
INFORMATION MANAGEMENT AND KNOWLEDGE
SHARING IN WIDE

T. SMITHERS6, J. POSADA6, A. STORK1†, M. PIANCIAMORE2,
N. FERREIRA3, S. GRIMM7, I. JIMENEZ6, S. DI MARCA5,
G. MARCOS6, M. MAURI2, P. SELVINI2, N. SEVILMIS1,

B. THELEN4, AND V. ZECCHINO5

1Fraunhofer Institut f̈ur Graphische Datenverarbeitung, Darmstadt
2CEFRIEL, Milan
3Centro de Computaç̃ao Gráfica, Guimar̃aes
4Schenck Pegasus GmbH, Darmstadt
5Italdesign - Giugiaro SpA, Moncalieri (Torino)
6VICOMTech, Donostia / San Sebastián
7FH Karlsruhe University of applied Sciences, Karlsruhe
†Author to whom all correspondence should be sent to
at ist-wide@igd.fhg.de

WIDE is an IST project whose aim is to investigate the use of emerging Semantic Web
technologies, tools, and standards in the support of effective knowledge sharing and
information management in real multi-disciplinary activities, such as innovative prod-
uct design. This paper presents the approach to knowledge sharing and information
support that has been developed and adopted by the WIDE product, the information
system architecture that is being developed to test both this approach, and the Seman-
tic Web techniques that are used in its implementation, some early results from the
project, and a discussion of related work in information systems and Semantic Web
techniques and tools.

1. Introduction

The principal aim of the WIDE1 project, is to investigate the use of emerging
Semantic Web technologies and standards (see [1, 2]) to support effective infor-
mation management and knowledge sharing in innovative product design. To do
this, a prototype information support system is being developed to support the dif-
ferent kinds of designers and engineers involved in modern product design teams.

Sustaining innovative product design is fundamental to the continued success
and viability of companies in the engineering sector, particularly for the small to
medium size enterprises (SMEs) that dominate this sector in Europe. Effective
innovation depends upon a shared knowledge of what has been done before, and a
shared understanding of new options and opportunities. The key to sustaining in-
novation is thus effective support of the information management and knowledge
sharing activities of the multi-disciplinary design teams involved.

11Semantic Web-based Information Management and Knowledge Sharing for Innovative Product De-
sign and Engineering (IST-2001-34417):<http://www.ist-wide.info/> .

The WIDE project seeks to understand how effective information management
and knowledge sharing support can be delivered using a combination of conven-
tional (existing) information system and Semantic Web techniques. Semantic Web
techniques are seen as a way of providing effective support for the different kinds
of designers and engineers involved in product design, in a flexible and manage-
able way. In seeking to apply Semantic Web techniques to a real industrial need,
the WIDE project also constitutes an important test for current Semantic Web
techniques and standards.

2. The WIDE Approach to Knowledge Sharing

The main challenge in seeking to provide effective support for product design
teams, is to both accept and to actively support the different ways of working of the
different kinds of designers and engineers involved, and to effectively support their
knowledge sharing and inter-working. Concept designers and product engineers,
for example, need active support to understand each other, and thus to share their
knowledge in resolving design issues and problems.

This need for sharing knowledge, is often characterised as a need for acom-
mon understandingin Knowledge Management, and acommon working language
is usually prescribed to deal with it. Davenport and Prusak [3], for example, ar-
gue that “people can’t share knowledge if they don’t speak a common language.”
When it is possible for two or more communities to agree upon such a common
language, this approach has been shown to work, but it is not always possible, or
desirable. This is the case for innovative product design teams. The education,
training, and practices of concept designers, industrial designers, graphic design-
ers, product engineers, systems engineers, etc. all tend to encourage quite different
approaches to, and points of view of the products they are involved in designing
that result in quite different ways of thinking and talking about what they do: they
each have their own working culture.

Effective knowledge sharing does not necessarily require sharers to speak a
common language or terminology. It is sufficient for them to speak their own
’language,’ (terms)andbe able to understand the ’language’ (terms) of the other
(or others). Nor, in practice, does it require a complete understanding of what
the others say; just a sufficient understanding in particular contexts. The WIDE
approach to supporting knowledge sharing, is thus to support different kinds of
users, who are trying to find information using their own terminology. And to
support other kinds of users, who are involved in the same task, by (re)presenting
queries and returned information in the terms of these other users, and not just in
the terms of the user who requested it.

An important consequence of adopting this approach is that the WIDE infor-
mation systemmustalso be able to deal with the common and natural situation

that designers and engineers, of all kinds, often find themselves: they know well
what kind of information they need or want, but they do not know how to effec-
tively ask for it. The way any particular kind of designer might know about or talk
about some subject or concept may not be (and often is not) the same terms that
are used to organise and store the information he or she needs. To deal with this is-
sue, forming an effective information request is treated as a design activity, not as
a query specification task. In other words, the WIDE information system supports
users in designing effective information requests, rather than supporting them in
specifying correct queries in some query language. Designing effective queries is
modelled as an incremental exploration of different possibilities: a model which
is based upon a knowledge level theory of designing [4, 5].

The WIDE information system architecture and functionality, which we will
now present, reflect this WIDE approach to effective knowledge sharing in multi-
disciplinary design teams, and the support of information query design.

3. The WIDE Information System

The WIDE Information System is divided in to three basic levels: the User In-
terface level; the Meta Level; and the Content level. Each of these levels are
implemented as independent subsystems, and a fourth subsystem, the Agency—a
multi agent system—is used to “glue” them together.

The User Interface (UI) provides a graphical front end to the user. This sup-
ports both the incremental development of a user query (UQ), and the presentation
of the returned results. The Meta Level (ML) supports the user query design, and
subsequent semantic processing of a user query into System Queries (SQs). To
do this, theML uses a domain ontology (for car design, in the WIDE project),
together with a Task Type ontology, User Type ontology, and dictionaries of de-
scription terms and user type terms. All these different kinds of knowledge are
used to produce theSQs that are then passed to theAgency. This subsystem iden-
tifies and locates information sources in the Content Level (CL) to which theSQs

can be sent to produce effective returns. This may require some term mapping or
reformatting of theSQs, and the mapping back of any returns. The Agency also
provides the WIDE system’s gateway to the Web, which is also considered part of
theCL. Essentially, Web sites and Web search engines are treated as weakly struc-
tured information sources. TheCL also contains “in-house” information sources,
which consist of legacy database systems, which are well structured, but may
have only weak metadata descriptions, or use particular terminologies. Figure 1
presents the main components of the WIDE Semantic based Information System,
and how they are related.

A WIDE Information System user first logs on to the system as a known user,
and type of user, and selects a task from the systems’ Task Type ontology. The

Figure 1:The WIDE Information System Architecture

users’ personal preferences profile, together with the User Type and Task Type
information is then used to configure the way the system responds to and supports
the user in developing useful queries, and in the way it presents returned query re-
sults. A personal profile specifies a user’s preferred terms, user interface settings,
and user role (used by theML to select an appropriate User Dictionary). A User
Type defines the kinds of tasks a user can perform, and which User Dictionary is
used by the system to map user terms into theML internal terminology. Task Type
specifications are used to configure the kind of query a user needs to develop for
the kind of task that he or she has selected.

TheUI provides text-based and a graphical-based support for users to specify
information queries. The graphical version uses domain knowledge (from theML,
suitably selected and presented using the User Type and Task Type specifications)
to offer the user a point-an-click way of building correct queries. Users can use
a combination of both text input and graphical selection to form a query. This
is then checked against a BNF grammar [6], for correctness, and passed to the
ML. TheML then processes the User QueryUQ, using its domain ontology, User
Type Dictionary, and personal user dictionary, to discover what other concepts
it has that are related to the concepts in theUQ. These further domain ontology
concepts, and the ways they are related to theUQ concepts, are then returned to
theUI as an ontology fragment that represents theUQ and its immediate conceptual
context, where it is graphically presented to the user. This ontology fragment, or
Query Structure, as it is called, supports further navigation of the concepts and
properties present, allowing the user to further extend the fragment by including
further concepts along selected relations. In this way, a user is able to see how

the system understands his or her query, and is supported in further exploring
around it, to see how it might be changed, adapted, or extended, to be form a more
effective query: more precise and/or more complete.

TheML initially supports this user query design stage, it then processes theUQ

into System Queries (SQs), which are then passed to theAgency. TheML first uses
its domain, Task Type, and User Type ontologies, together with the User Type
Dictionary to generate a standard internal form of theUQ, by translating all recog-
nised terms in toML internal terms, converting all plural terms to singular form,
and making everything lower case. The BNF parse tree of this internal formUQ

is then expanded to include other related terms and relations, that can be inferred
from the domain ontology, and by terms that can be identified as synonymous.
This expanded form of theUQ structure is then used to generate a set ofSQs

(expressed as anRQL query [7]), each one being derived from some part of the
expandedUQ structure.

So, for example, a concept designer might start by asking for

UQ1: Photographs of Maserati cars

In response, theUI (with support from theML) would show that it understands
photographto be a kind of picture, wheredrawing, image, andsketchare other
kinds ofpictureconcepts. As a result, the user might then change the query to

UQ2: Pictures of Maserati cars

to be more inclusive of other possible kinds of pictures. This is then transformed
by theML in to the following internal form

UQif: picture about maserati car

where ’picture’ is a know document type, ’about’ is the term used to connect the
document type to the concept, and ’maserati’ and ’car’ are understood as two
terms forming an attribute value qualifying phrase. TheML then expands thisUQ,
based upon its knowledge thatmaserati is the name of an individual of the concept
brand, and thatbrand is defined as the range of ahas property, whose domain is
car. The resulting expandedSQ thus looks like

SQx: picture −→shows car −→has a brand −→is a maserati

Expressed as an RQL query, this then looks like
SELECT pt, mc

FROM {pt:$pt} @p {mc:$mc},{rc1} @w_a1{c1:$c1},
{rc2} @w_v1 {v1:Literal}

WHERE @p = ’’has_info_about’’
AND ($p1 = ’’PICTURE’’) AND $mc = ’’CAR’’
AND mc = rc1 AND @w_a1 = ’’with_attr’’
AND $c1 = ’’BRAND’’ AND c1 = rc2
AND @w_v1 = ’’with_value’’ AND v1 = ’’MASERATI’’

Which, says: select all the pictures and all the cars where picture is a presenta-
tion type that hasinfo about the cars and the cars have an attribute named brand,
whose value is maserati.

The Agency takes thisSQ (in RQL) and sends all or parts of it to the various
different information sources in theCL, adapting the format in each one. These in-
formation sources may be existing well-structured databases, partially structured
document stores, image stores, or Web sites, for example. In general, there isnot
one single information source that can return query matches, and, in general, the
different information sources will not store the matching data in the same way,
nor in the same terms. Furthermore, different information sources may only con-
tain data to match parts of a completeSQ. To deal with this (typical) situation, the
Agency adopts a two-stage process. It first broadcasts anSQ to all theCL infor-
mation sources. Each information source then responds saying which part of the
full SQ it can try to match. With this information, theAgency, decides on which
(sub)set of information sources to ask returns from. It then collects all the returns,
from the various information sources, and prepares them for passing back to the
ML.

In order for this process to work with reasonable efficiency, each information
sources needs to have an explicit characterisation of the data it contains, its organ-
isation (data model) and the data terms used. This is called aprovider ontology.
Since, again, in general, we cannot expect there to be a simple, nor exact map-
ping between the provider ontologies of the information sources in theCL, and the
ML domain ontology, theSQs, generated by theML, need to be adapted for each
information source. This gives rise to a kind of negotiation process. First aCL

information source tries, using its provider ontology, to find synonyms matches
for any unrecognisedSQ terms, if this fails to resolve an unrecognisedSQ term, it
can ask theML (via theAgency) for other synonym suggestions.

To make both existing and new data more accessible toSQs generated by the
ML, and so more accessible to users, the information source provider ontologies are
also used toannotatethe data in the information source. We call these information
sourcessemi-enrichedinformation sources.

As a result of all thisSQ processing by theAgency and the different information
sources in theCL, a set of data matching at least parts of theSQs is formed. This set
of System Query Returns contains both the matched data item, an identification
of which information source provided it, and any local context information from
the information source provider ontology. TheAgency is responsible for compiling
this return set, and for passing it to theML. TheML then tries to order the returns
using its own domain ontology, together with the User Type and Task Type on-
tologies, and to translates terms into the known user terms. It also structures these
returns according to the originalUQ relational structure, and passes everything
back to theUI, where these results are graphically presented. In this way, a user

is presented with a response to his or her query, formed by returns from the dif-
ferent information sources, and presented using the structure of his or her original
query; a structure which he or she is familiar with, having actively developed it
while designing the query.

Figure 2:The WIDE Information System User Interface

4. Current Status, Early Results, and On Going Work

The complete WIDE Information System has been implemented and developed
as an incremental series of prototypes. The current prototype includes an image
store, developed by Italdesign Giugiaro SpA (one of the industrial partners), and
an existingASAM-ODS [8] database at Schenck Pegasus GmbH (the other indus-
trial partner). Each prototype has also been tested and positively evaluated by the
two industrial partners. The results of these user tests have played an important
role in identifying needed improvements and new functionalities, and have con-
firmed the basic WIDE approach and system architecture. The need to explicitly
support processes (sequences of partially ordered tasks) is one of the new func-
tionalities currently being developed, and for this a new Process ontology is being
developed for the Meta Level, together with an extension of the User Interface to
support collaborative working in processes.

The implementation and development of the prototype systems have also made
significant use of Semantic Web techniques, methods, and tools. The most im-
portant ones beingRDF/RDFS [9, 10], OWL [11], RQL [7], Prot́eǵe [12], Sesame

[13], and RACER [14]. Based upon the work done so far, the main conclusions
with respect to the use of these can be summarised as: (i)OWL better supports
the knowledge representation work involved in building the domain ontology, and
otherML ontologies; (ii)RQL offers an effective low level query language; (iii)
Prot́eǵe, with the OWL plugin, provides a good ontology editor and develop-
ment environment; (iv) Sesame, like other general purpose ontology stores, is
currently too slow to support the kind of ontology-based inferencing needed by
the ML; (v) RACER can provide useful support to ontology development, but be-
comes too slow for ontologies like theML domain ontology (with approximately
790 concepts and individuals, and 150 relations); and (vi) none of the published
ontology development methods [15], either do not have a validation step, or are
strong enough to support effective validation of realistic sizes of ontologies. The
rather toy examples typically used to present these methods also don’t help much
in understanding how to apply them to real ontology developments.

References

[1]1. T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,”Scientific American, pp 34–43,
May 2001.

[2]2. S Taab and R. Struder, (Eds.), “Handbook on Ontologies,” Springer Verlag, 2004.

[3]3. T. H. Davenport and L. Prusak, “Working Knowledge: How Organizations Manage what they
Know,” Cambridge, MA: Harvard Business School Press, 1998.

[4]4. T. Smithers and W. O. Troxell, “Design is intelligent behaviour, but what is the formalism?”, AI
EIDAM, Vol. 4, No. 2, pp. 89-98, 1990.

[5]5. T. Smithers, “Synthesis in Designing”, in J. S. Gero (Ed.), Artificial Intelligence in Design 02,
Dordrecht: Kluwer Academic Publisher, pp 3–26, 2002.

[6]6. Backus-Naur form (BNF), WIKIPEDIA,
<http://en.wikipedia.org/wiki/Backus-Naur Form>.

[7]7. The RDF Query Langauge (RQL), FORTH Institute of Computer Science,
<http://athena.ics.forth.gr:9090/RDF/RQL/> .

[8]8. Association for Standarisation of Automation and Measuring Syetems (ASAM)Open Data Ser-
vice (ODS),<http://www.asam.net/01 asam-ev 01.php> .

[9]9. Resource Description Framework (RDF), W3C Semantic Web Activity, Technology and Society
Domain,<http://www.w3.org/RDF/> .

[10]10. RDF Vocabulary Description Langauge 1.0: RDF Scheme, W3C Technical Reports and Publica-
tions,<http://www.w3.org/TR/rdf-schema/> .

[11]11. OWL Web Ontology Language Overview, W3C Technical Reports and Publications,
<http://www.w3.org/TR/owl-features/> .

[12]12. The Prot́eǵe Ontology Editor, Stanford Medical Informatics, Stanford University School of
Medicine,<http://protege.stanford.edu/> .

[13]13. J. Broekstra and A. Kampman and F. van Harmelen, ”Sesame: A generic architecture for storing
and querying RDF and RDF Schema, International Semantic Web Conference (ISWC), pp 54-
68, 2002.

[14]14. RACER: Semantic Middleware for Industrial Projects based on RDF/OWL,
<http://www.cs.concordia.ca/ h̃aarslev/racer/> .

[15]15. A. Gómez-Ṕerez, M. Ferńandez-Ĺopez and O. Corcho, “Ontological Engineering,” London:
Springer-Verlag, 2004.

References

