanchez@vicomtech.org

Innovation in Medicine and Healthcare 2014
M. Graña et al. (Eds.)

IOS Press, 2014
© 2014 The authors and IOS Press. All rights reserved.

doi:10.3233/978-1-61499-474-9-234

234



ria. Recommendations are ranked and presented to system users, so that they can easily

analyze the different suggested choices, as well as their proofs. In this sense k-CDSS act

as black boxes that output decision recommendations for a given input data set. They

benefit from a symbolic representation of knowledge about a particular domain, and the

ability for reasoning about solutions of problems within that domain [8].

In the context of this article we use a reasoning over domain approach for the gen-

eration of recommendations. Our aim is to gather and infer conclusions from production

rules. We present our reasoning system and the process of generation of decisional rec-

ommendations. In order to rationalize our approach we propose a specification that will

sustain the logic models supported in the Knowledge Bases we use for persistence. We

introduce first the underlying knowledge model and then the necessary extensions that

will convey towards the solution of the reported needs. The starting point of our approach

is the work of Toro et al. [13] on Reflexive Ontologies (RO). We propose an extension of

RO, by including the handling and reasoning that production rules provide.

This paper is structured as follows: Section 2 introduces CDSS and Reflexive On-

tologies. Section 3 presents an specification of the underlying knowledge model of the

CDSS. Section 4 details the process of generation of decision recommendations. Section

5 proposes a specification of Reflexive Ontologies. Section 6 proposes a specification of

Extended Reflexive Ontologies. Section 7 presents the reasoning process generation over

the Extended Reflexive Ontologies paradigm. Finally, Section 8 discusses some relevant

aspects of our approach.

2. Background concepts

2.1. Knowledge-based CDSS

Knowledge-based CDSS have been broadly reported in the literature. Examples are the

Bayesian reasoning for general CDSS Iliad, presented by Warner [14]; the diagnostic

mammography system Mammonet based on bayesian networks presented by Kahn et

al [7]. Amongst other works based on production rules we can mention the IMM/Serve

immunological CDSS built by Miller et al [11]. More recently, [15] presented a web

based CDSS that follows a case-based approach, in which editors were provided for

knowledge manual maintenance; [1] described an architectural and data model for CDSS,

integrated to the clinical system; [4] presented a knowledge-based CDSS for Oncology,

where both an ontology and a ruleset were proposed; in [3] an OWL DL ontology for a

preoperative risk assessment CDSS was presented. The proposed system was based on a

DL reasoner and a rule engine that provided patient preoperative risk assessments.

The general model of Knowledge-based CDSS proposed by Berner et al. [2], con-

sists of 4 elements: (i) an input, (ii) an output, (iii) a Knowledge Base and (iv) a reasoning

engine.

CDSS input The CDSS input consists of the patient clinical data for which recommen-

dations are requested. Such data are generally specified in a controlled vocabulary, in

which the different variables and their possible values are previously stablished.

E. Sanchez et al. / Specification of Extended Reflexive Ontologies in the Context of CDSS 235



CDSS output The CDSS output is usually provided as a list of possibilities ranked in

some order of probability, such as the most likely, the less likely, and the most save or

risky. Depending on the application domain and the purpose of the system, the most

likely possibility could not be interesting for clinicians, as such could be trivial or imme-

diate for them. However, clinicians are in general interested in having a broader spectrum

of alternatives to consider. Hence, some knowledge-based CDSS are focused on provid-

ing less likely options, together with the evidence supporting such recommendations.

Knowledge Base The Knowledge Base consists of some form of medical knowledge.

The representation of such knowledge may be obtained by means of applying different

techniques, depending on the technology of the Reasoning Engine. A very common tech-

nique is the modeling of the knowledge domain in an ontology, which is defined by Guar-

ino as the explicit and partial account of a conceptualization [6]. This variant contains

the description of the different elements included in the domain, their relationships and

instances. The codification of the criteria for solving the different decisions and aspects

of the domain may also be included.

Reasoning Engine The Reasoning Engine combines the input data and the medical

knowledge, according to some logical scheme, for generating the output.

2.2. Reflexive Ontologies

Reflexive Ontologies (RO) define an abstract knowledge structure (i.e. an ontology and

its instances) endowed with the capacity of maintaining an updated image of every query

performed [13]. That is, the RO maintains the history of queries and the actual collection

of instances that answer each query. The purported advantage of RO is that of speeding

up query response. It also implies that some knowledge generation can be produced, i.e.

new rules can be generated, on the basis of query interaction. This potential behavior was

termed “autopoietic” in the original proposal [13], following the biological inspiration

of Maturana in his seminal work [10]. Figure 1 shows the logical structure of a RO,

which is, basically, a conventional ontology extended with a reflexive structure (mainly

composed by the query instances in the left part of the image). As can be seen, every

query (Qp) is related to at least one class of the ontology (Ci) and one -or more- instance

(Ik).

Amongst others, RO is based on the concept of autopoiesis, meaning “self-creation”

or “self-production”. The RO display an autopoietic behavior since its structure is re-

generated in response to external changes, such as the launching of new queries, or the

modification of the information stored in the ontology. Moreover, the ontology is capable

of storing the history of performed queries, which allows some interesting operations,

such as, for instance, knowing which parts and concepts of the ontology are consulted

more regularly. Accordingly, the autopoietic behavior ensures the integrity of the whole

RO. When a new individual is created, modified or removed from the ontology, the re-

flexive structure is updated. The updating process consists of modifying or generating

new references to individuals for each query instance related with the change. By cre-

ating new connections (pointers to individuals) as a result of external perturbations, the

system behaves as an autopoietic system or organism, according to the definition given

by Maturana and Varela [10].

E. Sanchez et al. / Specification of Extended Reflexive Ontologies in the Context of CDSS236



Figure 1. Schematic representation of the structure of a RO

3. Knowledge model specification

This section presents a specification of the knowledge model of a CDSS.

3.1. Domain Ontology

Let O = 〈C,P, I〉 denote a domain ontology, whose elements are a set of classes C =
{C1,C2, ...,CN−1,CN}, a set of properties P= {P1,P2, ...,PN−1,PN}, and a set of instances

I = {I1, I2, ..., IN−1, IN}.
• A class Ci defines a group of individuals that share common properties. Classes

in C can be hierarchically organized.

• A property Pi defines relationships either (i) between sets of individuals, or (ii)

from set of individuals to data types. When Pi relates instances of two different

classes or instances of the same class it is called an Object Property, Po
i . Likewise,

when Pi relates instances of a class to instances of data types (e.g. Integer, String,

Float), it is called a Datatype Property, Pd
i .

• An individual Ii defines an instance of a class Ci, we use the notation Ii ∈ Ci to

specify this instantiation. Properties Pi between classes are mapped homomorphi-

cally to properties relating individuals.

3.2. Querying the ontology

Individuals of an ontology are instances of the classes in the knowledge structure, so that

searching in the space of instances is enhanced by the possibility of reasoning at the se-

mantic level of classes and properties. Hence, an ontology provides semantic enrichment

of the data. A query is a search within the ontology that returns a collection of instances

satisfying a set of clauses.

We specify these ideas as follows: A query is a pair Qi = (qi, IQi) where qi are

the clauses specifying the characteristics of the search, and IQi ⊂ I is the subset of the

ontology individuals matching the query clauses. In fact, a query is a map of the form:

σ (qi) = IQi = {Ik ∈ I |M (qi, Ik)} , (1)

E. Sanchez et al. / Specification of Extended Reflexive Ontologies in the Context of CDSS 237



where M (qi, Ik) is a very general predicate that is true when query clause qi is satis-

fied by the assignment of values to variables in an individual Ik (i.e. Ik matches qi).

A query clause qi can be simple or complex, denoted qs
i or qc

i , respectively. A simple

query clause is specified by a tuple qs
i = 〈Vi,mi,vi〉, where Vi is a variable, mi is the

comparison operator (i.e. >,<,=) and vi a value of the range of Vi. A complex query

qc
i is specified by n simple queries, combined by logical operators, θ , (i.e. ∨, ∧ and ¬)

which define the relationships among consecutive simple queries:

qc
i = {(θn,qs

n)}∀n , (2)

where θn is the n-th logical operator (i.e. ∨, ∧ and ¬), assuming θ0 = /0.

3.3. Rules

The atomic knowledge encoding is the rule, which states the consequences of the search

performed on the semantically enhanced data. Rule consequents are actions involving

variable value assignment or recommendations. A rule rk is composed of a query clause

and the consequent actions. Each rule is formalized as a tuple rk = 〈Ak,Sk,Lk,Wk,Bk〉,
where

(i) Ak is the set of conditional clauses (antecedents), that are equivalent to the qi part of

the queries,

(ii) Sk is the set of actions corresponding to the THEN consequents,

(iii) Lk is the set of actions corresponding to the ELSE consequents,

(iv) Wk is the rule salience (aka weight), defined as a real number WK ∈ [0,1], and

(v) Bk is a generic notation for application-dependent ancillary information that can be

associated to rule.

A special kind of action is the assignment of a value to a variable, i.e. Vl = vl . In the

context of a rule, this action is restricted to individual instances fulfilling the antecedent

clause of the rule, for the THEN consequent, or its negation, for the ELSE consequent.

We assume that the foregoing assignment expression is equivalent to Ik ·Vl = vl , where the

dot notation specifies the fact that the variable is an attribute of the individual instance,

which may fulfill the antecedent clause or not, as discussed before.

To identify each of the different types of decisions (recommendations) that can be

produced by the search and reasoning over the semantically enhanced data we introduce

the Decision Domain, denoted di. Each di is associated to a property Pi in the ontology,

we denote this association as follows: di ↪→ Pi, because it is not strictly a map. We say

that a rule rk is oriented towards a Decision Domain di, when the THEN and ELSE

consequents Sk and Lk, respectively, refer to the Property Pi associated with di. Each rule

rk is oriented towards some di and both consequents, Sk and Lk, must refer to the same

set of di.

E. Sanchez et al. / Specification of Extended Reflexive Ontologies in the Context of CDSS238



4. Generation of recommendations

When inputted a request J = (IJ ,DJ), where IJ ⊂ I are a set of individuals for which

recommendations are requested, and DJ ⊂ D are the decision domains of those recom-

mendations, the reasoner ℜ outputs a set of recommendations K =
{

Ki j
}

for a given

Ontology, O, and Ruleset, R, such that j different recommendations are provided for each

individual request Ji = (Ii,di).
A recommendation is a tuple Ki j =

〈
Gi j,Wi j,RKi j

〉
computed in response to a couple

(Ii,di) where:

• The recommendation consequent Gi j, which is a collection of output domain as-

signments uk associated to rules rk ∈ RKi , being uk = {(Vd ,vd)} a collection of

domain variable value assignments, where d is the domain indicator, associated

to the consequent of rk. The value assignment affects the individual instance of

the request, i.e. Ii ·Vd = vd .

• The weighted probability WGi j ∈ [0,1] computed for recommendation Gi,

• A subset of rules RKi j = {rk |M (Ak, Ii)} ,RKi j ⊂ R, that provide the supporting

evidence for the recommendation consequent Gi j.

The output recommendations in K are not ordered, however they are given a different

weighted probability WGi j ∈ [0,1] computed from the respective weights Wk of the rules

endorsing each recommendation Gi j. After all recommendations Ki j for a couple (Ii,di)
are calculated, the weighted probabilities WGi j are normalized to guarantee ∑ j WGi j = 1.

Each Ki j is built analyzing the sets of instances matching antecedents of rules rk,

whose consequents refer to the same di queried in the input request Ji, i.e. rk ∈ RKi j .

• The matching for each individual Ii and rule rk is done by translating Ak into a

query specification qi and obtaining the subset of individuals Iqi ⊂ I that match qi
in ontology O. Let Iqi be the set of individuals that do not match qi in ontology O,

such that Iqi ∪ Iqi = I and Iqi ∩ Iqi =∅.

• For each individual in Iqi the domain value assignment Vd = vd in Sk is selected

as recommendation consequent Gi j.

• On the other hand, for individuals in Iqi we select domain value assignment Vd =
vd in Lk.

• Then, Wk is added to WGi j and rk to RKi j .

5. Specification of Reflexive Ontologies

In this Section, we present the first actual attempt to provide a formal specification of

Reflexive Ontologies, which, though remaining abstract, is concrete enough to discuss

the consequences and degree of implementation.

A reflexive ontology RO is a tuple RO= 〈O,Qt〉, where O is a domain ontology and

Qt = {Q1,Q2, ...,QN−1,QN} is the set of queries that have been performed over the set

of instances, I, and classes, C of the ontology up to time t (see Figure 1). Therefore, the

RO is a time varying structure in two senses:

1. Its query set Qt will be growing in time: each new query will be added to it.

2. Changes in the instance layer, i.e. by the edition of an individual, will be reflected

on the queries that include it.

E. Sanchez et al. / Specification of Extended Reflexive Ontologies in the Context of CDSS 239



The properties of RO are specified as follows.

Query retrieval: The RO must be able to detect and store every new query -and

subquery- performed on it. Let us denote Qi∗ a new query posted by the user.

¬∃qi ∈ Qt s.t.qi = qi∗ =⇒ Qt+1 = Qt ∪{Qi} . (3)

On the other hand, if the query has been already posted and answered, an updated answer

will be provided

∃qi ∈ Qt s.t.qi = qi∗ =⇒ IQi∗ = IQi . (4)

Integrity update: The system must be able to actualize the query set every time a new

individual is added to, removed from or modified within the ontology. Let us denote It
k

the variable value assignment of the k-th data instance at time t. The integrity update

means that, at any time, if an instance satisfies the clause of a query, then it belongs to

the data associated to the query:

∀qi ∈ Qt s.t.M
(
qi, It

k
)
=⇒ It

k ∈ It
Qi

(5)

This specification is purely declarative. If we want to advance something on the

mechanism that may implement such property, we can state what happens for each

change in the instance layer. For the sake of notation, let us assume that the introduction

of a new instance at time t can be formalized as It−1
k =∅ and It

k �=∅. Also, the following

holds always M (∅,qi) = F . Hence, the integrity update can be specified as follows:

It−1
k �= It

k =⇒

⎧⎪⎨
⎪⎩

¬M
(
qi, It−1

k

)∧M
(
qi, It

k

)
It
Qi
= It−1

Qi
∪{It

k

}
M
(
qi, It−1

k

)∧M
(
qi, It

k

)
It
Qi
= It−1

Qi
−{It−1

k

}∪{It
k

}
.

M
(
qi, It−1

k

)∧¬M
(
qi, It

k

)
It
Qi
= It−1

Qi
−{It−1

k

} (6)

The three possibilities specify all possible casuistry. The first case is when the data in-

stance was not included in the past version of the query, but its new values do match

the query clause, then the instance is added to the query data. The second case is when

the data instance was already in the query, but it has changed, then the instance must be

updated in the query (i.e. the old version removed and the new one added). Finally, when

the instance no longer matches the query clause, then it must be removed from the query

data.

Self reasoning over the query set: This property states the ability to perform some kind

of query result mining. Some possible ways of self-reasoning are:

i) discover patterns of queries. As an example, assume that some pair of queries Qi1
and Qi2 have a non empty intersection of their corresponding data instances, i.e.

IQi1
∩ IQi2

�= ∅, then we can add a new query corresponding to this intersection

Qi∗ =
(

qi1 ∧qi2 , IQi1
∩ IQi2

)
.

ii) recommend ontology refinement based on the queries performed over the system. As

an example, consider the case when some class is never searched by any query, it

may well be denoted obsolete or redundant, i.e. if ∀i, IQi ∩Cj = ∅ then we may

propose to remove Cj from the ontology.

E. Sanchez et al. / Specification of Extended Reflexive Ontologies in the Context of CDSS240



Remaining properties The support for logical operators is considered in the definition

of the rule system, and the autopoietic behavior is a property that is related to the second

order reasoning over the ontology and the alignment with third-party tools generating

synonymy, equivalent concept matching, statistical and fuzzy analysis.

6. Extended Reflexive Ontologies

In this article we propose the Extended Reflexive Ontologies (ROX) whose main fea-

ture is the maintenance of the rule and recommendation history along with the query

history already keep by the RO. Figure 2 shows the structure of the Extended Reflexive

Ontologies (ROX).

A ROX is a tuple ROX = 〈RO, R t〉, where RO is a Reflexive Ontology and Rt =
{R1,R2, . . . ,RK−1,RK} the historical set of rules applied at least once to obtain a rec-

ommendation.

Let a rule-recommendation RK be defined as a tuple RK = 〈rk,uk〉, where

(i) rk is a rule such that rk = 〈Ak,Sk,Lk,Wk,Bk〉, where the antecedent Ak is a query,

Qk =
(
qk, IQk

)
, and Consequents Sk and Lk are corresponding actions taken in the

THEN and ELSE parts of the rule, and

(ii) uk are the output domain assignments asociated to rk, where uk =
{(

Id
U ,Vd ,vd

)}
is a collection of domain variable value assignments Vd − vd , where d is the do-

main indicator, Id
U is a set of individuals affected by the domain value assignment

Ik′ .Vd = vd ,∀Ik′ ∈ Id
U .

7. Generation of recommendations over Extended Reflexive Ontologies

The Extended Reflexive Ontologies approach stores every rule rk applied to the ontology,

into a pool of rules that have been applied Rt = {R1,R2, . . . ,RK−1,RK}, such that

Rk = 〈rk,uk〉, rk = 〈Ak,Sk,Lk,Wk,Bk〉, and generated domain recommendations uk ={(
Id
uk
,Vd ,vd

)}
.

Figure 2. Extended Reflexive Ontologies

E. Sanchez et al. / Specification of Extended Reflexive Ontologies in the Context of CDSS 241



The basic recommendations generation by a reasoner ℜ is performed by taking as

input a Request J=(IJ ,DJ), the current Extended Reflexive Ontology, ROXt , and Ruleset

R. Then the reasoner ℜ outputs a set of recommendations K =
{

Ki j
}

for each for each

request Ji = (Ii,di). A recommendation is a tuple Ki j =
〈
Gi j,Wi j,RKi j

〉
as defined above.

Ki j is built by analyzing first the stored rules in R. After that the process recalls the

reasoning on the remaining rules R−Rt . For each Ii ∈ IJ we follow the process:

1. For each uk in Rt such that Ii ∈ Iuk we have two situations

(a) we have a previusly created recommendation Ki j such that its recommenda-

tion Gi j refers to the same vd as uk then we add the rule rk and weight Wk to

RKi j and WGi j , respectively.

(b) otherwise we create recommendation Ki j such that its recommendation Gi j
is Vd = vd , the rule setRKi j = {rk}, and weight WGi j =Wk .

2. For each rk in R−Rt , if M (Ii,Ak) we compute a new recommendation Ki j with

Gi j = (Vd ,vd) as specified by the consequent of rule rk, the rule set RKi j = {rk},
and weight WGi j =Wk. Besides we update the rule pool of the ROX, as follows,

Rt+1 =Rt ∪{(rk,uk)}, with uk = {(Ii,Vd ,vd)}.
After computing the recommendations for the given collection J= (IJ ,DJ), we may need

to perform a compaction process in Rt+1 because we may have some redundant uk which

differ only in Iuk and can be compacted into one.

8. Conclusions and future work

In this article we presented a specification of the fast-querying technique Reflexive On-

tologies. We also proposed an extension of such technique to allow fast rule-based rea-

soning. We called our new approach Extended Reflexive Ontologies (ROX).

The enhancement of an ontology in providing self-contained rules and recommen-

dations, relies in the following aspects:

• Speed up of the process of recommendation generation. Each rule rk, as well as

the recommendations uk provided to each decisional domain d by rk, are both

stored in the Extended Reflexive Ontology (ROX). Thus, when applying a rule

that is already contained in ROX, recommendations do not need to be recalcu-

lated. They are only calculated in the case where the rule has never been applied

before and are then added to the rule reflexivity class.

• Incremental nature of ROX. From the analysis of the previously applied rules and

the corresponding attached actions, new rules could be discovered and added to

ROX. In this article, such analysis is performed by experience-mining processes

executed over a history of stored decisional events.

In the context of this article the application of ROX in Clinical Decision Support

Systems (CDSS) provides a considerable speed up of the process of generation of de-

cision recommendations. Particularly, during patient-recommendations generation many

rules are applied to the underlying knowledge bases of the CDSS. As rules tend to be the

same for every patient, each time a new patient data is introduced in ROX, the applying

rules and recommendations are automatically calculated by the reasoner ℜ. Thus, when

requesting for recommendations, they will be readily available.

E. Sanchez et al. / Specification of Extended Reflexive Ontologies in the Context of CDSS242



References

[1] L. Aleksovska-Stojkovska and S. Loskovska. Architectural and data model of clin-

ical decision support system for managing asthma in school-aged children. In Elec-
tro/Information Technology (EIT), 2011 IEEE International Conference on, pages

1–6, 2011.
[2] Eta S. Berner and Tonya J. La Lande. Clinical Decision Support Systems, Theory

and Practice, chapter Overview of Clinical Decision Support Systems. Number 1.

Springer, New York, second edition, 2007.
[3] Matt-Mouley Bouamrane, Alan L. Rector, and Martin Hurrell. Development of an

ontology for a preoperative risk assessment clinical decision support system. In

CBMS, pages 1–6. IEEE, 2009.
[4] Michele Ceccarelli, Antonio Donatiello, and Dante Vitale. Kon3: A clinical deci-

sion support system, in oncology environment, based on knowledge management.

2012 IEEE 24th International Conference on Tools with Artificial Intelligence,

2:206–210, 2008.
[5] R.A. Greenes. Clinical Decision Support: The Road Ahead. Elsevier Science, 2011.
[6] N. Guarino and P. Giaretta. Ontologies and Knowledge Bases: Towards a Termino-

logical Clarification. Towards Very Large Knowledge Bases: Knowledge Building
and Knowledge Sharing, pages 25–32, 1995.

[7] C E Jr Kahn, L M Roberts, K Wang, D Jenks, and P Haddawy. Preliminary inves-

tigation of a bayesian network for mammographic diagnosis of breast cancer. Proc
Annu Symp Comput Appl Med Care, pages 208–212, 1995.

[8] Carson E.R. Collison P.O. Kalogeropoulos, D.A. Towards knowledge-based sys-

tems in clinical practice: Development of an integrated clinical information and

knowledge management support system. Computer Methods and Programs in
Biomedicine, 72:65–80, 2003.

[9] Joseph Liu, Jeremy C Wyatt, and Douglas G Altman. Decision tools in health care:

focus on the problem, not the solution. BMC Med Inform Decis Mak, 6(4), Jan

2006.
[10] Varela F.J. Maturana, H.R. Autopoiesis and Cognition: The Realization of the

Living, volume 42 of Boston Studies in the Philosophy and History of Science.

Springer, 1980.
[11] P L Miller, S J Frawley, F G Sayward, W A Yasnoff, L Duncan, and D W Fleming.

Imm/serve: a rule-based program for childhood immunization. Proc AMIA Annu
Fall Symp, pages 184–188, 1996.

[12] D.J Power. Decision Support Systems: A Historical Overview, chapter Part I –

Foundation of Decision Support Systems, pages 121–140. Handbook on Decision

Support Systems. Springer, 2008.
[13] Sanı́n C. Szczerbicki E. Posada J. Toro, C. Reflexive ontologies: Enhancing on-

tologies with self-contained queries. Cybernetics and Systems: An International
Journal, 39:171–189, 2008.

[14] H R Jr Warner. Iliad: moving medical decision-making into new frontiers. Methods
Inf Med, 28(4):370–372, Nov 1989.

[15] Andreas Wicht, Thomas Wetter, and Ulrike Klein. A web-based system for clin-

ical decision support and knowledge maintenance for deterioration monitoring of

hemato-oncological patients. Computer Methods and Programs in Biomedicine,

111(1):26–32, 2013.

E. Sanchez et al. / Specification of Extended Reflexive Ontologies in the Context of CDSS 243


	Specification of Extended Reflexive Ontologies in the Context of CDSS

