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Abstract. Robust image segmentation can be achieved by pixel clas-
sification based on features extracted from the image. Retinal vessel
quantification is an important component of retinal disease screening
protocols. Some vessel parameters are potential biomarkers for the di-
agnosis of several diseases. Specifically, the arterio-venular ratio (AVR)
has been proposed as a biomarker for Diabetic retinopathy and other
diseases. Classification of retinal vessel pixels into arteries or veins is re-
quired for computing AVR. This paper compares Extreme Learning Ma-
chines (ELM) with other state-of-the-art classifier building approaches
for this tasks, finding that ELM approaches improve over most of them
in classification accuracy and computational time load. Experiments are
performed on a well known benchmark dataset of retinal images.
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1 Introduction

Recent studies [10] point to the importance of the fundus imaging as a substantial
part of a large number of diagnostic procedures for a wide variety of pathologies.
This technique allows to obtain high resolution images of the internal structures
of the retina, such as the micro-vascular tree or the optic disc, as shown in Figure
1. Currently, there is an increasing scientific evidence regarding the role played
by micro-vascular diseases in relation to the pathologies associated with macro-
vascular structures. Studies such as [10] have shown how a condition in coronary
micro-vascular structure, may cause serious heart failure with risk of heart at-
tack and death, without any pathological evidence in coronary macrovascular
structures, so that periodic checks of such structures may not reveal the exis-
tence of pathology. Moreover, some dysfunctions in skin microvascularity which
is estimated to be representative of the entire micro-human circulatory system,
have been associated with increased risk of heart attack. However, studies over
microvascularization are small relative to the affected population because they
need laborious and very invasive techniques. For this reason, researchers are
looking for non invasive alternatives and mechanisms allowing accurate analysis
of microvascular structures. Retinal imaging allows studying different aspects
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Fig. 1. Image of the retina obtained by fundus imaging.

of the microcirculation in-vivo, whose role in vascular or metabolic diseases is
less clear than that of macrocirculation [11]. Image analysis with vascular mor-
phometry techniques carried out over large populations point out correlations
between retinal microvascular patterns and different cerebrovascular and cardio-
vascular diseases and metabolic disorders [13]. We focus on one retinal image
biomarker with great diagnostic value, which is the arterio-venular ratio (AVR),
computed as the quotient between the averages of the widths of several arteri-
oles and venules. Alternatively, the AVR is also computed as the quotient of the
central retinal artery equivalent (CRAE) and the central retinal vein equivalent
(CRVE) [9].

The quantification of retinal bio-markers such the AVR, CRAE or CRVE over
large populations requires automated tools for vessel segmentation and analysis.
We are interested in low complexity and fast approaches that could allow the
clinicians to be able to carry out large screening programs. There are two steps
in this process:

(a) Image segmentation to obtain the location of the vessel pixels in the image

(b) Vessel pixel discrimination into arteries and veins, needed to compute the
AVR.

Current methods for retinal vessel segmentation mechanisms [4] can be roughly
categorized as those based on supervised learning [15] and unsupervised [1] tech-
niques. Supervised learning techniques rely on hand labeled images for the off-
line classifier training process. Segmentation process becomes a pixel classifi-
cation into two different classes: vessel versus background. On the other hand,
unsupervised approaches rely on image processing and analysis techniques spe-
cialized for vascular structures. In these approaches, hand labeled images are
used only for validation, not for the construction or tuning of the segmentation
algorithm. Overall, algorithms based on supervised classification report better
segmentation results with a computational overhead due to training process.
They are also dependent on the sample used for training and may suffer great
errors on outlier retinal images. On the other hand, unsupervised techniques
are less computationally demanding but difficult to tune, and sensitive to un-
expected variations in the images. The vascular segmentation algorithm used in
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this paper follows the approach proposed in [1], which uses an unsupervised and
fast segmentation mechanism. The vessel pixel discrimination must be performed
following a supervised learning approach, where specific features are proposed
to exploit subtle image differences of the artery and vein vessels [14]. In this pa-
per we concentrate on the comparison of Extreme Learning Machine (ELM) [7]
approaches against other state-of-the-art classifier building approaches for this
task.

The paper is structured as follows: Section 1 gives a brief overview of ap-
proaches dealing with retinal microvasculature analysis in fundus images. Sec-
tion 2 presents the image processing pipeline for retinal vessels and the feature
extraction approach for artery/vein discrimination, as well as a brief description
of implementation details. Section 3 gives a brief review of ELM as supervised
classification technique applied to the problem of artery/vein classification. Sec-
tion 4 reports obtained classification results obtained with different supervised
classification approaches. Finally, 5 gives a discussion about the implemented
and tested approach, and addresses next lines of research and development.

2 Feature Extraction

Fig. 2. Retinal Image Analysis Pipeline.

Figure 2 depicts the image processing pipeline implementing our approach.
First we perform the vessel segmentation. After image acquisition, we first per-
form a field of view (FOV) detection, selecting the region-of-interest for the
following processes. Next, we apply an isotropic undecimated wavelet transform
(IUWT) [1] at several wavelet scales. This transformation achieves contrast en-
hancement, increasing the difference between structures of different luminance
value. We apply a thresholding operation on the IUWT contrast enhanced im-
ages, followed by a connected component analysis removing spurious small con-
nected components, falling below the minimum length of a vessel candidate to
be measured. Segmentation threshold is set to 15%-20% of the lowest luminance
value inside the region of interest (FOV). This value over-segments the images,
ensuring that most of the vessel tree is retained. The center line is obtained by
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reducing vessel regions to one-pixel-wide skeletons using a thinning algorithm.
Afterward, a branch detector is applied in order to identify and separate vessel
bifurcations and vessels segment, and obtained vessel segments are approximated
with B-spline curves for regularization, and curvature and section computation.
Finally, we use a Full Width at Half Maximum (FWHW) algorithm to estimate
vessel caliber along such sections. Figure 3 shows a sequence of partial results of
the vessel segmentation. On the localized vessels, sections that are perpendicular
to the local orientation of the B-spline representing the vessel are draw at regular
intervals of the vessel centerline as shown in Figure 4. These sections are then
used for image feature extraction for vessel type discrimination by classification,
prior to AVR calculation.

Fig. 3. Sequence of partial results of vessel segmentation. Left to right: original image,
FOV detection, IUWT contrast enhancement, vessel detection.

Fig. 4. Extracted vessel profiles overlaid on the input image.

Several studies [19, 16] show that only photometric features are useful for
artery/vein classification. Morphometric features such as width or tortuosity are
pathological biomarkers, thus may change severally depending if the patient has
a potential disease or not. Therefore, in our study we define only photometric
features based on pixel luminance and chrominance information. More precisely,
we extract the following features:

– Mean and standard deviation of green and red value in RGB color space
along the vessel segment. We excluded blue channel because its signal-to-
noise-ratio is very low compared with the other two, thus does not add
discriminant capabilities for the classification.
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– Along the perpendicular sections we distinguish two parts, illustrated in
Figure 5: outer pixels lying at a distance from the centerline above 40% of
the estimated vessels width, depicted by black segments in Figure 5, inner
pixels lying at a distance below this threshold, depicted by white segments
in Figure 5. We compute the difference of the means of of green and red
channels of the outer and inner pixels. These features model the contrast
between foreground, i.e. vessels, and background.

– Mean and standard deviation of Hue channel in HSV color space along the
vessel segment.

– Mean luminance inside the vessel, and the difference in luminance between
outside and inside the vessel.

Fig. 5. Localization of outer and inner pixels along the sections drawn perpendicular
to the vessel centerline.

3 Extreme Learning Machines

3.1 Basic ELM

The Extreme Learning Machine (ELM) [8] is a very fast training algorithm for
single-layer feedforward neural networks (SLFN). The key idea of ELM is the
random initialization of the SLFN hidden layer node weights. Consider a set of
M data samples (xi, yi) with xi∈ R

d and yi ∈ Ω. Then, a SLFN with N hidden
neurons is modeled as the following expression:

y = Φ (x) =

N
∑

i=1

βif(wi · x+ bi), j ∈ [1,M ], (1)

where f (x) is the activation function, wi the input weights to the i-th neuron
in the hidden layer, bi the hidden layer unit bias and βi are the output weights.
The application of this equation to all available data samples can be written in
matrix form as

Hβ = Y,

where H is the hidden layer output matrix defined as the output of the hidden
layer for each input sample vector, β = (β1 . . . βN )T and Y = (y1, . . . ,yM )T .
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The way to calculate the output weights β from the hidden-layer to the target
values is computing the Moore–Penrose generalized inverse of the matrix H ,
denoted as H†. The mean least squares solution is β = H†Y.

The orthogonal projection method can be used to calculate the pseudo-
inverse. In the case of HHT being non-singular, H†would be obtained by H† =
HT (HTH)−1. Thus, the output weightsβ are calculated

β = HT
(

HTH
)−1

Y.

According to ridge regression theory [5], it was suggested [18] that Thikonov
regularization [17] can be used to have better generalization performance. This
regularization is achieved by adding a positive value 1/λ to the diagonal ofHHT .
The calculation of the output weights is

β = HT

(

I

λ
+HTH

)−1

Y.

In our experiments, the basic ELM is denoted as “ELM”, and the regularized
ELM is denoted as “ELM(w/regul)”. The implementation of both ELMs is avail-
able at [6].

3.2 OP-ELM

The Optimally Pruned Extreme Learning Machine (OP-ELM) was proposed in
[12] with the goal of solving the problem that ELM faces with highly correlated
variables. The basic ELM does not cope well with variables irrelevant to the
problem at hand. The OP-ELM proposes a three-steps methodology, to address
this problem:

1. Construct an SLFN using ELM.
2. Rank the best neurons using LARS algorithm. This process is akin to a “reg-

ularization” of the ELM. It uses Allen’s PRESS [2] formula to L1 regularize
the ELM.

3. Select the optimal number of neurons using Leave-One-Out (LOO) criterion.

The LOO method is usually costly, since it requires to train the model on the
whole data set except one sample for all the samples of the data. However, in
the OP-ELM the situation is linear between the hidden layer and the output
one. The LOO error has a closed matrix form, given by the PRESS method
[2]. This closed form allows a fast computation of the MSE, and therefore the
computation of the output weights is still computationally fast, and theoretically
more robust than the original ELM to correlated variables. The code of OP-ELM
is made available by Miche et al. at [3].

4 Results

This section shows the comparative results obtained during the retinal vessels
classification experiment. For this study we used the feature vectors of 5730 ves-
sel sections, extracted from several images which have been labeled as arteries
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or veins by two human experts. For this evaluation we used several supervised
classification approaches implemented in the public available Weka software
http://www.cs.waikato.ac.nz/ml/weka/, version 3.7.9. We set each classi-
fier learning algorithm parameters to their default values. In this evaluation we
tested single classifier approaches, thus we did not include ensemble approaches
such as Random Forest.

The results of 10-fold cross-validation experiment for each algorithm are sum-
marized in Table 1. Worst results were obtained by SVM with linear kernel, hence
indicating that the best decision boundary between artery and vein classes is not
linear. OP-ELM obtains the best classification accuracy, followed by MLP and
SVM with non-linear RBF kernel. Table 2 shows training and testing times

Classifier Accuracy

Naive Bayes 82.7

MLP 91.1

SVM(Lineal) 73.3

SVM(RBF) 92.5

ELM 89.4

ELM(w/regul) 90.5

OP-ELM 93.6

Table 1. Classification mean accuracy results from 10-fold cross-validation.

of tested classifiers. As expected a simple Naive Bayes classifier is the fastest
approach, while OP-ELM is the slowest approach. However, regarding testing
times OP-ELM is one of fastest approaches. In our case, testing times are more
important than training times, because our retinal quantification application
is oriented to carrying out large population screening programs, where small
differences in testing times will be amplified by the population size.

Classifier Training Time Testing Time

Naive Bayes 0.05 0.01

MLP 4.64 0.01

SVM(Lineal) 15.49 0.07

SVM(RBF) 1.94 0.09

ELM 3.91* 0.03

ELM(w/regul) 1.11 0.04

OP-ELM 55 0.02
Table 2. Training and Testing Times.
*: Note that the greater training time of ELM compared to ELM(w/regul) is due to
the use of SVD on the calculation of the pseudo-inverse in the case of ELM.
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Figure 6 shows the results of an experiment using ELM, ELM with regu-
larization and OP-ELM by evaluating classifier accuracy against the number of
hidden nodes. As can be seen, OP-ELM outperforms basic ELM with and with-
out regularization. Moreover, OP-ELM requires many fewer hidden nodes before
convergence, compared with basic ELM.

Fig. 6. Accuracy results for increasing hidden layer sizes.

5 Conclusion and Feature Work

In this paper we have introduced a system for retinal image vessel segmenta-
tion and classification. Classifying retinal vessels into arteries or veins is a cru-
cial step for retinal image quantification based on the extraction of biomarkers
such as vessels tortuosity or arterio-venular ratio (AVR). Therefore, the final
supervised classifier is a key element of this system. We have performed a com-
parative experiment between state-of-the-art classifiers and Extreme Learning
Machines(ELM). Our results shows that the approach based on Op-ELM out-
performs other supervised classification approaches such as SMV or MLP, in
terms of accuracy and testing times.

In the future, we plan to implement an hybrid approach for retinal vessels
classification, by fusing a supervised Classification using OP-ELM with unsu-
pervised classification by using Fuzzy K-means. This approach would try to
overcome the problems arising from the presence of inter-image contrast and
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luminosity variability, that are difficult to cope with a single Supervised Classi-
fication approach.
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