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Abstract. Effective and efficient information retrieval, knowledge sharing and 
combining has become an essential part of more and more professional tasks 
and work flows in different kind of projects. Our aim is to investigate the use of 
emerging Semantic Web technologies, tools, and standards in the support of ef-
fective information retrieval in real multi-disciplinary activities, such as inno-
vative product design. This paper presents an approach to knowledge sharing 
and information support that has been developed and adopted, the information 
system architecture that is being developed to test both this approach, and the 
Semantic Web techniques that are used in its implementation, some early re-
sults, and a discussion of related work in information systems and Semantic 
Web techniques and tools. 

1   Introduction 

Unquestionable, the internet is developing towards the Semantic Web. Semantic 
Web technology promises to improve on one of the main usages of the internet: 
knowledge exchange via information retrieval. But how shall a Semantic Web-based 
system look like to best support different users in retrieving information and knowl-
edge generated by others in the Semantic Web? This was the deriving question, moti-
vating us to design, implement, and test an approach that explores Semantic Web 
technologies for improving on today’s limited search and retrieval possibilities on the 
internet. The developments have been done in the context of the product development 
process within the car industry. The domain knowledge, use and test cases have been 
developed with real data and real users from two companies, namely ItalDesign 
Giugiaro SpA and Schenck Pegasus GmbH.  

The main requirements imposed by the scenario - typical for the Semantic Web - 
have been to support different kinds of users accessing various heterogeneous infor-



mation sources in a semantic way. These requirements entailed a number of secon-
dary questions: How to support users in developing complex queries in a terminology 
that each type of user is familiar with? How to process these queries so they can be 
‘understood’ by different information sources? How to deal with complex queries? 
What to do with the results from heterogeneous sources? How to present the results 
in a meaningful way?  

And from the technological point of view: What kinds of Semantic Web technolo-
gies are best suited to answer those questions? How to they perform with real world 
ontologies and data? Are the current tools appropriate for end-users to model their 
domain?  

This paper tries to answer to those questions by introducing an architecture and de-
scribing its implementation based on the experience we gathered in two rounds of 
user testing. Although there have been comparable attempts to approach the informa-
tion management issue in heterogeneous environments [15, 16], to our knowledge 
none of them comprises both: the full scope of the approach that we introduce here 
and the use of latest Semantic Web technology and tools, e.g. OWL and OWL rea-
soners such as RACER.  

The paper is structured as follows: first the basic concepts are described. Secondly, 
the role of the components of the architecture is overviewed. The main part of the 
paper is dedicated to the semantic information retrieval process, made up by seven 
steps: the graphical interactive user query development, semantic query processing 
using a domain ontology, planning distributed query execution on heterogeneous 
information sources, the retrieval from Semantic Information Sources, the result col-
lection and adaptation, the result preparation process of semantically enriched results, 
and finally the domain knowledge enhanced result presentation.  

Afterwards, based on our experience we point out further research needs from a 
holistic point of view, here we see another contribution of the current paper to the 
Semantic Web community. 

2   Concepts 

In this section, we introduce the basic concepts and items/entities involved in our 
approach. Some of them are related with the architecture, others with the way we are 
modelling the domain and how we distinguish amongst the role of the components of 
the system whereas other are definitions useful in describing the various kinds of 
information and information structures involved. 

2.1   3-layered architecture  

The basic assumption that drove the conception of the architecture is that the near 
future of the Semantic Web will be determined by a mixture of information sources 
with various levels of semantic richness in the internet and intranet. Those informa-
tion sources basically form the lowest level of the architecture – the Content Level 
(see Figure 1). 



 

 
 

Figure 1: 3-layered architecture 
 
The second assumption is that domain knowledge and process knowledge shall re-

side in central components doing the semantic processing of queries and results – the 
Meta Level. 

And thirdly, users of different disciplines along the domain - in our case stylists, 
designers, engineers involved in the product design process of cars – shall access 
information and share knowledge via different instances of a User Interface that com-
municates with the Meta Level and presents retrieved results.  

These assumptions immediately entail that the modelling of information sources 
and the modelling of the domain ontology is performed independently, giving rise to 
the need of terminology mapping and query adaptation. 

2.2   Semantic information sources 

As already mentioned, we believe that for the near future the developing Semantic 
Web will provide information sources with different levels of semantic richness. 

But, how an ideal Semantic Information Source shall look like? And what kind of 
functionality shall it contain or provide? Plus what kind of information shall a Seman-
tic Information Source return to enable semantic reasoning? 

From a data-centric view, for us a Semantic Information Source contains the fol-
lowing layers: Schema, Annotation and Content as shown in Figure 2.  

 



 
 

Figure 2: Data-centric view to a Semantic Information Source 
 

On the top-most layer a conceptual data schema describes the content that is stored 
by abstract entities and their relations. This schema appears as a low-level ontology: 
the provider ontology of the Semantic Information Source. In the middle layer the 
abstract entities are instantiated in interlinked metadata annotation objects which, in 
turn, refer to the actual content items on the bottom layer. The content can be of many 
kinds, e.g. multi-media documents such as pictures, text, 3d models. These content 
items (instances) are what the user is interested in to retrieve. All the metadata on the 
schema and annotation level are being used to semantically describe the content and 
allow for precise and accurate retrieval. The metadata objects in the middle layer 
appear as instances of classes while the content items appear as references to URL-
accessible stores or lower-level database access components.  

Note that a Semantic Information Source does not contain a full domain ontology 
nor does it represent a knowledge base from our point of view. Instead, the Semantic 
Information Source models the ‘aboutness’ of documents/information contained in 
the lowest level. The schema only contains what is needed to appropriately describe 
the kinds of documents/information contained in the lowest level and about which 
real world concept they are talking about.  

From a functional point of view a Semantic Information Source should be able to 
process a query posed in a standard format – we are using RQL [3] in the current 
implementation. In this context processing comprises, mapping it in a syntactic and 
semantic way.  

Furthermore, it shall provide the results in a standard form, preferable enriched by 
semantic information/context for further semantic processing, e.g. reasoning on the 
results for filtering and ranking them before showing them to the user. We are using 
the W3C suggestion for RDF result representation returning not only the results but 
also structured context information (for details see below) [12]. 



2.3   User queries and system queries 

We aim at allowing the user to formulate his query in an as natural as possible way 
(ease-of-use) but also as precise as possible (quality of results).  

To face the users with standard query languages such as RQL, SQL, etc. is cer-
tainly not the best approach in terms of usability. Thus we decided to distinguish 
between User Queries (UQ) and System Queries (SQ). User Queries are input by the 
user whereas System Queries are derived from User Queries using domain knowledge 
by the Meta Level. 

3   System architecture 

We designed and implemented a distributed system architecture which is divided 
in to four basic blocks: the User Interface, the Meta Level, the Agency and the Con-
tent Level. Each of these is implemented as independent subsystems, the Agency - a 
multi agent system - is used to “glue” them together, as shown in Figure 3. 

 

 
 

Figure 3: Distributed system architecture 

3.1   Role of the User Interface 

The User Interface (UI) provides a graphic front end to the user and supports the 
incremental development of user queries in an alphanumeric or graphic way. By easy 
to use drag and drop operations the user can successively build up his query. This 
interactive and incremental query development process is supported by the Meta 
Level and the domain knowledge contained in the Meta Level. Furthermore, the UI 
presents the returned results and its relationships (semantics) in a graph-based struc-
ture. This graph structure can be navigated by the user in order to explore the returned 
results and its metadata. Based on the returned graph structure and the corresponding 
metadata the current user query can be refined or a new one can be developed 



3.2   Role of the ML 

As already mentioned, the Meta Level (ML) supports the user query development. 
The main purpose of the ML is the semantic processing of user queries into system 
queries and the semantic processing of the returned results. To do this, the ML uses a 
domain ontology (for car design), together with a Task Type ontology (knowledge 
about the different tasks carried out in the domain), User Type ontology (knowledge 
about the profile of the different users in the domain), and dictionaries of description 
terms and User Type terms. All these different kinds of knowledge are used to pro-
duce the system queries that are then passed to the Agency.  

The returned results undergo a similar semantic processing as the user queries. 
They are semantically processed in order to associate them with the appropriate con-
cepts in the domain ontology and finally display them in a meaningful graph structure 
by the UI. 

3.3   Role of the Agency 

The Agency subsystem identifies and locates information sources in the Content 
Level to which the system queries can be sent to produce effective returns. The 
Agency also provides the system’s gateway to the Web, which is also considered part 
of the Content Level. Essentially, Web sites and Web search engines are treated as 
weakly structured information sources.  

Besides the planning and execution of queries, the Agency’s responsibilities are 
also to collect and to transform the results of the heterogeneous information sources 
into a common result format on which the ML is performing semantic processing and 
reasoning.  

3.4   Role of the CL 

The Content Level (CL) consists of different information sources (RDF sources [5, 
6], ASAM/ODS [4], relational databases and the web) that vary in their semantic 
richness. Since those information sources might have a different structure than the 
ML domain ontology, one of the tasks of the CL is to adapt the system queries to the 
query language understood by the information sources (syntactically, terminologi-
cally, and structurally). The main purpose of the CL is to answer precisely the system 
queries in a quick way. 

4   The process of information retrieval 

We understand the information retrieval process as a kind of design task by firstly 
recognizing the difference between user stating needs and forming well specified 
requirements, and secondly properly supporting the incremental development of a 
complete and consistent requirements specification (search specification, in this case), 



and the re-use of the knowledge generated in this (sub)process to effectively support 
the subsequent steps in the process that concludes in a useful set of search results. 
According to the system architecture presented in Figure 3, the process of information 
retrieval is composed of seven steps that are presented in Figure 4.  

 

 
 

Figure 4: Seven steps of the information retrieval process 
 

Based on the experienced gathered when developing the system, we are convinced 
that these are – at least – the steps needed for improved information retrieval on the 
Semantic Web. According to this, each step of the information retrieval process will 
be explained in the following sections. 

4.1   User query development 

The UI provides text-based and graphic-based support to specify queries. The 
graphical version uses domain knowledge (from the ML, suitably selected and pre-
sented using the User Type and Task Type specifications) to offer the user a “drag 
and drop” way of building correct queries. Users can use a combination of both text 
input and graphical selection to form a query as shown in Figure 5. This is then 
checked against a BNF grammar [2], for correctness, and passed to the ML. The ML 
then processes the user query, using its domain ontology, User Type Dictionary, and 
personal user dictionary, to discover what other concepts it has that are related to the 
concepts in the UQ.  

 



 
 

Figure 5: Graphical interactive user query development 
 
These further domain ontology concepts, and the ways they are related to the user 

query concepts, are then returned to the UI as an ontology fragment that represents 
the user query and its immediate conceptual context, where it is graphically presented 
to the user. This ontology fragment, or query structure, as it is called, supports further 
navigation of the concepts and properties present, allowing the user to further extend 
the fragment by including further concepts along selected relations. In this way, a 
user is able to see how the system understands his or her query, and is supported in 
further exploring around it, to see how it might be changed, adapted, or extended, to 
form a more effective query: more precise and/or more complete. 

4.2   Semantic query processing 

When the ML receives the user query from the UI via the Agency, this query is well 
formed input since it has been successfully parsed by the UI. Thus, this is the starting 
point of the semantic query processing.  

The first task that must be done is to check again the stylized input, but at this 
occasion from the semantic point of view. The ML uses its knowledge about the do-
main, but also its knowledge of the User Type and the task context the query is being 
expressed on, to find out more information about the query.  

First of all, the ML uses the dictionaries together with the user profile in order to 
translate the query into the internal terminology. Next, it tries to find out which of the 
words that have been classified by the BNF parser as “terms” are known in the do-
main and which not.  



Once the ML has translated the user query into internal terminology, the parser 
generates an AST (Abstract Syntax Tree) which includes useful information that 
allows the ML to know the terms within the context of the BNF grammar. For in-
stance, the ML automatically knows that “OF” is a connector and that “OR” is a logi-
cal binary operator that links two items. Thus, the ML is able to classify the relevance 
of each term depending on its BNF grammar nature.  

Once the ML acquired this knowledge, it can go through this tree and focusing 
on the known terms in order to try to find out the existing relationships among them. 
This is possible due to an inference process of the ML domain ontology. For instance, 
this process allows the ML to relate two concepts basing on subsumption or indirect 
relationships.  

Once this process has been carried out, the ML has a graph view of the user in-
put, which has been enriched with intermediate concepts and/or inter-concept rela-
tionships.  

After this first query has been built, the ML, basing on the task context the query 
is related to, tries to create complementary queries by the expansion of some con-
cepts. For instance, if the user is looking for emission standards in Europe, and the 
task context is wide enough in order to cover also the test cycles, the system will 
generate another system query that will retrieve test cycles in Europe.   

Once the ML has inferred the sub-domain related to the task context and has cre-
ated several queries, these queries are formatted in RQL, and then passed to the 
Agency.  

For example, a concept designer might start by asking for  
 

user query 1: Photographs of Maserati cars 
 
In response, the UI (with support from the ML) would show that it understands 

photograph to be a kind of picture, where drawing, image, and sketch are other kinds 
of picture concepts. As a result, the user might then change the query to  

 
user query 2: Pictures of Maserati cars 

 
to be more inclusive of other possible kinds of pictures. This is then transformed by 
the ML in to the following internal form  

 
user query 3: PICTURE ABOUT MASERATI CAR 

 
where picture is a known document type, about is the term used to connect the docu-
ment type to the concept, and Maserati and car are understood as two terms forming 
an attribute value qualifying phrase. The ML then expands this user query, based 
upon its knowledge that Maserati is the name of an individual of the concept brand, 
and that brand is defined as the range of a has_property, whose domain is car. The 
resulting expanded system query thus expressed as an RQL query then looks like: 
 
 
 

 



SELECT pt, mc 
FROM {pt:$pt} @p {mc:$mc},{rc1} @w_a1{c1:$c1}, 

{rc2} @w_v1 {v1:Literal} 
WHERE @p = “has_info_about”AND 

($p1 = “PICTURE”) AND 
$mc = “CAR” AND 
mc = rc1 AND 
@w_a1 = “with_attr” AND 
$c1 = “BRAND” AND 
c1 = rc2 AND 
@w_v1 = “with_value” AND 
v1 = “MASERATI” 

 
The RQL system query says: select all the pictures and all the cars where picture is 

a presentation type that has info about the cars and the cars have an attribute named 
brand, whose value is Maserati. 

4.3   Planning distributed query execution 

As soon as the Agency subsystem receives system queries produced by the ML, 
they have to be sent to the various information sources, in order to proceed with the 
search process. The decision about how to distribute the various queries over the 
available sources is referred to as query execution planning and can be carried out by 
analyzing the structure of each query. Concerning the structure of a system query 
expressed in the RQL language, it can easily be seen that the FROM clause can be 
interpreted as the navigation path inside a proper ontology of concepts bound to one 
another by means of suitable relationships. As such, it appears evident that one single 
source might not be able to address the whole system query in its entirety and there-
fore it is forced to focus on a sub part of it. When this happens, the system query 
being processed is called a complex query, since it can be both logically and physi-
cally split up in as many sub-queries as there are sub parts entirely addressable by a 
single source. We call these latter ones simple queries. In the query distribution or 
query planning process, each system query is broadcasted to the whole set of informa-
tion. This is done by means of mobile software agents, which are particularly well-
suited for tasks like this. In order to contact the remote sites where to apply the vari-
ous queries, agents may choose two options: either they move there or they spawn 
children agents, which are sent on their behalf. Which option to choose depends on 
factors like the current network traffic, the dimension of the search job in terms of 
how big is the query and how many information sources must be contacted. Cur-
rently, agents choose the first option (move) when there is only one information 
source to be contacted, otherwise they parallelize the process by choosing the second 
alternative. 

When an agent arrives carrying a (complex) query, each source checks it to see 
which parts it is capable of executing and which ones, instead, need to be processed at 
other sites first. Once all the results and sub-results (of part of queries) are produced, 
the mutual interdependencies existing among them are resolved so that they can be 
assembled and sent back to the system, for final processing and visualization.  



Query execution at the various information sources requires that all the heteroge-
neity issues be dealt with, at the syntactic, structural and semantic levels: information 
pieces, in fact, are likely to be distributed and partially replicated on different reposi-
tories, often built using different technologies and modeling techniques. To overcome 
the syntactic differences a proper algorithm was devised, making use of thesauri on 
both (on the system and at each source) sides to find matchings and rewrite terms. As 
for structural differences, they are dealt with by identifying recurrent structural pat-
terns in queries that can be easily rewritten into others. Semantic heterogeneity, on the 
other hand, has to do with the interpretation given to the stored data along with any 
relationship binding them. For a machine to be able to communicate and understand 
what a single piece of information is about, a model describing the semantics of the 
information has to be provided. Such model is represented by the Provider Ontolo-
gies, that are either already available, for semantically rich sources, or can otherwise 
be created. Semantic mapping, in this respect, has to do with the rewriting of queries, 
by employing rules associating whole fragments in the modeling of the domain ontol-
ogy to fragments suitable for the various provider ontologies.  

The information sources that we addressed belong to one out of three kinds: an ob-
ject-relational one served by an ASAM/ODS server, the Google search engine (as an 
example of an unstructured source), which is accessed by using its Web Services 
interface and a set of plain relational databases, each one provided with an RDF(S) 
(provider) ontology that describes its contents and that has a mapping to the (central) 
domain ontology. To manage each query, execute it and apply the necessary trans-
formations, a provider agent was created, whose tasks are to: 

•  receive and manage the software agents 
•  transform the incoming RQL query and adapt it to the internal language of 
the source 
•  manage the results by formatting them in a suitable and common format to 
be sent back to the system. 

In particular, the latter two points depend from the specific details of the underly-
ing source, even though the interface provided to the outside world should remain 
unchanged.  

4.4   Retrieval from Semantic Information Sources 

Our Semantic Information Sources, as described in section 2.2, provide a 
RQL/RDF(S) interface. The input to such an information source is a RQL query 
which - from the schema layer point of view - asks for instances of concepts on which 
there are imposed conditions (in the WHERE clause of RQL queries). The result that 
is being produced for a system query is a RDF graph fragment which contains RDF 
instances required answering the RQL query together with their attributes and direct 
references to other RDF instances. Within our Semantic Information Source the Ses-
ame RQL engine [9] is used to access the RDF(S) store. 



Each RQL query undergoes a 2-step query process. In the first step only the RDF 
resources are returned that form the core answer to the system query. In the second 
step, the returned RDF resources are semantically enriched by their metadata (seman-
tics/context, see Figure 6) to be presented and visualized by the UI.  

 

 
 

Figure 6: Enrichment of results with metadata  
 
Concerning the metadata, we distinguish between properties and context informa-

tion of a returned RDF instance. The properties are describing the returned RDF in-
stance itself and shall provide the user additional information. For example, an in-
stance of the concept car has the properties brand and segment. It is possible that in 
the results several concepts (context information) are present that are not strictly re-
lated to what originally contained in the system query coming from the ML. The 
context information is being described by the neighbouring concepts, because we 
think that they provide meaningful information to reason on the results by the ML. 
The neighbouring concepts are the direct sub-classes, direct super-classes and further 
direct related concepts. A short and often used example will explain this: the concept 
“Jaguar” is ambiguous, since it can be either a car or an animal. Figure 7 demon-
strates this.    

 

 
 

Figure 7: Ambiguity of the concept “Jaguar” 
 
Taking into account the neighbouring concepts the ML can easily find out in which 

context instances of the concept “Jaguar” are returned.  
All this information are encoded in the RDF result fragments in order to provide 

both the user additional information that he/she can use to refine the current query in 
a subsequent search process (see section 4.7) and the ML in order to allow reasoning 



on the returned results. Thus, the RDF result fragment is produced in combination of 
RQL resource querying and navigation on the RDF(S) store. 

The answering of RQL queries takes the RDF model theory [13] into account, 
which includes some basic inference over inheritance hierarchies as well as domain 
and range constraints. In addition, we extended the inference rule engine built in 
Sesame [9] that works as a production system generating inferred RDF triple facts 
from explicitly stated ones according to rules and axioms expressed in a proprietary 
XML format. In particular the transitivity of user defined properties is realized in this 
way.  

4.5   Result collection and adaptation 

Presenting the retrieved results in an efficient way for the users to access them is 
one of the basis of any good searching activities. The returns produces are assembled 
into a document with well-known structure, which follows a proposal discussed at the 
W3C consortium as a standard for query result formatting [12]. This format is made 
up of very simple yet efficient structure binding variables with their values.  

Along with raw data, each result also contains some special meta-information, 
helpful to better organize, filter and sort the information before presentation to the 
user, in a process that also encompasses some rewriting steps much like what happens 
for the queries as explained above. The additional information is the following: 

 
• the source, which each return comes from 
• the context of each return (i.e., similar or related concepts) 
• an additional ontology fragment, in case the provider ontology is richer than the 

domain one and a direct mapping cannot be established.  
• the relationship with what was originally asked for in the system query (as het-

erogeneity could cause this reference to be lost) 
 

The formatting process, besides endowing every result with the same structure, 
also allows for a much simpler filtering procedure, whose purpose is to drop duplicate 
answers and evident useless information, evaluated on the basis of a syntactic analy-
sis over the results. The final step in the search process is the logical opposite of the 
query adaptation and negotiation described above. At this stage all the results are 
expressed by a common structure and format, but the terms used refer to the related 
provider ontologies. Hence a final mapping of the results to comply with the system 
ontology must take place. This mapping can be seen as the counterpart of the one 
already described above. During this activity, each variable of the result is also tagged 
using a special prefix to emphasize whether or not that term is known to the system 
ontology, in order for the Meta Level to take that into account for the subsequent 
phase. 

 
 



4.6   Semantic result processing 

Once the Meta Level has sent a set of system queries to the Agency, it assumes 
that the search process has been launched. At that moment, the main role of the Meta 
Level is to retrieve the returns of each one of the queries, evaluate and rank them and 
prepare the graph of the results that will be presented to the user. 

The retrieval of the results is an asynchronous process since although the Agency 
queries different information sources it does not wait till the answer of the slowest 
one to send the returns to the ML. As it gets some results for each one of the system 
queries the Agency sends them to the ML. The ML is responsible for the following 
actions: grouping the returns, ranking the returns, and constructing the graphical 
visualization. 

The ML, independently from information sources the returns come from, groups 
them depending on the system query they belong to. This is an important process 
since the visualization of the results will be different depending on the semantics of 
each system query.  

The ML evaluates the returns using the information contained in the results, the 
terms included in the system query the return belongs to, the concepts involved in the 
task context the query is related to and the concepts appearing in the user query. The 
idea is to measure the distance not only to the original query but also to the task con-
text where the query is located. 

Using as a start point the graphs that represent each one of the system queries that 
the returns belong to, the ML builds a result visualization graph where the final re-
sults will be attached. This graph shows not only the concepts involved in the results, 
but also the relationships among them.   

4.7   Domain knowledge enhanced result presentation 

After the semantic processing of the results the ML attaches each set of results to 
one of the concepts of the graph. Beside this, the ML provides each bunch of results 
of each system query with a semantic path, which shows the set of concepts each 
result is related to. Thus, although each result appears under a concrete concept, the 
user is able to see the semantic contextualization of the result. This is done using the 
graph information of the system query to which the result belongs. 

The query refinement is the subsequent browsing of the results presentation that 
supports further exploration of how the search specification might be useful further 
developed to better meet his or her information needs. In this way, from the user 
perspective, the query refinement effectively merges with the query development (see 
Figure 5) one to form what can be understood as a kind of design process. 

5   Technology used and problems encountered 

In our approach we have done experiments and investigations with many Semantic 
Web tools and technologies. In the current implementation we use: 



 
• Protégé [8] for modelling the domain ontology and provider ontology 
• RACER [10] for doing reasoning on the domain ontology 
• Sesame [9] for querying and navigating the Semantic Information Sources 
• RDF(S) [5, 6] for describing content in the Semantic Information Sources 
• RQL [3] for the System Queries (SQ) 
• OWL [7] for describing the domain ontology 
• W3C result format [12] for transforming the results coming from the hetero-

geneous information sources into a common result format 
 
Based upon the work done so far, the good experience with respect to the use of 

these can be summarized as: OWL better supports the knowledge representation work 
involved in building the domain ontology, and other ML ontologies. RQL offers an 
effective low level query language. Protégé, with the OWL plug-in, provides a good 
ontology editor and development environment. 

The following problems encountered when using these technologies: Sesame, like 
other general purpose ontology stores, is currently too slow for the query process and 
to support the kind of ontology-based inference needed by the ML. In order to in-
crease the performance concerning the query process we implemented a logic-based 
query optimizer for RQL queries. RACER can provide useful support to ontology 
development, but becomes too slow for ontologies like the ML domain ontology 
(with approximately 790 concepts and individuals, and 150 relations). None of the 
published ontology development methods [11], either do not have a validation step, 
or are strong enough to support effective validation of realistic sizes of ontologies. 
The rather toy examples typically used to present these methods also don’t help much 
in understanding how to apply them to real ontology developments. Furthermore, we 
explored that the expressiveness of the ontology description language RDF(S) used in 
the CL are restricted according to our needs. Currently, it is not possible to relate 
instances and concepts with user defined RDF(S) properties. If this would be possi-
ble, query languages need to be extended in order to allow querying those modelling 
approaches. The user testing sessions showed that the user interface of the ontology 
editing tool Protégé is not for everybody. It is still too complex for users who are not 
familiar with it. 

6   Future Needs 

To support interoperability between heterogeneous semantic web applications, the 
need comes up to standardize ontologies. Furthermore, high-performance OWL tools 
that can handle large size ontologies are still missing.   



7   Acknowledgements 

This work was funded in part by the European Commission Grant #IST-2001-34417,  
Semantic Web-based Information Management and Knowledge Sharing for Innova-
tive Product Design and Engineering (WIDE project). 

References 

[1] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,” Scientific Ameri-
can, pp 34–43, May 2001. 

[2]   Backus-Naur form (BNF), WIKIPEDIA, 
<http://en.wikipedia.org/wiki/Backus-Naur Form>. 

[3]   The RDF Query Langauge (RQL), FORTH Institute of Computer Science, 
<http://athena.ics.forth.gr:9090/RDF/RQL/>. 

[4]  Association for Standarisation of Automation and Measuring Syetems (ASAM)Open 
Data Service (ODS), <http://www.asam.net/01 asam-ev 01.php>. 

[5]  Resource Description Framework (RDF), W3C Semantic Web Activity, Technology 
and Society Domain, <http://www.w3.org/RDF/>. 

[6]  RDF Vocabulary Description Langauge 1.0: RDF Scheme, W3C Technical Reports 
and Publications, <http://www.w3.org/TR/rdf-schema/>. 

[7]  OWL Web Ontology Language Overview, W3C Technical Reports and Publications, 
<http://www.w3.org/TR/owl-features/>. 

[8]  The Protégé Ontology Editor, Stanford Medical Informatics, Stanford University 
School of Medicine, <http://protege.stanford.edu/>. 

[9]  J. Broekstra and A. Kampman and F. van Harmelen, ”Sesame: A generic architecture 
for storing and querying RDF and RDF Schema, International Semantic Web Confer-
ence (ISWC), pp 54-68, 2002. 

[10]  RACER: Semantic Middleware for Industrial Projects based on RDF/OWL, 
<http://www.cs.concordia.ca/˜haarslev/racer/>. 

[11]  A. Gomez-Perez, M. Fernandez-Lopez and O. Corcho, “Ontological Engineering,” 
London:Springer-Verlag, 2004. 

[12] A. Seaborne, Recording Query Results, W3C Discussion document 
http://www.w3.org/2003/03/rdfqr-tests/recording-query-results.html

[13] RDF semantics  
W3C Recommendation 10 February 2004 

 http://www.w3.org/TR/rdf-mt/ 
[14]  S. Staab, M. Erdmann, and A. Maedche. An Extensible Approach for Modeling 

Ontologies in RDF(S). In First ECDL’2000 SemanticWebWorkshop, Lisbon, Portu-
gal, 2000. 

[15] H. Stuckenschmidt et al. 
 Exploring Large Document Repositories with RDF Technology: The DOPE Project 
 Published by the IEEE Computer Society 
 http://www.cs.vu.nl/~frankh/postscript/IEEE-IS04.pdf 
[16] N. Shadbolt, N. Gibbins, H. Glaser, S. Harris, and m.c.schraefel, University of South-

ampton; CS AKTive Space, or How We Learned to Stop Worrying and Love the Se-
mantic Web; Published by the IEEE Computer Science;  

http://www.w3.org/2003/03/rdfqr-tests/recording-query-results.html

	As soon as the Agency subsystem receives system queries prod
	When an agent arrives carrying a (complex) query, each sourc
	Query execution at the various information sources requires 
	The information sources that we addressed belong to one out 
	•  receive and manage the software agents
	•  transform the incoming RQL query and adapt it to the inte
	•  manage the results by formatting them in a suitable and c
	In particular, the latter two points depend from the specifi
	Our Semantic Information Sources, as described in section 2.
	Each RQL query undergoes a 2-step query process. In the firs
	Concerning the metadata, we distinguish between properties a
	Taking into account the neighbouring concepts the ML can eas
	All this information are encoded in the RDF result fragments

