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The use of robotic devices in medicine and, 
more specifically, in the surgical field entails 
a remarkable improvement in the delivery 

of healthcare services. Today, robotic devices and 
computer-assisted technologies can offer guidance, 
diagnosis, verification, and general assistance dur-
ing surgical interventions.1

However, the use of robotic 
devices in surgery creates new 
challenges that must be over-
come to ensure successful de-
ployment. A robot acting on a 
tissue exerts a force and pro-
duces deformations, but pro-
vides no direct feedback to the 
surgeon. Thus, we must track 
organ deformation to provide 
assistive technologies, such as 
augmented reality (AR). In ad-
dition to providing surgeons 
with visual feedback of the tis-
sue deformations, such systems 
can also help surgeons locate the 

position of a malignancy to be removed from an 
organ. In most cases, however, it is not feasible to 
use sensors to track the position of the patient’s 
organs. Thus, alternative approaches such as com-

puter vision techniques are required to help solve 
this problem.

In practice, the robot’s very presence produces 
occlusions that limit how much information can 
be obtained using only computer vision. Combin-
ing computer vision with a suitable physical simu-
lation can help reduce the missing information. 
However, surgical simulations necessitate a high 
level of accuracy. As opposed to the deformable 
models used in video games and animations, the 
purpose of soft tissue models in medical simula-
tion is to model realistically the behavior of bio-
logical tissues. Consequently, tissue deformation 
simulations should be controlled using real mate-
rial parameters, and these parameters should be 
obtained from biomechanics experiments instead 
of intuitively adjusted parameters.

To further complicate the implementation of 
robotic guidance and surgery assistance systems, 
computational performance must also be taken 
into account in order to provide surgeons with 
timely visual feedback. Therefore, it is critical 
for such applications to obtain a compromise be-
tween accuracy and computational cost. As a con-
sequence, one of the most challenging problems 
in robot surgical assistance systems is to provide 
surgical realism at interactive simulation rates.2

One of the most challenging 
problems in robot-assisted 
surgical systems is to provide 
surgical realism at interactive 
simulation rates. The proposed 
visual tracking system can 
track and register object 
deformations in real time 
using a physically based 
formulation, despite the 
occlusions produced by the 
robotic system itself.
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We propose a novel visual tracking method based 
on physical simulation. This procedure can obtain 
the deformation produced by a robotic system on 
patient tissues, thus gathering the basic informa-
tion needed to provide surgeons with assistance 
and guidance using visual or haptic feedback. Our 
approach is divided into two main phases. The first 
deals with handling robotic surgical arm move-
ments, and the second utilizes a vision system to 
compute the deformations created in the first step. 
This vision system consists of an RGB-D camera 
that returns color and depth information. Be-
cause this data is incomplete (due to occlusions 
and areas where the sensor cannot capture data) 
and contains noise, we use a physical simulation 
module to reconstruct the complete object defor-
mation. We feed the input into a nonlinear finite 
element method (FEM) formulation to simulate 
the physical behavior of the tissue under deforma-
tion (via its volume and the missing surfaces). 

The proposed method has been integrated into a 
surgical module within the framework of a robotic 
surgery system.3 To evaluate the proposed system’s 
level of accuracy and computation requirements, 
we tested it using three different objects in ex-vivo 
conditions. We then compared the deformations 
obtained from the experiments with the theo-
retical results obtained by finite-element analysis 
obtained using the Abaqus software package. The 
results provide an accurate visual representation 
of the deformed solid.

Tracking Deformable 3D Objects in 
Surgical Environments
Recovering the 3D structure of a nonrigid object is 
a complex task in the computer vision field. Thus, 
the majority of approaches tackling this problem 
divide the process into two steps: image registra-
tion and shape inference. The first is related to 
solving the visual part of the problem, whereas 
the latter is responsible for deducing the shape’s 
new structure.

Feature-based vision and pixel-based or direct 
methods are the most significant and commonly 
used techniques to solve the image registration 
problem. Feature-based methods focus on detect-
ing visual cues (also called features) on the image 
and establishing correspondences with a reference 
image to solve the registration problem.4 However, 
these approaches are primarily focused on planar 
surfaces or textured surfaces such as t-shirts.4,5 
Direct methods use intensity differences between 
two images to calculate the correspondences,6,7 
but these approaches require good initialization 
because drift problems may arise.

The shape inference stage uses visual informa-
tion from the image registration process to com-
pute the new 3D structure. Among the various 
solutions available, some rely on optimization 
techniques,8 such as second-order cone program-
ming (SOCP), and others use physics-based sys-
tems to determine the correct physical behavior. 
The FEM has been widely used for surgical simu-
lations9 because it incorporates real physical ma-
terial parameters, and therefore, it models tissue 
properties more accurately than other approaches, 
such as mass-spring models.

The FEM requires the definition and modeling of 
the material behavior to be simulated. Currently, 
there is no agreement in the literature regarding 
how to define the most suitable material models 
required for surgical simulation. A key question 
in modeling tissue behavior for simulation is the 
complexity level of the model required for a cer-
tain application. More complex models can better 
simulate the detailed behavior of the tissue, but 
at high computational cost. For surgical simula-
tion of biological tissues, models must be simple 
enough to solve a range of problems, but complete 
enough to realistically describe the behavior under 
a variety of load conditions.10 

Linear FEM models are commonly used to 
model deformable materials, mainly because the 
equations remain simple and the computation 
can be optimized. Several researchers have used 
linear elasticity to model brain deformations, for 
example.11 However, simulations built upon linear 
elastic models can be applied only to small defor-
mations, and most surgical procedures involve or-
gans being subjected to large ones.

The deformation of most biological materials 
under large strains can be described by the theory 
of nonlinear elasticity (such as hyperelastic mod-
els). Hyperelastic models are commonly used to 
simulate brain tissue,12 liver tissue,13 and skin14; 
for laparoscopic simulation15; or to simulate soft 
tissues in general.16 Soft tissues can also be sim-
ulated with viscoelastic models. The literature 
includes uses of linear viscoelastic models,17 quasi-
linear viscoelastic models,18 and even more com-
plex nonlinear viscoelastic models.19 Nevertheless, 
estimating parameter values for the nonlinear 
viscoelastic models can be complex and computa-
tionally expensive. 

Although the nonlinearity and viscoelasticity of 
soft tissues are widely known, nonlinear viscoelas-
tic models are not always the best choice for simu-
lation. Zizchen Liu and Lynne Bilston concluded 
that a complex constitutive model may be required 
if the accuracy of the obtained deformation is crit-
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ical, whereas in other applications, where accuracy 
is less important than computational efficiency, a 
simpler constitutive model may be more appro-
priate.20 Adam Wittek and his colleagues recom-
mended using a linear elastic constitutive model 
and a geometrically nonlinear FEM formulation to 
simulate brain tissue in the case of craniotomy-
induced shift because it saves computational time 
and causes no loss of accuracy compared with a 
hyperviscoelastic model.21 

Some recent works have presented robotic sys-
tems complemented by vision techniques in sur-
gery. For example, Ghassan Hamarneh and his 
colleagues developed preoperative surgical plan-
ning, intraoperative image registration, and AR 
visualization for image-guided tumor identifica-
tion.22 Their work aims to help surgeons deter-
mine the tumor localization and resection margins. 
They focused on kidney cancer cases with robot-
assisted partial nephrectomy performed with a 
da Vinci surgical robot (Intuitive Surgical). They 
built a biomechanical model of the kidney tis-
sue and tumor with a FEM using a corotational 
tetrahedral formulation and a Eulerian implicit 
solver. However, their work is more focused on 
surface reconstruction than the 3D deformation 
of an object. 

In another example, Nazim Haouchine and 
his colleagues developed an image-guided biome-
chanical model that captures the complex defor-
mations the liver undergoes during surgery.9 The 
system works with laparoscopic stereo cameras 
and uses the FEM to capture the object’s behavior 
and compute the deformation. The FEM is based 
on a corotational formulation with a stress-strain 
relationship taken from the literature. However, 
the camera’s position should be static, and in some 
cases, the simulation algorithms are not executed 
in real time. Haouchine and his colleagues also 
proposed a real-time method to register the non-
linear elastic model deformations using the image 
points acquired from a monocular camera.23 That 
solution is based on an orthographic projection, 
which is easier to compute than a perspective pro-
jection. In the latter case, they used a Saint-Venant-
Kirchhoff model for FEM formulation.

In both the Haouchine cases,9,23 tracking is 
based on features. However, in environments such 
as medicine or industry, it is sometimes difficult to 
perform a tracking based only on visual cues (of-
ten essential for a vision system), either because of 
the lack of textured areas and models or the envi-
ronmental conditions (such as blood in medicine).

Unlike existing solutions, the tracking algo-
rithm we propose does not require features. That 

means that our work avoids the use of formula-
tions that are not usually robust for textureless 
surfaces or objects. This makes our approach ro-
bust against illumination changes and adaptable 
for tracking any type of object (in terms of its geo-
metrical shape). Furthermore, our method avoids 
the ambiguity that can be caused by orthographic 
projections. Other advantages of the presented 
method are that it is modular and the camera is 
not required to be static.

Proposed Method
This section presents a complete framework for 
registering deformations of nonrigid objects when 
a surgical robot is applying a force. The goal is 
to provide surgeons with extra visual feedback. 
The selected robot-assistant module has been de-
veloped as a prototype for a cooperative robotic 
platform aimed at assisting in surgery for lumbar 
transpedicular fixation.3 

The vision module consists of a RGB-D camera 
that obtains color and depth data. As we explained 
earlier, this information is incomplete and noisy, 
so it provides insufficient visual feedback. We use 
the acquired raw information as the input to a 
FEM physical model to obtain a correct physical 
behavior. In this sense, the model represented as a 
triangle mesh is converted to a tetrahedral mesh 
to adjust it to the FEM formulation. This triangle 
mesh, in turn, is captured through a scanning 
process performed with a 3D Sense Scanner. The 
phases of the physical model simulation require 
specific types of models (different geometry mesh 
and material properties of the bodies). Figure 1 
shows the three different models that were used in 
our experimentation process: a sponge, a porcine 
kidney, and a calf brain. 

To obtain a compromise between the reconstruc-
tion computation time and accuracy, we model 
deformable objects as Saint-Venant-Kirchhoff ma-
terial within a nonlinear FEM formulation. This 
material model appears to be an ideal compromise 
because it can handle nonlinear deformations, is 
rotationally invariant, and is simpler than other 
nonlinear models. The materials are defined by the 
Young modulus, Poisson’s ratio, and density. To 
define the mechanical properties of the materials 
with a realistic physical behavior, we performed 
simple shear tests using a rotational rheometer.

Figure 2 illustrates the system configuration. 
Because we focus only on deducing the organ de-
formations, we compute the camera pose (camera 
tracking) using a marker-based system. This pro-
vides a level of accuracy high enough to ignore 
the error. 
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The surgical assistant we used consists of a com-
mercial PA10-7C robotic arm (Mitsubishi Heavy 
Industries) with an open control architecture. The 
open architectures means that, using a generic pro-
gramming language, it is possible to independently 
develop the control algorithms to be implemented 
in the robot control PC. The arm is a seven degree 
of freedom (DoF) open chain serial manipulator, 
and all of its revolute joints have a well-defined 
rotation axis. Its maximum load capacity is 98 N, 
and it can reach a distance of 1.03 m when fully 
extended. The robot has a force/torque sensor, the 
Mini40 (ATI Industrial Automation), that records 
the force performed by the robot on the soft tissue.

Figure 3 shows the robotic arm used as an in-
denter and in its exploded view. The end of the 
robotic arm consists of a force/torque sensor, a 
grip, a large indenter, and second smaller indenter.

Object Deformation
The main challenge of the nonrigid problem is to 
determine the mesh’s transformation after defor-
mation. Therefore, the object deformation phase 
is responsible for performing the deformable reg-
istration of the nonrigid model. As Figure 4 shows, 

this involves two main steps: preprocessing and 
mesh registration. The preprocessing is an offline 
process that consists of defining the proper param-
etrization of the physical model. The mesh regis-
tration is an online execution that calculates the 
correspondences between the model and the input 

Sponge I 3146 tetrahedrons

Sponge II
3146 tetrahedrons

Kidney I
2071 tetrahedrons

Kidney II

2183 tetrahedrons

Brain I
1977 tetrahedrons

Brain II

(a) (b) (c)

1989 tetrahedrons

Figure 1. 
Transformation 
from triangle 
mesh to 
tetrahedral 
mesh. For the 
finite element 
method (FEM) 
formulation, 
(a) the model 
represented as 
(b) a triangle 
mesh is 
converted to  
(c) a 
tetrahedral 
mesh.

RGB-D camera

Visualization software

User
control

Model

Rigid tracking system

Surgical robot-assistant

Figure 2. System configuration. The RGB-D camera gathers color and 
depth data as the surgical robot assistant makes indentation in the 
tissue samples.
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point cloud acquired from the RGB-D camera to 
subsequently obtain the physical registration with 
the FEM formulation. Both processes are divided 
into two main phases, related to the visual part 
and the physical model, respectively. 

Model Preprocessing
The offline model preprocessing phase, which is 
essential to the online mesh registration phase, is 
executed only once for each model. To complete 
this preprocessing task, it is necessary to generate 
information from the visual part of the system as 
well as the physical parametrization of the model. 
The first is responsible for generating a set of 
control points to determine the correspondences 
between the raw information acquired from the 
camera and the model’s 3D mesh (keypoint gen-
eration). The physical model procedure in turn is 

divided into two main parts: the description of the 
physical formulation based on the FEM initializa-
tion and the range tests performed to define the 
material properties (material characterization).

Keypoint Generation. The goal of this phase is to 
define a set of control points that relate to the 
input point cloud acquired in each camera frame 
and the 3D mesh of tetrahedrons. Those control 
points, or keypoints, are in fact the vertices that 
are on the surface of the tetrahedral mesh that 
correspond to a set of uniformly distributed points 
on the surface. In this way, these keypoints serve 
to relate the vertices of the mesh to the raw point 
cloud in the online phase.

Moreover, this phase serves as a filter that re-
moves the keypoints that could affect the cor-
rect functioning of the deformation process. This 
means that the keypoints that are relatively close 
(based on a threshold) to the object’s bounding 
box are discarded to avoid noisy movements along 
the corners.

Material Characterization. To obtain the mechani-
cal properties of the deformable objects, we tested 
a sample of each material in a parallel-plate rhe-
ometer (Anton Paar Physica, MRC 301). The rota-
tional rheometer characterizes the material under 
shear loads, which are common loads for soft tis-
sues during surgical procedures.24 

Figure 5 shows a schematic representation of the 
experimental setup. The top plate of the rheom-
eter is lowered until it contacts the sample’s upper 
surface.

The measured strain γ is not constant along the 
sample because it is a function of the plate’s radius 
R, the gap H, and the deflection angle ϕ:

γ
ϕ

1[ ]= [ ] [ ]
[ ]

rad mm
mm
R

H
.

Therefore, the maximum deformation and maxi-
mum shear rate occur at the edge of the plate, and 
the reported data is related to this position.

Amplitude sweeps are performed in cylindrical 
samples, with a diameter of 25 mm and thickness 
of 2–4 mm. An amplitude sweep is an oscillatory 
test performed at variable strain amplitudes, keep-
ing frequency at a constant value. As long as strain 
amplitudes remain within the limits of the lin-
ear viscoelastic range, the values of the dynamic 
properties remain steady and the material shows 
reversible-viscoelastic behavior. This means the 
nonrigid object deforms elastically and will return 
to its original shape when the applied stress is re-

(a) (b)

Figure 3. Robotic arm. These representations show (a) the arm used as 
an indenter and (b) an exploded view of its tip.

Vision system
Physical model

Of�ine preprocessing Online execution

Object deformation

Online executionModel preprocessing

Keypoint selectionKeypoint generation

Correspondence matching

FEM simulation

Material characterization

FEM initialization

Figure 4. Overview of the proposed object deformation method. The 
preprocessing process occurs offline, whereas the mesh registration 
phase executes online. 
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moved. However, at amplitudes higher than this 
limit, some fraction of the deformation will be per-
manent and nonreversible; in some cases, the sam-
ple’s structure could even be destroyed completely.

Thus, the mechanical properties of the tissues 
are defined within a linear viscoelastic range. We 
obtain the shear modulus G, imposing a strain 
ramp ranging from 0.001 to 100 percent, at 1 Hz. 
The value of G is within linear viscoelastic range, 
and we can select Poisson’s ratio v for each. We 
also assume linear elasticity, isotropy, and ho-
mogeneity of the material. Therefore, the Young 
modulus E is obtained as E = 2G(1 + v).

Density ρ is considered constant within the 
tissue sample and is determined by measuring 
its mass and volume. Table 1 shows the values of 
the mechanical properties established for each 
material.

FEM Initialization. The system uses a nonlinear total 
Lagrangian explicit finite element formulation us-
ing a tetrahedral mesh. This kind of formulation 
is well suited to surgery simulators because it pro-
vides a compact and efficient implementation. The 
formulation can easily handle nonlinear material 
and large deformations. Additionally, the method 
does not require the computation of a stiffness 
matrix, which allows an easy adaptation to topo-
logical changes.

In this case, for simplicity and computational ef-
ficiency, we implemented a Saint-Venant-Kirchhoff 
material model using the properties for the linear 
material model we described earlier.

This formulation allows a direct computation of 
the elastic forces acting on each node when the 
model is deformed.

In a Lagrangian approach, the dynamic analy-
sis is performed by tracking the material particles 
forming a body. In particular, two sets of coor-
dinates can be defined: the spatial coordinate x 
represents the position of one particle in the de-
formed state, and material coordinate X represents 
its original position. In a total Lagrangian repre-
sentation, all forces, deformations, and material 
stresses are expressed in the material coordinate 
system X. We iterate per element and compute the 
deformation gradient tensor F:

F X
x X

X
( )=

∂ ( )
∂

,t
.

In the case of tetrahedral elements, F can be 
expressed as

F = [x2 – x1, x3 – x1, x4 – x1][X2 – X1, X3 – X1,  
	 X4 – X1]–1.

The Cauchy stress tensor σ is related to the ma-
terial model by the strain energy function W as 
follows:
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where B is the left Cauchy-Green deformation 
tensor and Ii is an invariant of B. The left Cauchy-
Green deformation tensor is related to a deforma-
tion gradient tensor as B = FFT.

Invariants of B are defined as follows: 

I B
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The Cauchy stress tensor σ is defined with re-
gard to the body’s current configuration. Using a 
total Lagrangian formulation, we can define the 
stress tensor with regard to the object’s initial con-
figuration. The first Piola-Kirchhoff stress tensor 
P relates the element’s deformation and the me-
chanical stress in the material, expressed in mate-
rial coordinates: P = JσF–T.

When the constitutive model is given as a first 
Piola-Kirchhoff stress P, an element’s contribution 
to the finite-element force on one of its nodes xa 
is given as25 

f P
X

X
X

X
a
e a

T
a
T

i

N
d P

N
d

m x

=
∂
∂

=
∂
∂

∂
∂Ω Ω∫ ∫ ξ
ξ ,

R

Sample

Fixed measuring plate

Rotating measuring plate

H

Figure 5. Parallel plate rheometer. The top plate of the rheometer is 
lowered until it contacts the sample’s upper surface.

Table 1. Mechanical properties of the tested materials.

Property Sponge Kidney Brain

Density, ρ (kg/m3) 14.3 1,000 1,000

Young modulus, E (Pa) 76,261 1,500 1,085

Poisson’s ratio, v 0.30 0.45 0.48
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where Ωm and Ωξ represent the volume of the ele-
ment in the global framework and an ideal system, 
respectively, based on isoparametric coordinates; 
Na represents the interpolation function for node 
a, and X is a particle’s material coordinates.

The stress tensor P is constant within a tetra-
hedron and the integrals can be easily computed, 
leading to a force generated by each element in 
each node a equivalent to

f P Na
e

i i

i a

A=
≠
∑1

3
,

where AiNi is the area weighted normals of the 
faces of the tetrahedron incident in node a in the 
original position, which can be precomputed.

The total elastic force acting upon a node a is 
the sum of the contributions of each element shar-
ing node a:

f fa a
e=∑ .

After the value of the elastic forces is updated, 
we can iterate through each node of the mesh to 
compute next position and velocity. The simula-
tion is performed with a precomputed time step 
(∆t) that guarantees the stability of the Euler 
semi-implicit integrator employed:

v v
f

x x v

a a
a

a

a a a

t t t
t

m
t

t t t t t

+∆( )= ( )+ ( )
∆

+∆( )= ( )+ +∆( )∆∆t ,

where ma is the mass of the node a. The mass ma-
trix is considered diagonal. (See earlier work for ad-
ditional details about this method.25) During the 
initialization, the first term is computed and stored.

Mesh Registration
Mesh registration is executed for every frame. For 
this purpose, we exploit the information from the 
RGB-D camera. The camera’s color information is 
used to project the 3D deformed mesh in the im-
age, and the depth information helps us obtain 
the point cloud. Furthermore, a multiple marker 
tracking system returns the camera’s accurate po-
sition and orientation for each frame.

The camera’s position and orientation, known 
as the camera pose, let us estimate the correspon-

dences between the offline keypoints and the cur-
rent point cloud captured by the RGB-D camera. 
In addition, these matches serve as the input dis-
placements to the physical module, which is re-
sponsible for calculating the model’s new shape. 
This stage is divided into a visualization step (key-
point selection and correspondence matching) 
and the mesh physical simulation module (FEM 
simulation).

Keypoint Selection. In addition to the keypoints dis-
carded in the preprocessing step, the system must 
account for all the keypoints that are not visible 
during the online execution due to the camera’s 
point of view. Therefore, all the keypoints that are 
not visible must be discarded, whether or not de-
formation is being applied at that point. We apply 
an occlusion query test to select the visible key-
points. This procedure consists of computing the 
normal vector of the keypoint (the normal of the 
triangle it belongs to) and calculating the differ-
ence (in degrees) with respect to the vector that 
represents the camera’s point of view.

Correspondence Matching. The main goal of this 
step is to find the associations, also called corre-
spondences, between the visible keypoints and the 
input raw point cloud. The procedure consists of 
an intelligent scale search (see Figure 6a). This 
procedure divides the problem of finding the corre-
spondences into two main steps. First, we discard 
the keypoints that do not have any deformation. 
In the second step, we make associations between 
the keypoint and a sample of the input point cloud.

These two steps involve two search areas for 
all keypoints. These areas, represented by two 
oriented bounding boxes (OBBs), differ from the 
height value. The values for these boxes are fixed 
according to the measures of the global bounding 
box and are calculated offline. In order to find the 
deepest point, we define the orientation according 
to the normal of each keypoint.

The first step, which we call OBB test 1, cor-
responds to the search at the smallest OBB (see 
Figure 6b). The main goal of this test is to de-
termine if there is any point inside a small box 
around its position. If there is, the keypoint will be 
discarded because there is no deformation for it or 

(a) (b) (c)

Figure 6. Correspondence matching. (a) Once the search areas are defined, two oriented bounding box (OBB) tests are applied in 
order to relate the keypoints to the point cloud: (b) OBB test 1 and (c) OBB test 2.
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because the deformation is so small that it can be 
disregarded for the global deformation. The second 
step, defined as OBB test 2, finds a correspondence 
over the second box (see Figure 6c) to provide the 
most distant point.

Both searches are carried out using an efficient 
octree search based on a recursive search of the 
boxes (implementation provided by the PCL li-
brary). This search lets us obtain an octree rep-
resentation for a given input point cloud and, 
consequently, perform fast intersection tests.

FEM Simulation. Once the nodes of the simulation 
mesh have been matched to the deformed surface, 
they are used to control a dynamic simulation of 
the solid’s deformation. During this simulation, 
the nodes are displaced from their original po-
sition to the distance detected using the vision 
system. The simulation runs until it achieves the 
final configuration—that is, until it represents 
the deformed state of the solid. The simulation 
is performed with a precomputed time step that 
guarantees the stability of the semi-implicit Euler 
integrator that is employed.

Experiments
To evaluate the performance (error estimation 
and computational time) and adaptability of the 
proposed system for different kinds of models, we 
developed a set of experiments using the robotic 
arm we described earlier. Specifically, we used two 
cylindrical indenters of different sizes (see Figure 
3) to deform the tissue: one has a diameter of 15 
mm and a 45 mm length, and the smaller one has 
a diameter of 8 mm and a 36 mm length.

The hardware setup consisted of an Intel Core 
2-Quad Q9550 at 2.83 GHz and 4 Gbytes of RAM 
equipped with a Kinect Xbox 360. We used sponge, 
porcine kidney, and calf brain models to evaluate 
the framework’s performance. The sponge has a 
simple geometric shape that contains a homoge-
neous texture (it is textureless), while the brain 
and kidney provided alternative geometric shapes 
with differing textures. The texture of the surface 
was not used for recognition in any case. We used 
the same sponge for each experiment, but we used 
two different samples for both the brain and kid-
ney models. The aim was to use the same material 
parametrization and make indentations in differ-
ent areas to determine if our system’s behavior 
was the same. For the brain and kidney catego-
ries, we applied a force in different areas for each 
sample by testing the deformation with different 
tools. Specifically, we used the smaller indenter for 
the brain II and kidney II samples. For the sponge 

model, we applied a force in two different areas 
for the sponge I and sponge II samples. Figure 1 
depicts this categorization as well as the number of 
tetrahedrons of each model, which is a determin-
ing factor in the experimental results.

Accuracy Level
We used two different techniques to validate the 
online FEM formulation’s level of accuracy. These 
consist of comparing the results obtained with the 
online FEM simulation with those from a simula-
tion of the same experiment using Abaqus soft-
ware and with the 3D reconstruction obtained 
through a 3D scanner.

Abaqus. The experiments were simulated in 
Abaqus 6.13. The mechanical properties of both 
tools were considered rigid enough compared with 
the indented tissues (ρ = 7850 kg/m3, E =3000000 
Pa, v = 0.2). We modeled the deformable objects 
with the same mesh as the one used in the online 
FEM simulation. Table 1 lists the properties for 
each material. The curve of the displacement ver-
sus time recorded by the robot in each experiment 
was imposed on the tool in the Abaqus simula-
tion. The simulations were defined in a dynamic, 
implicit step using the Quasi-Newton solution 
technique.

We then compared the deformed meshes pro-
duced by the Abaqus and online FEM simulations 
and determined the error between the meshes by 
calculating the point-to-point Euclidean distance. 
Table 2 shows these error values for each material, 
and Figure 7 illustrates the visual results of this 
comparison.

Scanner. As we explained earlier, for these experie-
ments, a force was applied to the models by the 
robotic arm, and the deformation was computed 
using the online FEM formulation. Simultane-
ously, we scanned the models using the Cubify 3D 
Sense Scanner during the deformation. The recon-
struction of this scanner data served as reference 
for the error estimation—that is, it was used as 
the ground truth. According to the manufacturer’s 

Table 2. Error values (in mm) between the models obtained using the 
online FEM and Abaqus simulations.

Model Mean error Standard deviation Max error

Sponge I 0.85 2.20 37.68

Sponge II 0.72 1.88 32.89

Kidney I 1.28 2.23 14.97

Kidney II 0.40 0.68 6.42

Brain I 1.09 1.10 7.24

Brain II 1.08 1.37 10.36
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technical specifications, the 3D Scanner has an 
accuracy at 0.5 m depth resolution of 1 mm, and 
its spatial x/y resolution at 0.5 m is 0.9 mm.

Subsequently, we applied a subdivision filter to 
the surface for both the FEM and Scanner models 
in order to obtain two dense point clouds. Then, 
we defined the interest region for each point cloud 
by manually selecting the area where the deforma-
tion was being applied. 

Once the two regions of the two point clouds 
were selected, we used the open source CloudCom-
pare software to compute the error estimation. (An 
open source implementation of the CloudCompare 
application, which is used to manage and compare 
3D point clouds, is available at www.danielgm.net/
cc.) More concretely, we used two main functions 
to complete the process: register and distance pro-
cedures. The register procedure aligns two point 
clouds using the Iterative Closest Point (ICP) algo-
rithm,26 and the distance procedure calculates the 
distances between the two point clouds. The error 
was computed using the Euclidean distance from 
one point in the first cloud to the nearest point in 
the second cloud. Table 3 lists the mean errors (in 
mm), and Figure 8 shows the visual results of this 
experiment.

Our results show the error values are low enough 
to provide correct visual feedback. In these ex-
periments, the visual feedback includes a gradient 

Sponge I

Sponge II

Kidney I

Kidney II

Brain I

Brain II

(a) (b) (c) (d)

Figure 7. 
Comparison 
between 
the FEM 
formulation 
and Abaqus 
simulations 
for different 
models. (a) For 
each model, we 
show (b) the 
reconstructed 
mesh with 
Abaqus, (c) 
FEM returned 
mesh, and (d) a 
color map that 
represents the 
error between 
the solutions 
(extracted from 
CloudCompare 
software).

Table 3. Error values (in mm) between the online FEM simulation and 
scanner mesh.

Model Mean error Standard deviation Max error

Sponge I 4.39 2.96 13.08

Sponge II 2.89 2.20 8.14

Kidney I 1.46 0.78 4.87

Kidney II 1.33 0.86 4.00

Brain I 2.26 2.00 11.68

Brain II 2.30 1.21 4.44
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color that illustrates the degree of deformation. 
Figure 9 shows the visual results for each of the 
deformations applied to the six samples alongside 
the ground truth.

Computation Time
Lastly, we computed the execution times of the 
object deformation module for all models. For the 
purposes of this evaluation, we did not perform 
an exhaustive study of the computation times for 
the marker tracking system or the matching step 
between the keypoints and the input point cloud. 
These results vary between 4 and 10 ms, depend-
ing on the model, which means the computational 
times are not a bottleneck for the method’s per-
formance. Thus, we have focused our attention on 
the physical module.

More concretely, Figure 10 presents the ex-
ecution times of the mesh physical simulation 
step—that is, the FEM physical simulation step. 

To compute the mean times, we used calculations 
from 10 different times for the physical module 
and deleted the extreme values in order to discard 
the outliers. As Figure 10 shows, the execution 
times vary from 14.13 to 60.72 ms, depending on 
the model.

There are two reasons for this range of execution 
times. First, the execution time depends on the 
number of tetrahedrons for each model. As might 
be expected, the larger the number of elements, 
the longer the execution time will be. The sponge 
samples have the largest computational times be-
cause they have more tetrahedrons than the brain 
or kidney samples (see Figure 1). Second, the ex-
ecution time depends on the time step set for each 
model. The smaller the time step, the longer the 
total execution time will be. The time step depends 
on the material’s mechanical properties. In each 
case, we selected the time step to ensure the stabil-
ity of the simulation. 

Sponge I

Sponge II

Kidney I

Kidney II

Brain I

Brain II

(a) (b) (c) (d)

Figure 8. 
Comparison 
between 
the FEM 
formulation 
and scanner 
reconstruction 
for different 
models. (a) For 
each model, we 
show (b) the 
scanner mesh, 
(c) the FEM 
mesh, and (d) a 
color map that 
represents the 
error between 
both meshes 
(extracted 
using 
CloudCompare 
software).
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Discussion
The deformation values obtained using the online 
FEM are smaller than those obtained by Abaqus 
software. This is because the input of the Abaqus 
simulation is the displacement recorded by the ro-
bot, and the input of the FEM is the displacement 
acquired by the cameras. However, these cameras 
do not provide the exact displacements because of 
occlusions caused by the tool or the material itself. 
These occlusions can also affect camera tracking 
(as with nontextured tracking systems). However, 
our approach can handle deformations with small 
occlusions (for example, the tools manipulating 
an object9). Furthermore, the modularity of the 
proposed pipeline will allow us to incorporate or 
replace certain modules. Thus, our framework’s 
performance can be improved by using new track-
ing methods.27 

In the same way, we can see that the deforma-
tions simulated with Abaqus are larger than those 

obtained by the scanner. This is because the scan-
ner is not able to acquire the real deformation due 
to the occlusion caused by the tool. That is, the 
scanner acquires more accurate deformation than 
the cameras, but the deformation is less accurate 
than the one obtained with the simulation per-
formed by Abaqus. 

To improve the accuracy of the results, we could 
use higher density meshes, but this will increase 
the computation time. Depending on the concrete 
application where the method is applied, it will 
be necessary to determine the correct balance be-
tween precision and computation cost, as is the 
case for most real-time applications.

As we discussed earlier, the simulation approach 
is highly parallelizable, so the need for better accu-
racy could be solved using computers with a higher 
core count or with a GPU-based implementation. 
However, as Table 2 shows, the average errors ob-
tained in the experiments with the current imple-
mentation are low enough for this approach to be 
considered valid and thus for it to serve as the ba-
sis for visual feedback in surgery.

In terms of accuracy and computational cost, 
the results of our experiments show that the 

proposed method returns a deformation for the 
tested objects that matches the theoretical and ex-
perimental results obtained. Thus, we were able to 
achieve a precision that enables the development 
of assistance surgery applications. In the future, 
the methodology developed can be enhanced to 
estimate the actual stresses on the tissues. This 
information could be used to prevent the robot 
from inflicting irreversible damage.

Sponge I Sponge II Kidney I Kidney II Brain I Brain II
Figure 9. Visual 
feedback to the 
surgeon when 
the soft tissue 
is deformed in 
a robot-assisted 
procedure. 
The simulation 
results for the 
three types 
of examples 
(sponge, 
kidneys, and 
brains) were 
compared 
against the 
ground truth 
supplied by 
the 3D scanner 
reconstruction.

0 10 20 30 40 50 60 70
Time (ms) 

Sponge I 

Sponge II 

Kidney I 

Kidney II 

Brain I 

Brain II 

Figure 10. Execution times (in ms) of the FEM physical formulation for 
the different models.
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It may also be possible to automate the move-
ments of the robotic arm. For example, the sur-
geon could select a point in the 3D model using 
the visualization software, and the robot then 
would automatically move to that point and per-
form an indentation.�
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