
Virtual Concept 2003 Biarritz - France November, 5-7

NURBS surfaces: a geometric primitive for cooperative
visualization

H. Sánchez 1, A. Moreno 2, A. García-Alonso 3, D. Oyarzun 2

(1) Universidad de Extremadura
Centro Universitario de Mérida

Santa Teresa de Jornet , 38
06800 Mérida (Spain)

Téléphone : (+34) 924 387068 ext 2530

Fax : (+34) 924 303782
E-mail : sasah@unex.es

(2) VICOMTech
Mikeletegi Pasealekua, 57

 Parque Tecnológico
 20009 Saint Sebastián (Spain)

Téléphone : (+34) 943 30 92 30

Fax : (+34) 943 30 93 93
E-mail : {amoreno, doyarzun @vicomtech.es

(3) Euskal Herriko Unibertsitatea
Facultad de Informática
Manuel de Lardizabal , 1

28018 San Sebastián (Spain)

Téléphone : (+34) 943 015104
Fax : (+34) 943 219306

E-mail : agalonso@si.ehu.es

Abstract: The problem of visualizing graphical models
described by NURBS surfaces at interactive frame rates is of
great interest for the CAD/CAM industry, since many of their
models are designed using this surface type. As current
graphics hardware is optimised for rendering triangles, most
efficient methods of rendering NURBS surfaces approximate
them by polygonal representations. In this work we propose a
predictive fixed-frame rate rendering of NURBS surfaces that
controls the interactivity of their visualization and
manipulation.

Key words: NURBS surfaces, fixed-frame rate tessellation,
cooperative visualization.

1- Motivation
Collaborative visualization provides real time visual
exploration and multiple-user interactions of three-dimensional
models among geographically remote users. Per example,
3DSHARED [1][2] allows engineers, modellers and customers
the virtual design and maintenance of engineering products
through its three-dimensional replica.

In collaborative applications, the speed in the making of the
following operations is vitally important: the transmission of
the entire model, the transmission of messages that update the
visualized scene and the generation of the updated final image.
Improving these operations makes possible a real-time

interaction with the three-dimensional model. At the
moment, 3DSHARED supports three-dimensional models
described by polygonal meshes. As the density of polygons
in meshes is pre-calculated, it is possible to find difficulties
in model transmission. Furthermore, large CAD models can
stretch the capability of some hosts whose graphical features
are limited. This fact complicates keeping a similar frame
rate in all hosts that take part in a collaborative session.

A fundamental geometric entity in Computer Aided Design
(CAD) is the Non-Uniform Ration B-Spline (NURBS)
surface. This representation allows defining exactly both
algebraic geometries and abstract surfaces standardizing the
representation by a single mathematical equation. Moreover,
thanks to their growing use in CAD/CAM, NURBS surfaces
appear in the main neutral file formats for interchanging
geometric data, like IGES and STEP. Pielg and Tiller [3]
have studied NURBS surfaces in depth.

In Internet oriented applications, because of its implicit
compression, NURBS surfaces are more convenient than
polygonal meshes because the amount of information to be
transferred among hosts is reduced. With regard to
interactive visualization, its description allows to select the
optimal level of detail in runtime. Thus, it is possible to
manage the quality of the generated image as the function of,
either the degree of interactivity to achieve, or the hardware
features of a particular host. This means that, in different
hosts participating in a collaborative session over the same

 1

mailto:sasah@unex.es
mailto:amoreno@vicomtech.es
mailto:agalonso@si.ehu.es

Virtual Concept 2002 Biarritz - France October, 9-10

3D model, its polygonal approximation can be made up of a
different number of polygons.

2- Related Work
2.1 – Rendering of NURBS surfaces

Because of its importance in computer graphics applications,
the rendering of NURBS surfaces has been researched
intensively in last three decades. In photo-realistic rendering
algorithms, the colour intensity value of each screen pixel is
generated directly from the mathematical description of the
surfaces. These algorithms can be classified in based on: scan-
line [4][5][6], ray tracing [7][8] and iso-curve sequences
[9][10]. In hardware rendering [11][12][13], the graphical
hardware is extended with more complex geometric primitives
than the polygon. This hardware has VLSI architectures that
make possible the computation of points and normal vectors of
a surface. In approximation based rendering algorithms, more
simple primitives like polygons [14][15][16] or points [17]
approximate surfaces. These algorithms are generally much
faster due to recent advances in graphics hardware.

In dynamic tessellation algorithms, meshes are generated in the
interactive stage of the rendering pipeline. As they have to run
as fast as possible, the tessellations they produce usually are of
lower quality than those generated in preprocessing stage.
However, there are two interesting facts. In first place, storing
NURBS surfaces instead of storing polygonal representations
saves a large percentage of available memory. This is
especially interesting when using large models where many
surfaces are not visible and their incorporation to the
potentially visible surfaces set will be gradual. In second place,
an appropriate tessellation can be obtained in runtime as the
function of actual viewing conditions, the wanted interactivity
degree or available graphical hardware features in a local
computer. So, this kind of algorithms is very advisable for
interactive visualization.

In dynamic tessellation, uniform decomposition is generally
used because they are less time consuming than adaptive
decomposition. Uniform decomposition tessellates the surface
using a regular grid defined in the parametric domain. This
does not guarantee that the resulting tessellation will be
uniform. Anyway, it is possible to determine a parametric grid
size that may produce polygons that meet certain restrictions.
For instance, polygons that projected onto the screen will be
within specific size bounds [14][16].

2.2 – Predictive fixed-frame rate LOD selection

After transforming surfaces into polygonal representations,
most existing approaches for rendering interactively NURBS
surfaces build static levels of detail upon them.

A predictive fixed-frame-rate LOD selection algorithm
estimates the complexity of the frame to be rendered and
selects appropriated levels of detail to ensure that the update
deadline is never exceeded.

Funkhouser and Sequin [18] present a predictive LOD
selection algorithm that adapts the discrete level of detail of
visible objects to satisfy a constant frame rate. They used a
cost/benefit paradigm that attempted to optimize the
perceptual benefit of a frame against the computational cost.
Mason and Blake [19] describe a hybrid of Funkhouser and
Sequin’s predictive LOD selection algorithm and imposters
technique. Gobbetti and Bouvier [20]’s predictive LOD
selection algorithm works with continuous LOD models.
Zach et al. [21] presents a predictive LOD selection
algorithm that incorporates discrete and continuous
representations of each object.

3- Outline of the algorithm
Given the set of NURBS surfaces that completes a model,
the predictive fixed-frame rate tessellation algorithm can be
divided into a pre-processing stage and an interactive
rendering stage.

In the pre-processing stage the following actions are done:
• Reading NURBS surfaces
• Computation of geometric data (see Section 6)

The interactive rendering stage consist of the following two
main operations:

• Culling non visible surfaces
• Predictive-fixed frame rate tessellation of visible

surfaces

In interactive visualization, the speed of interaction with the
3D model (quantified by the frame rate) has priority over the
image quality. One form of controlling the frame rate
consists on explicitly bounding the number of polygons that
forms tessellations of visible surfaces while maintaining as
much quality as possible. As it will be seen later on, uniform
tessellation permits the implementation of a fixed frame rate
predictive algorithm.

4- Visibility Control
We implement two different culling techniques at surface
level: view frustum and back-face culling.

The view frustum culling works by testing the bounding
sphere of each surface against the current view-frustum,
which is defined by the four sides of a truncated pyramid.

The back-face culling algorithm is based on the clustered
back-face culling used by Zhang and Hoff III[22] for
polygonal models. We extend that idea using a discretization
of the normal surface of each NURBS surface. Unitary
normal space is partitioned in small pyramids named
clusters. The apex of all pyramids is the centre of a unitary
cube. Each face of the cube is subdivided in regular cells.
The base of each pyramid is one of the cells. In pre-process,
we determine for each surface which clusters are intersected

 2

Virtual Concept 2002 Biarritz - France October, 9-10

by its normal vectors. In each frame, front-facing clusters are
determined in constant time based on the representative normal
vectors of each cluster (normals of its corners). If one cluster is
front facing, surfaces whose normal vectors intersect this
cluster are deemed visible.

5- Tessellation criterion
We propose a new tessellation criterion based on the projection
onto screen space of surface bounding sphere. As we will see,
we extended that method using surface geometric information.
With our tessellation criterion, triangle edge length projected
onto screen space can be bounded.

In the pre-process phase we compute the maximum lengths of
iso-edges of the control polygon in each parametric direction
(lumax; lvmax):

∑

∑
−

=
+

−

=
+

−=

−=

1

0
,1,max

1

0
1,,max

max

max

n

i
jijij

m

j
jijii

PPlv

PPlu

where Pi,j ((n+1)×(m+1)) are the control points that define a
NURBS surface. We also compute the aspect ratio among
these lengths ar = lumax/lvmax.

In the interactive rendering phase we use this data to determine
the constant step size that will be used in the parametric space
to generate the vertices for the required tessellation. We define
an sphere of lumax diameter, with its centre placed in the
nearest point to the camera view point of the surface bounding
sphere (see Figure 2). Then, step sizes in each parametric
direction (nu, nv) are:

1

1

max,

minmax

max,

minmax

−
⋅

−
=

−

−
=

ar
lu

vvn

lu
uun

scr
v

scr
u

λ

λ

where (umax, umin) and (vmax, vmin) are the dimensions of the
parametric domain in each parametric direction, lumax,scr is the
screen space projection of lumax, and λ, the triangle edge length
bound parameter, whose use and meaning will be explained
immediately.

A tessellation of a surface is determined by its lumax,scr and λ.
lumax,scr is the function of: lumax, the centre of the surface
bounding sphere, the position of the point of view and the
position of the projection plane. For a constant value of λ, the
number of polygons of a tessellation will be reduced or
increased if the distance among the point of view and the

surface increases (lumax,scr smaller) or decreases (lumax,scr
larger).

Fig. 2: Tessellation criterion.

The value of λ is used as a global quality bound that is
applied to all the surfaces in the scene. The effect of
changing λ maintaining constant the rest of parameters
implies: with increases of λ, step sizes decrease and,
therefore, less quality tessellations are generated; inversely,
reducing λ involves more quality tessellations. Consequently,
if the system detects that the frame rate is lowering, or the
memory cost is excessive, the logical action will be
increasing the value of λ.

From a quality point of view, a new tessellation of a surface
is made only when the following happens:

currentscrrequiredscrcurrentscr luKlulu ,max,,max,,max, ⋅>−

where K > 0 controls whether a new tessellation must be
built.

The behaviour of K is simple and intuitive. If K is assigned a
large value, the quality difference between two consecutive
tessellations is also large, and switching between them will
produce the popping effect. On the other hand, if K is small,
it is possible that the quality increase of the new tessellation
will not compensate the effort of its generation.

Independently of the value of K, the frequency of
tessellations decreases as the distance between the surface
and the point of view decreases. Equally, if the value of K
increases, the tessellations are more frequent.

6- Computational Cost of Tessellation and
Rendering
If the value of λ is constant during the visualization, the
quality of tessellations increases as the distance between the

 3

Virtual Concept 2002 Biarritz - France October, 9-10

model and the point of view decreases. Consequently it is
possible that the amount of polygons exceeds the memory or
the rendering capability of the graphics hardware.

The total computational cost of generating and rendering the
tessellation of potentially visible surfaces is approximated by:

∑
=

=
N

i
itotal SCC

1
)(

where N is the set of surfaces and C(Si) is the cost of
generating and rendering the tessellation of a particular
surface, Si. This time is estimated as:

)()()(irendigeni SCSCSC +=

The time required to generate a tessellation of a surface
depends on its number of vertices and the time required to
evaluate a vertex (a vertex is composed of the three-
dimensional surface point and its associated normal vector):
given lumax,scr, ar and λ, the temporal cost of generating the
tessellation of the surface Si is:

eval
i

iscriscr
igen t

Sar
SluSlu

SC ⋅

−

⋅
⋅

−= 1

)(
)(

1
)(

)(max,max,

λλ

where teval is the required time to evaluate a vertex with a
particular surface evaluation method.

Respect the rendering of surfaces, Funkhouser and Sequin [18]
predict the temporal cost of the Geometry stage for a polygonal
object as a lineal combination of the number or polygons and
vertices that compose the object weighted by coefficients that
depends on the hardware features and the rendering algorithm
(wireframe, Gouraud, Phong,...). For the Rasterizer stage, the
temporal cost is proportional to the number of pixels covered
by the screen projection of the object.

Calculating the number of polygons and vertices is
straightforward. However, determining the number of pixels
that covers a projected surface is computationally expensive. It
requires calculating silhouette curves and their projection to
screen space in runtime. This value can be approximated
projecting and calculating the projected area of a bounding
volume of the surface. Another possibility is pre-compute the
area for a set of projections and in the interactive phase obtain
the number of pixels as the function of the distance and those
pre-computed areas.

7- Predictive fixed-frame rate tessellation
We propose a predictive fixed-frame rate tessellation algorithm
based on the parameters exposed in previous sections.

We define trmax as the time available for the generation of
one frame. The user or the application sets the value of this
parameter (e.g. 50 msec.). It should be noted that in each
frame all the tessellations are rendered to create one image,
but not all visible surfaces must be tessellated for that frame,
only a few require a new tessellation (see section 5). So, trmax
must be distributed between those two tasks, plus the culling
phase. However, sometimes might happen that there is not
enough time within a frame to render the image and to create
all the new tessellations needed. The algorithm predicts the
time required to perform the different tasks and gives priority
to the generation of a new image per frame. However, this is
not an absolute policy, if required, it reserves a minimum
time fraction per frame for the generation of tessellations that
will reduce the display cost. This policy should lead to less
complex tessellations, reduce the time required for the
generation of one frame and a new equilibrium should be
achieved. In first place we define some variables then we
propose the algorithm:

• trv is the consumed time for the culling operation
within a given frame, so the time left for tessellate
and render in that frame is : trmax - trv

• tef is the estimated time for the generation of one
frame. This time is obtained summing the estimated
tessellation and rendering times for that frame: te =
te +te

f

t r Making this estimation is the first task
performed in each frame once the culling operation
is done

• trt is the time that is really spent within a frame to
generate tessellations and render them

With respect to parameter λ we use the following notation:

• λobj is the objective quality for all the tessellations.
As we will see, it is an objective that sometimes
requires several frames before it is achieved, so it
may happen, when rendering one frame, that
existing tessellations have a different λ value.

• λ∆ is the increment that is applied to λobj when it is
necessary to increase or reduce the quality

• λSi is the current quality associated to the
tessellation of surface Si

• λmax is the current largest λSi. Its possible values are
λobj or λobj + λ∆ (note that λ∆ can be +/-)

Rendering a frame consists of the following operations:

• Determine which surfaces require a new tessellation
• Predict the computational cost of tessellating and

rendering the required surfaces, tef.
• Determine the time consumed by these two tasks, trv

If the time available to generate the frame is larger than the
estimated time (tef < trmax - trv), the following operations will
be done (render + increase quality):

• Tessellate the surfaces that require a new

 4

Virtual Concept 2002 Biarritz - France October, 9-10

tessellation.
• Render.
• If the up to now consumed time is less than trmax,

surfaces with λSi > λobj are tessellated again with more
quality (λSi = λobj). If the available time is over, this
process is interrupted. If the quality of all surfaces is
λobj, this value is decremented in λ∆: the objective
quality is increased.

Otherwise, if the available time to generate the frame is smaller
than the estimated time (tef < trmax - trv), the following
operations will be done (render + increase quality + allow for
lower frame rates):

• If λmax = λobj, the objective quality is reduced in λ∆.
• Decide how much time will be dedicated to generate

coarser tessellations, trt. This election is made as
function of the estimated time of rendering, ter. The
following simple scheme is suggested. This election is
not obvious: a iterative-predictive loop that estimates
what surfaces should be tessellated to maximize the
rendering time saving could be use.

5,0:
5,0:

maxmax

maxmax

⋅−=≤
⋅=>

rtr

tr

tetrtrtrte
trtrtrte

• During this time, trt, surfaces with λSi < λobj are
tessellated again reducing their quality (λSi = λobj). If
the available time is over, this process is interrupted
and the rendering phase begins. This simplification
will continue in the next frame.

• If the previous operation has been completed and the
available time is not over, surfaces that require a new
tessellation will be tessellated again.

• Render.

8- Description of 3DSHARED
3DSHARED is composed of two modules: 3D API and
Collaborative API. The 3D API takes care of the aspects
related with the visualization of three-dimensional models. The
Collaborative API ensures the correct communication among
the members of the cooperative session. As the design and
implementation of both modules is independent, 3DSHARED
offers the functionalities of both modules in the same interface.
Consequently, the cooperative visualization of three-
dimensional models is allowed.

8.1 – Dynamic client/server architecture
The Collaborative API represents a new communication
architecture based on two well-known architectures:
client/server and distributed [23].

In the client/server architecture, the server manages the transfer
of messages among the participants. It receives messages from
clients and replies them to the other hosts. This is a centralized

management. Although this architecture is easily
implemented, a server must firstly be started in order to
allow the connection of clients [24]. Even more, a failure in
the server causes the whole system failure of the system and
this kind of architecture is poorly scalable. These problems
can be solved with the hybrid client/server architecture [25].
However, these solutions need to develop and support two
different applications (the server and the client).

In the distributed architecture, all the hosts develop the same
function. Therefore, only one application exists. As there is
no server role, it is necessary to hold connections among all
the hosts [26]. However, in our implementation, most of
these connections are useless during the session because each
host will only use the connections with the host that owns the
control of the system. Therefore, the application looses the
management simplicity.

We have designed a hybrid architecture, which avoids these
problems: the dynamic client/server architecture. It is based
on a “peer to peer” strategy [27] and any node can take the
server role. At any time a client host can ask for the control
of the system and shift from client role to server role. The
server node, also called controller, is the manager of the
communications. If the server node falls down there is a
replacement mechanism that assigns the server role
automatically to a client host.

Depending on the situation of the collaborative session the
Collaborative API acts either as client or server, in a way that
is transparent to the user. This avoids the development and
co-existence of two different modules. If the system control
is transferred to another host, the old controller host switches
the role with the new controller (see Figure 3).

Fig. 3: Dynamic client/server architecture.

When a participant wants join to the session, it can connect
to any participant. If this host is not the controller, the
application intelligently redirects the connection to the
controller. A user can be accepted, rejected or asked to join a
cooperative session. This allows a robust management of the
group.

The access control to the cooperative session is managed by

 5

Virtual Concept 2002 Biarritz - France October, 9-10

the token mechanism that establishes that only the controller
can interact with the model. Changing the control over the
system can be accomplished for two reasons: the controller
does not want to own the control and gives it to a client host; a
client host wants to become the controller and requests it. This
provides a higher flexibility to the system: the capability of
transferring the token dynamically during a cooperative
session.

8.2 – Communication of in eractions t
In a collaborative session, the controller host must
communicate the interactions its user is performing over the
model. Following these commands the participant hosts can
generate the same scene on their respective screens.

3DSHARED uses a short message policy. These messages are
sent only when there is a change in the state of the scene
(position, orientation or colour change, etc.). As a
consequence, the information flow among the participants is
low and constant, achieving in most cases nearly real-time
synchronization.

Using TCP/IP protocol, secure and ordered transmission is
provided. Therefore, it is not necessary to use specific
hardware like multicast routers or D class IP addresses or other
solutions like JavaGroups [28] or Ensemble [29].

The possibility of sending text messages has been integrated in
the application. This functionality (chat) is very useful in
collaborative applications.

The user of the controller node is able to manipulate the user
interface in order to change the visualization parameters. The
3D API captures these interactions. Each controller’s action
over the interface generates an update message that is queued
in order to be sent to the clients.

We have been very concerned about the lack of bandwidth for
the communications. Thus we have built an option to control
the data transfer flow: the controller can uphold the transfer of
messages. So clients will not receive changes in the scene as
they occur. Changes are queued and they are sent only when
the user of the controller node requests the application to send
them. Consequently, the 3D API provides two communication
types: continuous mode and send by order mode. Viewing the
object in motion is an important cue to help our mind in the
recognition of 3-D models; for this reason continuous mode is
the most used. However, if the Internet is very busy, then it is
worthwhile to lose this cue to avoid the annoying effect of
display lag.

The Collaborative API of the participant hosts receives the
messages. These messages are interpreted. If a message
announces the opening of a file, the system checks whether
that file is locally stored or not. If it is not, its transfer is
requested and the application is interrupted until transmission
is finished. If a message encapsulates an update of the scene, it
is queued and the 3D API interprets it and reflects the changes

in the scene that encapsulates it. The communication process
can be seen in the Figure 4.

Fig. 4: Communication of the update messages between the
3D API and the Collaborative API.

The Collaborative API is a general purpose API [30]. It
contains the client/server architecture and the communication
protocol but not the message policy. This feature allows its
implantation in several domains. It is only required to define
the message policy and how the 3D API must act when it
receives the message.

8.3 – User interface o 3DSHARED f
Each user will have one instance of the same program, which
is presented in Figure 5. It has three communication tools: a
chat tool, a file transfer tool and a 3D-window where the
same view for all the participants in the session appears.

The chat tool helps to check the connections. It is usually
needed when the Internet is very busy. It also provides a
simple mechanism to log the comments along the session. It
can be used instead of the telephone or as a supplement to
voice communication when a collaborative session is held
between people of different languages, a usual problem in
Europe. The list of connected nodes is available in the
interface.

Fig. 4: Cooperative Visualization Tool: 3DSHARED.

 6

Virtual Concept 2002 Biarritz - France October, 9-10

The file transfer is required nearly in every session, so we have
integrated a tool to make this task more comfortable.

The cooperative visualization window is used to: verify
concurrently the design of the model and signal a particular
feature to the other participants (sometimes to explain a doubt,
other times to ask about a detail).

Now we will refer to some visualization features of the
application. The controller can select any of the 14 predefined
views, change the viewing conditions freely, or select one of
the user views. The user can store or remove views from a list,
which can be reused in several sessions. Switch buttons define
which axe of the model is mapped vertically on the screen.
Cutting planes that remove part of the model are used to see
the inside and get a better understanding of the structure of the
model. Verification may be done visually, but the caster
usually needs to make some measurements to check angles,
thickness, radiuses, distances, etc., while the discussion with
the modeller is carried out in the CSCW session. All of these
functionalities are sent from the controller to all clients.

9- Conclusions
In this work we propose a framework for the interactive
visualization of models described by NURBS surfaces.

For the time being the following operations of the framework
have been implemented:

• a visibility control composed by a extension of the
Zhang and Hoff III’s clustered backface culling and
the view frustum culling,

• a uniform tessellation algorithm guided by a
geometric tessellation criterion. It does not assume
continuity conditions of surfaces,

• a tessellation policy that allows the user to configure
the tessellation process dynamics.

Moreover, we propose a predictive fixed-frame rate scheme. It
makes possible to adjust the quality of the meshes predicting
the cost of generating and rendering tessellations. This control
can be done thanks to the parameters we have defined to
control the tessellation process.

As future work, the main operations to be done are:

• to extend the visibility control with hierarchical data
structures and frame coherence.

• to implement benchmarks of the proposed frame rate
control and explore new solutions

• to extend the proposed framework for trimmed
NURBS surfaces.

Acknowledges

This work has been carried out with the help of a Researching
Personal Training Grant from Basque Government to Héctor

Sánchez and CICYT grant TIC99-0252. Héctor Sánchez also
wish to thank Prof. Subodh Kumar and Jatin Chhuganni for
the time spent discussing fast tessellation algorithms during
his stay at Johns Hopkins Uni-versity.

10- Bibliography
[1] D. Borro, I. Recio, H. Sánchez, A. García-Alonso and L.
Matey. CSCW for foundry design using Java3D. ACM 2000
Conference on Computer Supported Cooperative Work,
Philadelphia, December 2000.

[2] D. Borro, I. Recio, C. Pedrinaci, H. Sánchez and A.
García-Alonso. Peer-to-peer techniques applied to the
Cooperative Visualization of CAD Models. Proceedings of
MICAD 2003, Paris, pp. 8–13, April 2003.

[3] L.A. Piegl and W. Tiller. The NURBS Book.
Monographs in Visual Communication. Springer, 2º edition,
1997.

[4] F. Blinn. A scanline algorithm for computer display of
curves surfaces. Proceedings of the 5th annual conference on
Computer graphics and interactive techniques, 1978

[5] J.T. Whitted A scanline algorithm for displaying
parametrically defined surfaces. ACM Computer Graphics,
vol. 12, nº. 3, pp 8-13, 1978

[6] J.M. Lane, L.C. Carpenter, J.T. Whitted and J.F. Blinn.
Scan line methods for displaying parametrically defined
surfaces Communications of ACM, vol. 23, nº. 1, pp. 23-34,
1980.

[7] K. Qin, M. Gong, Y. Guan and W. Wang, A New Method
for Speeding Up Ray Tracing NURBS Surfaces”, Computers
& Graphics, vol. 21, nº. 5, pp. 577-586, September-October,
1997

[8] W. Martin, E. Cohen, R. Fish and P. Shirley. Practical
Ray Tracing of Trimmed NURBS Surfaces. Journal of
Graphics Tools vol. 5, nº. 1, pp. 27-52, 2000

[9] S. Chang, M. Shantz and R. Rocchetti. Rendering Cubic
Curves and Surfaces with Integer Adaptive Forward
Differencing. Computer Graphics (SIGGRAPH), vol. 23, nº
3, pp. 157-166, Jul. 1989

[10] G. Elber and E. Cohen. Adaptive isocurve-based
rendering for freeform surfaces. ACM Transactions on
Graphics, vol. 15, nº 3, pp. 249-263, 1996

[11] R. Bedichek, C. Ebeling, G. Winkenbach and A. D.
DeRose. Rapid low-cost display of spline surfaces.
Advanced Research in VLSI: Proceedings of the 1991 UCSC
Conference, MIT Press, Cambridge MA, pp. 340-355, March
1991

 7

Virtual Concept 2002 Biarritz - France October, 9-10

[12] M. Gopi and S. Manohar. A Unified Architecture for the
Computation of B-Spline Curves and Surfaces. IEEE
Transactions on Parallel and Distributed Systems, vol. 8, nº.
12, pp. 1275-1287, 1997

[13] M. Boó, J. D. Bruguera and E. L. Zapata Parallel
architecture for the computation of NURBS surfaces.
Proceedings of SPIE: Media Processors 2000, pp. 37-48, 2000

[14] A. Rockwood, K. Heaton and T. Davis. Realtime
rendering of trimmed surfaces. ACM Computer Graphics
(SIGGRAPH Proceedings), vol. 23, nº. 3, 1989

[15] L.A. Piegl and W. Tiller. Geometry-based triangulation of
trimmed NURBS surfaces. Computer-Aided Design, vol. 30,
nº 1, pp. 11-18, 1998

[16] S. Kumar. Interactive Display of Parametric Spline
Surfaces. PhD Thesis, University of North Carolina, 1996

[17] J. Chhuganni and S. Kumar. Budget Based Sampling of
Parametric Surfaces. to appear in ACM 3D Interactive
Graphics 2003.

[18] T.A. Funkhouser and C.H. Sequin. Adaptive display
algorithm for interactive frame rates during visualization of
complex virtual environments. Computer Graphics
(SIGGRAPH 93 Proceedings), 27, pp. 247–256, August 1993.

[19] A. Mason and E.H. Blake. Automatic Hierarchical Level
of Detail Optimization in Computer Animation. Computer
Graphics Forum, 16(3), pp. 191–199, 1997.

[20] E. Gobbetti and E. Bouvier. Time-critical multiresolution
scene rendering. IEEE Visualization, pp. 123–130, 1999.

[21] C. Zach, S. Mantler and K. Karner. Time-critical
Rendering of Discrete and Continuous Levels of Detail.
Eurographics Workshop on Rendering, pp. 1–8, 2002.

[22] H. Zhang and K.E. Hoff III. Fast Backface Culling
Using Normal Mask. Symposium on Interactive 3D
Graphics, pp. 103–106, 1997.

[23] R. Gossweiler, R.J. Laferriere, M.L. Keller, and R.
Pausch. An Introductory Tutorial for Developing Multi-User
Virtual Environments. Presence: Teleoperators and Virtual
Environments vol. 3, nº. 4, pp. 255-264, 1994.

[24] D. Brutzman. Graphics Internetworking: Bottlenecks
and Breakthroughs. In Digital Illusions. Dodsworth, C. (ed.),
pp. 61-97, Addison Wesley, 1997.

[25] K. Saar. VIRTUS: A collaborative multi-user platform.
Proceedings of the VRML’99 Symposium, pp. 141-152,
Paderborn, Germany, 1999.

[26] M.R. Macedonia and M.J. Zyda. A Taxonomy for
Networked Virtual Environments. IEEE Multimedia vol. 4,
nº. 1, pp. 48-56, Jan.-Mar., 1997.

[27] D. Clark. Face-to-Face with Peer-to-Peer Networking.
Computer, vol. 34, nº. 1, pp. 18-21, January 2001.

[28] B. Ban. JavaGroups – A Reliable Multicast
Communication Toolkit for Java. Home Page:
www.cs.cornell.edu/Info/Projects/JavaGroupsNew/index.htm
l, 1999.

[29] T. Clark. Ensemble – Distributed Communication
System.Home Page:
www.cs.cornell.edu/Info/Projects/ensemble, 2002.

[30] C. Pedrinaci. Integración y validación de un sistema de
visualización cooperativa en Internet. Available at
http://scsx01.sc.ehu.es/ccwweb3d/docs/pfc_pedrinaci.doc.

 8

