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Abstract: The problem of visualizing graphical models 
described by NURBS surfaces at interactive frame rates is of 
great interest for the CAD/CAM industry, since many of their 
models are designed using this surface type. As current 
graphics hardware is optimised for rendering triangles, most 
efficient methods of rendering NURBS surfaces approximate 
them by polygonal representations. In this work we propose a 
predictive fixed-frame rate rendering of NURBS surfaces that 
controls the interactivity of their visualization and 
manipulation. 

Key words: NURBS surfaces, fixed-frame rate tessellation, 
cooperative visualization. 

1- Motivation 
Collaborative visualization provides real time visual 
exploration and multiple-user interactions of three-dimensional 
models among geographically remote users.  Per example, 
3DSHARED [1][2] allows engineers, modellers and customers 
the virtual design and maintenance of engineering products 
through its three-dimensional replica. 
 
In collaborative applications, the speed in the making of the 
following operations is vitally important: the transmission of 
the entire model, the transmission of messages that update the 
visualized scene and the generation of the updated final image. 
Improving these operations makes possible a real-time 

interaction with the three-dimensional model. At the 
moment, 3DSHARED supports three-dimensional models 
described by polygonal meshes. As the density of polygons 
in meshes is pre-calculated, it is possible to find difficulties 
in model transmission. Furthermore, large CAD models can 
stretch the capability of some hosts whose graphical features 
are limited. This fact complicates keeping a similar frame 
rate in all hosts that take part in a collaborative session. 
 
A fundamental geometric entity in Computer Aided Design 
(CAD) is the Non-Uniform Ration B-Spline (NURBS) 
surface. This representation allows defining exactly both 
algebraic geometries and abstract surfaces standardizing the 
representation by a single mathematical equation. Moreover, 
thanks to their growing use in CAD/CAM, NURBS surfaces 
appear in the main neutral file formats for interchanging 
geometric data, like IGES and STEP. Pielg and Tiller [3] 
have studied NURBS surfaces in depth. 

In Internet oriented applications, because of its implicit 
compression, NURBS surfaces are more convenient than 
polygonal meshes because the amount of information to be 
transferred among hosts is reduced. With regard to 
interactive visualization, its description allows to select the 
optimal level of detail in runtime. Thus, it is possible to 
manage the quality of the generated image as the function of, 
either the degree of interactivity to achieve, or the hardware 
features of a particular host. This means that, in different 
hosts participating in a collaborative session over the same 
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3D model, its polygonal approximation can be made up of a 
different number of polygons. 

2- Related Work 
2.1 – Rendering of NURBS surfaces 

Because of its importance in computer graphics applications, 
the rendering of NURBS surfaces has been researched 
intensively in last three decades. In photo-realistic rendering 
algorithms, the colour intensity value of each screen pixel is 
generated directly from the mathematical description of the 
surfaces. These algorithms can be classified in based on: scan-
line [4][5][6], ray tracing [7][8] and iso-curve sequences 
[9][10]. In hardware rendering [11][12][13], the graphical 
hardware is extended with more complex geometric primitives 
than the polygon. This hardware has VLSI architectures that 
make possible the computation of points and normal vectors of 
a surface. In approximation based rendering algorithms, more 
simple primitives like polygons [14][15][16] or points [17] 
approximate surfaces. These algorithms are generally much 
faster due to recent advances in graphics hardware. 

In dynamic tessellation algorithms, meshes are generated in the 
interactive stage of the rendering pipeline. As they have to run 
as fast as possible, the tessellations they produce usually are of 
lower quality than those generated in preprocessing stage. 
However, there are two interesting facts. In first place, storing 
NURBS surfaces instead of storing polygonal representations 
saves a large percentage of available memory. This is 
especially interesting when using large models where many 
surfaces are not visible and their incorporation to the 
potentially visible surfaces set will be gradual. In second place, 
an appropriate tessellation can be obtained in runtime as the 
function of actual viewing conditions, the wanted interactivity 
degree or available graphical hardware features in a local 
computer. So, this kind of algorithms is very advisable for 
interactive visualization. 

In dynamic tessellation, uniform decomposition is generally 
used because they are less time consuming than adaptive 
decomposition. Uniform decomposition tessellates the surface 
using a regular grid defined in the parametric domain. This 
does not guarantee that the resulting tessellation will be 
uniform. Anyway, it is possible to determine a parametric grid 
size that may produce polygons that meet certain restrictions. 
For instance, polygons that projected onto the screen will be 
within specific size bounds [14][16]. 

2.2 – Predictive fixed-frame rate LOD selection 

After transforming surfaces into polygonal representations, 
most existing approaches for rendering interactively NURBS 
surfaces build static levels of detail upon them. 

A predictive fixed-frame-rate LOD selection algorithm 
estimates the complexity of the frame to be rendered and 
selects appropriated levels of detail to ensure that the update 
deadline is never exceeded. 

Funkhouser and Sequin [18] present a predictive LOD 
selection algorithm that adapts the discrete level of detail of 
visible objects to satisfy a constant frame rate. They used a 
cost/benefit paradigm that attempted to optimize the 
perceptual benefit of a frame against the computational cost.  
Mason and Blake [19] describe a hybrid of Funkhouser and 
Sequin’s predictive LOD selection algorithm and imposters 
technique. Gobbetti and Bouvier [20]’s predictive LOD 
selection algorithm works with continuous LOD models. 
Zach et al. [21] presents a predictive LOD selection 
algorithm that incorporates discrete and continuous 
representations of each object. 

3- Outline of the algorithm 
Given the set of NURBS surfaces that completes a model, 
the predictive fixed-frame rate tessellation algorithm can be 
divided into a pre-processing stage and an interactive 
rendering stage. 

In the pre-processing stage the following actions are done: 
• Reading NURBS surfaces 
• Computation of geometric data (see Section 6) 

The interactive rendering stage consist of the following two 
main operations: 

• Culling non visible surfaces 
• Predictive-fixed frame rate tessellation of visible 

surfaces 

In interactive visualization, the speed of interaction with the 
3D model (quantified by the frame rate) has priority over the 
image quality. One form of controlling the frame rate 
consists on explicitly bounding the number of polygons that 
forms tessellations of visible surfaces while maintaining as 
much quality as possible. As it will be seen later on, uniform 
tessellation permits the implementation of a fixed frame rate 
predictive algorithm. 

4- Visibility Control 
We implement two different culling techniques at surface 
level: view frustum and back-face culling.  

The view frustum culling works by testing the bounding 
sphere of each surface against the current view-frustum, 
which is defined by the four sides of a truncated pyramid. 

The back-face culling algorithm is based on the clustered 
back-face culling used by Zhang and Hoff III[22] for 
polygonal models. We extend that idea using a discretization 
of the normal surface of each NURBS surface. Unitary 
normal space is partitioned in small pyramids named 
clusters. The apex of all pyramids is the centre of a unitary 
cube. Each face of the cube is subdivided in regular cells. 
The base of each pyramid is one of the cells. In pre-process, 
we determine for each surface which clusters are intersected 
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by its normal vectors.  In each frame, front-facing clusters are 
determined in constant time based on the representative normal 
vectors of each cluster (normals of its corners). If one cluster is 
front facing, surfaces whose normal vectors intersect this 
cluster are deemed visible. 

5- Tessellation criterion 
We propose a new tessellation criterion based on the projection 
onto screen space of surface bounding sphere. As we will see, 
we extended that method using surface geometric information. 
With our tessellation criterion, triangle edge length projected 
onto screen space can be bounded. 

In the pre-process phase we compute the maximum lengths of 
iso-edges of the control polygon in each parametric direction 
(lumax; lvmax): 
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where Pi,j ((n+1)×(m+1)) are the control points that define a 
NURBS surface.  We also compute the aspect ratio among 
these lengths ar = lumax/lvmax.  

In the interactive rendering phase we use this data to determine 
the constant step size that will be used in the parametric space 
to generate the vertices for the required tessellation.  We define 
an sphere of  lumax diameter, with its centre placed in the 
nearest point to the camera view point of the surface bounding 
sphere (see Figure 2). Then, step sizes in each parametric 
direction (nu, nv) are: 
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where (umax, umin) and (vmax, vmin) are the dimensions of the 
parametric domain in each parametric direction, lumax,scr is the 
screen space projection of lumax, and λ, the triangle edge length 
bound parameter, whose use and meaning will be explained 
immediately. 

A tessellation of a surface is determined by its lumax,scr and λ. 
lumax,scr is the function of: lumax, the centre of the surface 
bounding sphere, the position of the point of view and the 
position of the projection plane. For a constant value of λ, the 
number of polygons of a tessellation will be reduced or 
increased if the distance among the point of view and the 

surface increases (lumax,scr smaller) or decreases (lumax,scr 
larger). 

 

Fig. 2: Tessellation criterion. 

The value of λ is used as a global quality bound that is 
applied to all the surfaces in the scene. The effect of 
changing λ maintaining constant the rest of parameters 
implies: with increases of λ, step sizes decrease and, 
therefore, less quality tessellations are generated; inversely, 
reducing λ involves more quality tessellations. Consequently, 
if the system detects that the frame rate is lowering, or the 
memory cost is excessive, the logical action will be 
increasing the value of λ. 

From a quality point of view, a new tessellation of a surface 
is made only when the following happens: 

currentscrrequiredscrcurrentscr luKlulu ,max,,max,,max, ⋅>−  

where K > 0 controls whether a new tessellation must be 
built. 

The behaviour of K is simple and intuitive. If K is assigned a 
large value, the quality difference between two consecutive 
tessellations is also large, and switching between them will 
produce the popping effect. On the other hand, if K is small, 
it is possible that the quality increase of the new tessellation 
will not compensate the effort of its generation. 

Independently of the value of K, the frequency of 
tessellations decreases as the distance between the surface 
and the point of view decreases. Equally, if the value of K 
increases, the tessellations are more frequent. 

6- Computational Cost of Tessellation and 
Rendering 
If the value of λ is constant during the visualization, the 
quality of tessellations increases as the distance between the 
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model and the point of view decreases. Consequently it is 
possible that the amount of polygons exceeds the memory or 
the rendering capability of the graphics hardware. 

The total computational cost of generating and rendering the 
tessellation of potentially visible surfaces is approximated by: 
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where N is the set of surfaces and C(Si) is the cost of 
generating and rendering the tessellation of a particular 
surface, Si. This time is estimated as: 
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The time required to generate a tessellation of a surface 
depends on its number of vertices and the time required to 
evaluate a vertex (a vertex is composed of the three-
dimensional surface point and its associated normal vector): 
given lumax,scr, ar and λ, the temporal cost of generating the 
tessellation of the surface Si is: 
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where teval is the required time to evaluate a vertex with a 
particular surface evaluation method. 

Respect the rendering of surfaces, Funkhouser and Sequin  [18] 
predict the temporal cost of the Geometry stage for a polygonal 
object as a lineal combination of the number or polygons and 
vertices that compose the object weighted by coefficients that 
depends on the hardware features and the rendering algorithm 
(wireframe, Gouraud, Phong,...). For the Rasterizer stage, the 
temporal cost is proportional to the number of pixels covered 
by the screen projection of the object. 

Calculating the number of polygons and vertices is 
straightforward. However, determining the number of pixels 
that covers a projected surface is computationally expensive. It 
requires calculating silhouette curves and their projection to 
screen space in runtime. This value can be approximated 
projecting and calculating the projected area of a bounding 
volume of the surface. Another possibility is pre-compute the 
area for a set of projections and in the interactive phase obtain 
the number of pixels as the function of the distance and those 
pre-computed areas. 

7- Predictive fixed-frame rate tessellation 
We propose a predictive fixed-frame rate tessellation algorithm 
based on the parameters exposed in previous sections. 

We define trmax as the time available for the generation of 
one frame. The user or the application sets the value of this 
parameter (e.g. 50 msec.). It should be noted that in each 
frame all the tessellations are rendered to create one image, 
but not all visible surfaces must be tessellated for that frame, 
only a few require a new tessellation (see section 5). So, trmax 
must be distributed between those two tasks, plus the culling 
phase. However, sometimes might happen that there is not 
enough time within a frame to render the image and to create 
all the new tessellations needed. The algorithm predicts the 
time required to perform the different tasks and gives priority 
to the generation of a new image per frame. However, this is 
not an absolute policy, if required, it reserves a minimum 
time fraction per frame for the generation of tessellations that 
will reduce the display cost. This policy should lead to less 
complex tessellations, reduce the time required for the 
generation of one frame and a new equilibrium should be 
achieved. In first place we define some variables then we 
propose the algorithm: 

• trv is the consumed time for the culling operation 
within a given frame, so the time left for tessellate 
and render in that frame is : trmax - trv 

• tef is the estimated time for the generation of one 
frame. This time is obtained summing the estimated 
tessellation and rendering times for that frame: te  = 
te  +te

f

t r Making this estimation is the first task 
performed in each frame once the culling operation 
is done 

• trt is the time that is really spent within a frame to 
generate tessellations and render them 

With respect to parameter λ we use the following notation: 

• λobj is the objective quality for all the tessellations. 
As we will see, it is an objective that sometimes 
requires several frames before it is achieved, so it 
may happen, when rendering one frame, that 
existing tessellations have a different λ value. 

• λ∆ is the increment that is applied to λobj when it is 
necessary to increase or reduce the quality 

• λSi is the current quality associated to the 
tessellation of surface Si 

• λmax is the current largest λSi. Its possible values are 
λobj or  λobj + λ∆ (note that λ∆ can be +/-) 

Rendering a frame consists of the following operations: 

• Determine which surfaces require a new tessellation 
• Predict the computational cost of tessellating and 

rendering the required surfaces, tef. 
• Determine the time consumed by these two tasks, trv 

If the time available to generate the frame is larger than the 
estimated time (tef < trmax - trv), the following operations will 
be done (render + increase quality): 

• Tessellate the surfaces that require a new 
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tessellation.  
• Render. 
• If the up to now consumed time is less than trmax, 

surfaces with λSi > λobj are tessellated again with more 
quality (λSi = λobj). If the available time is over, this 
process is interrupted. If the quality of all surfaces is 
λobj, this value is decremented in λ∆: the objective 
quality is increased. 

Otherwise, if the available time to generate the frame is smaller 
than the estimated time (tef < trmax - trv), the following 
operations will be done (render + increase quality + allow for 
lower frame rates): 

• If λmax = λobj, the objective quality is reduced in λ∆. 
• Decide how much time will be dedicated to generate 

coarser tessellations, trt. This election is made as 
function of the estimated time of rendering, ter. The 
following simple scheme is suggested. This election is 
not obvious: a iterative-predictive loop that estimates 
what surfaces should be tessellated to maximize the 
rendering time saving could be use. 
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maxmax

maxmax
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⋅=>
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tetrtrtrte
trtrtrte

 

• During this time, trt, surfaces with λSi < λobj are 
tessellated again reducing their quality (λSi = λobj). If 
the available time is over, this process is interrupted 
and the rendering phase begins. This simplification 
will continue in the next frame. 

• If the previous operation has been completed and the 
available time is not over, surfaces that require a new 
tessellation will be tessellated again. 

• Render. 

8- Description of 3DSHARED 
3DSHARED is composed of two modules: 3D API and 
Collaborative API. The 3D API takes care of the aspects 
related with the visualization of three-dimensional models. The 
Collaborative API ensures the correct communication among 
the members of the cooperative session. As the design and 
implementation of both modules is independent, 3DSHARED 
offers the functionalities of both modules in the same interface. 
Consequently, the cooperative visualization of three-
dimensional models is allowed. 

8.1 – Dynamic client/server architecture 
The Collaborative API represents a new communication 
architecture based on two well-known architectures: 
client/server and distributed [23]. 

In the client/server architecture, the server manages the transfer 
of messages among the participants. It receives messages from 
clients and replies them to the other hosts. This is a centralized 

management. Although this architecture is easily 
implemented, a server must firstly be started in order to 
allow the connection of clients [24]. Even more, a failure in 
the server causes the whole system failure of the system and 
this kind of architecture is poorly scalable. These problems 
can be solved with the hybrid client/server architecture [25]. 
However, these solutions need to develop and support two 
different applications (the server and the client). 

In the distributed architecture, all the hosts develop the same 
function. Therefore, only one application exists. As there is 
no server role, it is necessary to hold connections among all 
the hosts [26]. However, in our implementation, most of 
these connections are useless during the session because each 
host will only use the connections with the host that owns the 
control of the system. Therefore, the application looses the 
management simplicity. 

We have designed a hybrid architecture, which avoids these 
problems: the dynamic client/server architecture. It is based 
on a “peer to peer” strategy [27] and any node can take the 
server role. At any time a client host can ask for the control 
of the system and shift from client role to server role. The 
server node, also called controller, is the manager of the 
communications. If the server node falls down there is a 
replacement mechanism that assigns the server role 
automatically to a client host. 

Depending on the situation of the collaborative session the 
Collaborative API acts either as client or server, in a way that 
is transparent to the user. This avoids the development and 
co-existence of two different modules. If the system control 
is transferred to another host, the old controller host switches 
the role with the new controller (see Figure 3). 

 

Fig. 3: Dynamic client/server architecture. 

When a participant wants join to the session, it can connect 
to any participant. If this host is not the controller, the 
application intelligently redirects the connection to the 
controller. A user can be accepted, rejected or asked to join a 
cooperative session. This allows a robust management of the 
group. 

The access control to the cooperative session is managed by 
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the token mechanism that establishes that only the controller 
can interact with the model. Changing the control over the 
system can be accomplished for two reasons: the controller 
does not want to own the control and gives it to a client host; a 
client host wants to become the controller and requests it. This 
provides a higher flexibility to the system: the capability of 
transferring the token dynamically during a cooperative 
session. 

8.2 – Communication of in eractions t
In a collaborative session, the controller host must 
communicate the interactions its user is performing over the 
model. Following these commands the participant hosts can 
generate the same scene on their respective screens. 

3DSHARED uses a short message policy. These messages are 
sent only when there is a change in the state of the scene 
(position, orientation or colour change, etc.). As a 
consequence, the information flow among the participants is 
low and constant, achieving in most cases nearly real-time 
synchronization. 

Using TCP/IP protocol, secure and ordered transmission is 
provided. Therefore, it is not necessary to use specific 
hardware like multicast routers or D class IP addresses or other 
solutions like JavaGroups [28] or Ensemble [29]. 

The possibility of sending text messages has been integrated in 
the application. This functionality (chat) is very useful in 
collaborative applications. 

The user of the controller node is able to manipulate the user 
interface in order to change the visualization parameters. The 
3D API captures these interactions. Each controller’s action 
over the interface generates an update message that is queued 
in order to be sent to the clients. 

We have been very concerned about the lack of bandwidth for 
the communications. Thus we have built an option to control 
the data transfer flow: the controller can uphold the transfer of 
messages. So clients will not receive changes in the scene as 
they occur. Changes are queued and they are sent only when 
the user of the controller node requests the application to send 
them. Consequently, the 3D API provides two communication 
types: continuous mode and send by order mode. Viewing the 
object in motion is an important cue to help our mind in the 
recognition of 3-D models; for this reason continuous mode is 
the most used. However, if the Internet is very busy, then it is 
worthwhile to lose this cue to avoid the annoying effect of 
display lag. 

The Collaborative API of the participant hosts receives the 
messages. These messages are interpreted. If a message 
announces the opening of a file, the system checks whether 
that file is locally stored or not. If it is not, its transfer is 
requested and the application is interrupted until transmission 
is finished. If a message encapsulates an update of the scene, it 
is queued and the 3D API interprets it and reflects the changes 

in the scene that encapsulates it. The communication process 
can be seen in the Figure 4. 

 

Fig. 4: Communication of the update messages between the 
3D API and the Collaborative API. 

The Collaborative API is a general purpose API [30]. It 
contains the client/server architecture and the communication 
protocol but not the message policy. This feature allows its 
implantation in several domains. It is only required to define 
the message policy and how the 3D API must act when it 
receives the message. 

8.3 – User interface o  3DSHARED f
Each user will have one instance of the same program, which 
is presented in Figure 5. It has three communication tools: a 
chat tool, a file transfer tool and a 3D-window where the 
same view for all the participants in the session appears. 

The chat tool helps to check the connections. It is usually 
needed when the Internet is very busy. It also provides a 
simple mechanism to log the comments along the session. It 
can be used instead of the telephone or as a supplement to 
voice communication when a collaborative session is held 
between people of different languages, a usual problem in 
Europe. The list of connected nodes is available in the 
interface. 

 

Fig. 4: Cooperative Visualization Tool: 3DSHARED. 
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The file transfer is required nearly in every session, so we have 
integrated a tool to make this task more comfortable. 

The cooperative visualization window is used to: verify 
concurrently the design of the model and signal a particular 
feature to the other participants (sometimes to explain a doubt, 
other times to ask about a detail). 

Now we will refer to some visualization features of the 
application. The controller can select any of the 14 predefined 
views, change the viewing conditions freely, or select one of 
the user views. The user can store or remove views from a list, 
which can be reused in several sessions. Switch buttons define 
which axe of the model is mapped vertically on the screen. 
Cutting planes that remove part of the model are used to see 
the inside and get a better understanding of the structure of the 
model. Verification may be done visually, but the caster 
usually needs to make some measurements to check angles, 
thickness, radiuses, distances, etc., while the discussion with 
the modeller is carried out in the CSCW session. All of these 
functionalities are sent from the controller to all clients. 

9- Conclusions 
In this work we propose a framework for the interactive 
visualization of models described by NURBS surfaces. 

For the time being the following operations of the framework 
have been implemented: 

• a visibility control composed by a extension of the 
Zhang and Hoff III’s clustered backface culling and 
the view frustum culling, 

• a uniform tessellation algorithm guided by a 
geometric tessellation criterion. It does not assume 
continuity conditions of surfaces, 

• a tessellation policy that allows the user to configure 
the tessellation process dynamics.  

 

Moreover, we propose a predictive fixed-frame rate scheme.  It 
makes possible to adjust the quality of the meshes predicting 
the cost of generating and rendering tessellations. This control 
can be done thanks to the parameters we have defined to 
control the tessellation process. 

As future work, the main operations to be done are: 

• to extend the visibility control with hierarchical data 
structures and frame coherence. 

• to implement benchmarks of the proposed frame rate 
control and explore new solutions 

• to  extend the proposed framework for trimmed 
NURBS surfaces. 
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