
This article was downloaded by:[Toro, Carlos]
On: 29 February 2008
Access Details: [subscription number 791058627]
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Cybernetics and Systems
An International Journal
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713722751

REFLEXIVE ONTOLOGIES: ENHANCING
ONTOLOGIES WITH SELF-CONTAINED QUERIES
Carlos Toro a; Cesar Sanín b; Edward Szczerbicki b; Jorge Posada a
a VICOMTech Research Centre, Donostia, San Sebastían, Spain
b University of Newcastle, Newcastle, Australia

Online Publication Date: 01 February 2008
To cite this Article: Toro, Carlos, Sanín, Cesar, Szczerbicki, Edward and Posada,
Jorge (2008) 'REFLEXIVE ONTOLOGIES: ENHANCING ONTOLOGIES WITH
SELF-CONTAINED QUERIES', Cybernetics and Systems, 39:2, 171 - 189
To link to this article: DOI: 10.1080/01969720701853467

URL: http://dx.doi.org/10.1080/01969720701853467

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713722751
http://dx.doi.org/10.1080/01969720701853467
http://www.informaworld.com/terms-and-conditions-of-access.pdf

D
ow

nl
oa

de
d

B
y:

 [T
or

o,
 C

ar
lo

s]
 A

t:
13

:0
0

29
 F

eb
ru

ar
y

20
08

REFLEXIVE ONTOLOGIES: ENHANCING

ONTOLOGIES WITH SELF-CONTAINED QUERIES

CARLOS TORO1, CESAR SANÍN2,
EDWARD SZCZERBICKI2, and JORGE POSADA1

1VICOMTech Research Centre, Donostia,
San Sebastı́an, Spain
2University of Newcastle, Newcastle, Australia

In this article, we introduce the concept of reflexive ontologies. A

reflexive ontology is a description of the concepts and relations

in a domain with self-contained queries. This approach presents

several advantages; (1) the speeding of the query process; (2) the

addition of extra knowledge about the domain extending it with

queries and answers; and (3), the self-containment of the know-

ledge structure. We present a framework that can be used to extend

any existing ontology with the reflexivity approach. Additionally, as

case study, we test the architecture with a previously presented

knowledge structure called Set of Experience Knowledge Structure

(SOEKS).

INTRODUCTION

Semantic technologies constitute one of the most interesting technolo-

gies derived from the World Wide Web revolution. Constantly reviewed

This research has been partially financed by the Basque government under the INTEK

2006–2008 call (Bi2Hiru). A special mention is given to the Faculty of Engineering and

Built Environment of the University of Newcastle (NSW, Australia) for their involvement

in the development of the RO concept and the priceless ideas they shared concerning the

Set of Experience Knowledge Structure and the decisional DNA paradigms.

Address correspondence to Carlos Toro, VICOMTech Research Centre, Paseo

Mikeletegi 57, bajo, Donostia, San Sebastian, Spain. E-mail: ctoro@vicomtech.org

Cybernetics and Systems: An International Journal, 39: 171–189

Copyright Q 2008 Taylor & Francis Group, LLC

ISSN: 0196-9722 print=1087-6553 online

DOI: 10.1080/01969720701853467

D
ow

nl
oa

de
d

B
y:

 [T
or

o,
 C

ar
lo

s]
 A

t:
13

:0
0

29
 F

eb
ru

ar
y

20
08

in different areas of knowledge (e.g., linguistics), their greatest improve-

ments for information technologies could be still there to discover.

It is true that the whole concept of the semantic web presented by

Tim Berners-Lee (Berners-Lee 2001) in his foundational article has

not been reached yet, according to some members of the scientific com-

munity, but the improvements present in today’s Web sites and search

engines are not to be underestimated.

Within the myriads of semantic-based techniques available, great

attention has been given to ontologies and how their implementation

and use enhance real-world applications that are not directly related to

the Web itself. One of the biggest advantages of ontologies is their

flexibility and capability to model a domain and, hence, conceptualize

the portion of reality to which such a domain refers.

It is not enough to have a good modeled ontology fed with real-

world instances (individuals) from trustable sources of information.

Nowadays, it is of the utmost importance to enhance the ontologies

with the capability of querying their knowledge models in a fast and trus-

table way.

In this article, we introduce the concept of reflexive ontologies as a

technique that can be used to add self-contained queries to an

ontology.

The advantages of having self-contained queries include (1) the

speeding up of the query process; (2) the possibility of the ontology

itself adding new queries on individuals with the corresponding

answers to such queries (a feature that adds knowledge about the

domain); and (3) the self-containment of the knowledge structure

in a single file, including the model, the relations between the ele-

ments of the model, the individuals (instances), and queries over such

individuals.

This article is organized as follows: In the next section, we present

some background concepts that will be referenced throughout the arti-

cle. Next, we introduce the reflexive ontologies concept, discussing some

of its characteristics, advantages, and implementation using a simple

architecture that can be followed in order to add reflexivity to a tra-

ditional ontology. We present also, in this part, a query engine for reflex-

ive ontologies. Following, we introduce a case study that uses a

previously presented knowledge base (the SOEKS ontology) to exemplify

the reflexive ontologies schema. Finally, we discuss our conclusions and

future work.

172 TORO ET AL.

D
ow

nl
oa

de
d

B
y:

 [T
or

o,
 C

ar
lo

s]
 A

t:
13

:0
0

29
 F

eb
ru

ar
y

20
08

BACKGROUND CONCEPTS

Reflexivity

The concept of reflexivity is used in multiple fields; in this work, we

approach the reflexivity concept from the mathematics (logic) point of

view and the sociological point of view.

Mathematical Concept of Reflexivity

Reflexivity, in mathematics, refers to the logic idea of p! p (it is read as

‘‘p implies p’’), meaning that every proposition implies itself.

Any relation in mathematics is referred as a subset of a Cartesian

product. For instance, a subset of A� B, called a ‘‘binary relation from

A to B,’’ is a collection of ordered pairs ða; bÞ with first components from

A and second components from B; and, in particular, a subset of A� A is

called a ‘‘relation on A.’’ For a binary relation R, one often writes aRb to

mean that ða; bÞ is in R.

The reflexivity property can be defined as a relation R on a set S.

Such a relation is reflexive provided that xRx exists for every x 2 S.

In our approach, a mathematical simile corresponds well to the

self-containing nature of the reflexive ontology as it will be explained

later. The mathematical simile will permit us in the future to express in a

structured way lemmas and demonstrations useful for the formalization of

the concept.

Sociological Concept of Reflexivity

The mathematical idea is not distant from the definition used in

sociology, where the concept of reflexivity takes on an epistemological

flavor as it is used to identify the foundations of knowledge and the

implications of any findings.

Reflexivity (2007), in sociology, is the action of self-referencing

and refers and affects the object by means of examining or acting on

the object itself.

It is a bidirectional relationship between cause and effect. In such

a case, the reflections of the object about itself are not independent of

its status quo as a reflexive object. Moreover, any object or agent in a

real-world social system possesses characteristics of reflexivity and

self-inquiry. Thus, the object or agent being reflected discovers or deter-

mines something about itself and abstracts out that aspect. It may reflect

REFLEXIVE ONTOLOGIES 173

D
ow

nl
oa

de
d

B
y:

 [T
or

o,
 C

ar
lo

s]
 A

t:
13

:0
0

29
 F

eb
ru

ar
y

20
08

on beliefs, memories, or knowledge, but this reflection does not produce

that belief, memory, or knowledge.

Flanagan (1981) argues that reflective agents support the traditional

roles played by classical science: control, explanation, and prediction. In

order to help in the control, explanation, and future prediction of

domains, our approach uses the capacity of self-interrogation and, hence,

the capacity of obtaining conclusions, which are elements characterized

by the sociological point of view.

Autopoiesis

Autopoiesis literally means ‘‘self-creation or auto-creation.’’ It expresses a

fundamental dialectic between structure and function. The term was

originally introduced by Maturana and Varela (1980), and according to

them, an autopoietic system represents a network of processes or opera-

tions that define the system and make it distinguishable from others.

Any autopoietic system is able to create and destroy elements of the

system itself in response to environmental perturbations. Although

the system changes at a structural level, the network is invariant along

the system’s existence, holding the inner system integrity.

The auto-production capacity of a system is autopoietic and consti-

tutes the basic property of living creatures, as they are always determined

by their structures; in other words, they are systems such that when an

external factor affects them, the resulting effects depend solely on them-

selves, on their structure at that moment and not on the external factor

itself. Living creatures are autonomous in the sense that they have an

auto-referencing property as systems in continuous production of them-

selves. The most important thing for this theory is not the properties

of the components of the system but the processes and relationships

between processes made via their components.

Luhmann (1997) argues that autopoiesis is not a limited property

of biological or physical systems, and he defines it as the ‘‘universal

capacity of every system to produce self states well differenced between

each other that are tied to the system’s own operations due to the

self-organization capacity of systems.’’

The structure and function relation of the autopoietic definition

allows us to refer to our reflexive ontology as an autopoietic system that

is in constant evolution in the sense that every new query being asked and

stored will extend the knowledge base.

174 TORO ET AL.

D
ow

nl
oa

de
d

B
y:

 [T
or

o,
 C

ar
lo

s]
 A

t:
13

:0
0

29
 F

eb
ru

ar
y

20
08

Ontologies

Following Tom Gruber’s (1995) widely accepted definition of ontology in

the computer science domain, an ontology is the explicit specification of

a conceptualization—a description of the concepts and relationships in a

domain. In the context of artificial intelligence (AI), we can describe the

ontology of a program by defining a set of representational terms. In

such an ontology, definitions associate names of entities in the universe

of discourse with human-readable text describing what the names mean

and formal axioms that constrain the interpretation and well-formed use

of these terms.

Computer programs can use ontologies for a variety of purposes

including inductive reasoning, classification, and problem-solving techni-

ques, as well as communication and sharing of information among differ-

ent systems. In addition, emerging semantic web systems use ontologies

for a better interaction and understanding between different agent Web-

based systems. Ontologies can be modeled using several languages; the

most widely used are RDF and recently OWL (Ontology Web Language).

User modeling, task, and experience are also possible scenarios

for the exploitation of semantic data by ontology-based technology as

it was addressed, for example, in the European IST-Project WIDE

(Sevilmis et al. 2005).

In general terms, any knowledge is susceptible to being modeled as

an ontology. However, no normative exists yet for modeling knowledge.

This could be due to the inner nature of the object to be modeled, as it is

different from one schema to another. Although there are interesting

approaches for a universal ontology, this outcome has not been reached

yet due to the difficulty of standardization and the fact that if a universal

modeling of knowledge is reachable, it will lead to a high degree of con-

ceptualization, which could create difficulty for an inexperienced user.

From the experience learned by different working groups in the

ontology modeling of elements, a good starting point is to have a

well-documented schema with the typical elements in the area of knowl-

edge that is being described.

In order to model an ontology, different tools are available—for

example, Protégé, OilEd, Ontololingua, and Swoop, among others (Toro

et al. 2007).

In our implementation, we used the Protégé ontology editor and its

APIs, but any other editor or API can be used as well.

REFLEXIVE ONTOLOGIES 175

D
ow

nl
oa

de
d

B
y:

 [T
or

o,
 C

ar
lo

s]
 A

t:
13

:0
0

29
 F

eb
ru

ar
y

20
08

Ontology Query

One of the advantages of a conceptual knowledge model expressed as an

ontology is the capacity to semantically infer new derived queries. These

queries relate concepts that are not explicitly specified by the user but are

nevertheless relevant to the query. Modern inference engines and reason-

ers like Pellet and Racer deliver a highly specialized yet efficient way to

perform such queries via a JAVA-compliant API. In the literature, data

handling by ontology-based technology is reported by researchers in dif-

ferent fields (Toro et al. 2007; Sanin et al. 2005a; Sevilmis et al. 2005).

REFLEXIVE ONTOLOGIES

In this section, we introduce the reflexive ontologies (RO) concept. We

begin with a definition of the RO concept; then we discuss the RO

properties and introduce an architecture that allows an existent ontology

to be extended with the RO schema. Lastly, we finish our line of thoughts

with a reflection on the advantages of having a RO-compliant ontology.

Formal Definition

In our case, the de facto property of being reflexive addresses the property

of an abstract structure of a knowledge base (in this case, an ontology and

its instances) to ‘‘know about itself.’’ When an abstract knowledge struc-

ture is able to maintain, in a persistent manner, every query performed on

it and store those queries as individuals of a class that extends the original

ontology, it is said that such an ontology is reflexive.

Thus, we propose the following definition for a reflexive ontology:

A reflexive ontology is a description of the concepts, and the rela-

tions of such concepts in a specific domain, enhanced by an explicit

self-contained set of queries over the instances.

Considering that any abstract knowledge structure of this kind

is essentially a set of structured contents and relationships, the mathe-

matical concept of a set and its properties can be applied to the

knowledge structure for its formalization and handling.

Properties of the Reflexive Ontologies

A RO is, basically, an ontology that has been extended with the concept

of reflexivity. This can be seen in Fig. 1, where Ci represents a class with

rj relations, Ik characterizes an instance of Ci (right side of the image),

176 TORO ET AL.

D
ow

nl
oa

de
d

B
y:

 [T
or

o,
 C

ar
lo

s]
 A

t:
13

:0
0

29
 F

eb
ru

ar
y

20
08

and Qp is a query represented as an extension of the base ontology (left

side of the image). In order to be compliant with the RO concept, an

extension of a base ontology must fulfill the following set of properties.

Property 1—Query Retrieval. This property refers to the RO faculty of

storing every query performed in order to return it, when requeried. The

query storage happens at two different levels: it could be in its atomized

(simple query) or complex form (i.e., containing a Boolean operator

between atoms).

Queries can refer to the structure of the ontology (data type) or to

the instances (value type).

Property 2—Integrity Update. This property refers to the RO faculty

of updating structural changes in the query retrieval system. In other

words, when a new individual is added or removed from the ontology,

the query system actualizes the queries that contain such an individual.

This property is similar to the database integrity property in a

traditional Data Base Management System (DBMS).

Property—Autopoietic Behavior. This property refers to the autop-

oietic capacity of self-creation or auto-creation derived from the fact

that for every new query launched, the knowledge structure will grow.

The quality of the knowledge embedded in the system is increased as

the system is in a constant auto-building process that can reflect the

auto-production capacity of an autopoietic system. Moreover, it is

Figure 1. Simple structure of a RO.

REFLEXIVE ONTOLOGIES 177

D
ow

nl
oa

de
d

B
y:

 [T
or

o,
 C

ar
lo

s]
 A

t:
13

:0
0

29
 F

eb
ru

ar
y

20
08

important to mention that this property allows the RO to store the his-

tory of the queries while, at the same time, it provides the schema with

a repeat ability and integrity mechanism.

Property—Support for Logical Operators. This property provides the

RO with the mechanisms of set handling from the logistic point of view—

that is, the inclusion of AND, NOT, and OR logical operators.

For example, let us suppose that we have a simple ontology (O) that

describes the genealogy of the Jones family with some properties (p) such

as the age of every individual (p.age). After the instantiation with some

elements, a query with two elements can be launched:

Elements whose age is greater than 5 expressed formally as Q1

¼ ð8p 2 Ojp:age > 5Þand elements that belong to the Jones family Q2

¼ ð8p 2 Ojp:family ¼00jones00Þ

A query like ‘‘retrieve the members of the Jones family whose age is

greater than 5 years’’ on the ontology O will give as a result a set of indi-

viduals that match the abstract properties p.age>5 and p.family¼jones.

So, the final answer to the query called Qt (indistinctively reflexivity)

will be

Qt ¼ Q1 \ Q2;

where Q1 and Q2 are defined as above, with p being the predicate and O

the ontology.

A question like this will be instantiated in the ontology in its ato-

mized form (Q1, Q2) and, of course, in the complex form Qt . Therefore,

next time a question is asked, the system will search through the reflex-

ivity instances in order to retrieve the answer (being the computing time

at the worse case linear). If the exact question or (as it will be seen later)

a similar question cannot be found (similarity), a traditional ontology

interrogation process is executed.

Property 5—Self-Reasoning over the Query Set. This property

refers to the RO capacity of performing some logic operations over the

query system in one of the following schemas:

1. To discover patterns of queries.

2. To suggest the need of ontology refinement, as some elements are

more queried than others; this means that, probably, they should be

178 TORO ET AL.

D
ow

nl
oa

de
d

B
y:

 [T
or

o,
 C

ar
lo

s]
 A

t:
13

:0
0

29
 F

eb
ru

ar
y

20
08

taken into special consideration as the queries performed are being

focused on specific sections of the query system that cause a possible

asymmetric behavior.

3. To discover new nonexplicit relationships, meaning that some queries

could be different, but their sets of solutions are the same. Hence,

this could imply a possible undercover relationship between sets of

queries (a possible serendipity behavior).

Advantages of Reflexive Ontologies

The advantages of having self-contained queries include the following

main aspects:

1. Speed (i.e., the speeding of the query process): Because every query is

handled and stored in either its atomized form or its complex form,

including the logical operators, the interrogation of the ontology is

in the worst case time linear if the query exists (i.e., if it has been pre-

viously stored). If the query has not been asked before, then a typical

ontology interrogation via an API takes place, and when the new set

of answers is retrieved, it is added to the reflexivity class. This advan-

tage is related to the RO Property 1.

2. Incremental nature (i.e., the possibility of the ontology itself adding

new queries on individuals with the corresponding answers to such

queries): This is in fact a feature that adds knowledge about the

domain, because the more questions that are asked, the more knowl-

edge that can be stored in the ontology. This advantage is related to

the RO Property 5. The questions and answers are in fact a guideline

to infer ‘‘things’’ about the ontology.

3. Self-containment of the knowledge structure in a single file: This feature

includes the storage of the model, the relations between the elements of

the model, the individuals (instances), and queries over such individuals.

This advantage relies on fulfillment of the functional purpose of a RO.

Implementation of the Reflexive Ontologies Concept

We define the following architecture for the implementation of the RO

concept.

This architecture is divided into three layers (see Fig. 2). The reposi-

tories layer contains the real-world elements that ‘‘feed’’ the ontology; the

information contained can be structured or unstructured, and by means

REFLEXIVE ONTOLOGIES 179

D
ow

nl
oa

de
d

B
y:

 [T
or

o,
 C

ar
lo

s]
 A

t:
13

:0
0

29
 F

eb
ru

ar
y

20
08

of a process of ontology alignment and mapping, they become instances

of the base ontology (traditional ontology approach).

In a typical ontology, the knowledge definition is represented as

classes and properties of two possible types: (1) object type (i.e., map-

ping a class to a class) and (2) data type (i.e., mapping a class to a

characteristic represented by a traditional computer type such as a

string, integer, etc.).

The next layer contains two modules; the first one is the extension

itself, which adds a new class to the base ontology with the needed

schema for the reflexivity. In our implementation, we call this the

ReflexiveOntologyQueryStorer class (see Fig. 3).

The extension hangs from the OWL: Thing superclass and has the

following OWL properties (see Table 1).

The last module inside our architecture is the reflexiveness itself,

and it provides the ontology (programmatically) with a mechanism to

perform queries and some logic on the queries that allows the handling

of the reflexiveness.

Finally, we would like to mention that in our implementation we

used Protégé and its APIs and the OWL-DL subspecies of the OWL

Figure 2. Reflexive ontology architecture.

180 TORO ET AL.

D
ow

nl
oa

de
d

B
y:

 [T
or

o,
 C

ar
lo

s]
 A

t:
13

:0
0

29
 F

eb
ru

ar
y

20
08

specification (Zhang 2005), but any other ontology modeling software

that offers an open API could be used to extend an ontology program-

matically with the RO concept.

CASE STUDY

In this section, we introduce a case study that uses a previously presented

ontology to exemplify the reflexive ontologies schema. Such an ontology

is the Set of Experience Knowledge Structure-OWL (Sanin, Toro, and

Szczerbicki 2007) or SOEKS-OWL for short.

Figure 3. Reflexive ontology QueryStorer.

Table 1. Reflexive class properties

Property Type Comment

isQueryComplex Data Boolean

QueryDefinition Data String

QueryMapsToIndividuals Object Collection of individuals

REFLEXIVE ONTOLOGIES 181

D
ow

nl
oa

de
d

B
y:

 [T
or

o,
 C

ar
lo

s]
 A

t:
13

:0
0

29
 F

eb
ru

ar
y

20
08

Set of Experience Knowledge Structure

Arnold and Bowie (1985) argue that ‘‘the mind’s mechanism for storing

and retrieving knowledge is transparent to us. When we ‘memorize’ an

orange, we simply examine it, think about it for a while, and perhaps

eat it. Somehow, during this process, all the essential qualities of the

orange are stored (experience). Later, when someone mentions the word

‘orange,’ our senses are activated from within (query), and we see, smell,

touch, and taste the orange all over again’’ (p. 46). The Set of Experience

Knowledge Structure (SOEKS or SOE for short) has been developed to

keep formal decision events in an explicit way (Sanin and Szczerbicki

2005a). It is a model based on existing and available knowledge, which

must adjust to the decision event from which it is built (i.e., it is a dynamic

structure that relies on the information offered by a formal decision

event); besides, it can be expressed in XML or OWL to make it shareable

and transportable (Sanin and Szczerbicki 2005b, 2006a; Sanin et al.

2007). Four basic components surround decision-making events, and

they are stored in a combined dynamic structure that comprises the

SOE. These four components are variables, functions, constraints, and

rules.

Additionally, the SOEKS is organized in a way that takes into

account some important features of DNA. First, the combination of

the four nucleotides of DNA gives uniqueness to itself, just as the

combination of the four components of the SOE offers distinctiveness.

Moreover, the elements of the structure are connected among them-

selves, imitating part of a long strand of DNA, that is, a gene. Thus, a

gene can be assimilated to a SOE, and, in the same way as a gene pro-

duces a phenotype, a SOE produces a value of decision in terms of its

objective functions. Such value of decision can be called the efficiency

or the phenotype value of the SOE (Sanin and Szczerbicki 2005a); in

other words, the SOEKS itself stores an answer to a query presented.

A unique SOE cannot rule a whole system, even in a specific area or

category. Therefore, more SOEs should be acquired and constructed.

The day-to-day operation provides many decisions, and the result of this

is a collection of many different SOEs. A group of SOEs of the same

category comprise a kind of decisional chromosome, as DNA does with

genes. These decisional chromosomes of SOE could make a ‘‘strategy’’

for a category. In this case, each module of chromosomes forms an entire

inference tool and provides a schematic view for knowledge inside an

182 TORO ET AL.

D
ow

nl
oa

de
d

B
y:

 [T
or

o,
 C

ar
lo

s]
 A

t:
13

:0
0

29
 F

eb
ru

ar
y

20
08

organization. Subsequently, having a diverse group of SOE chromo-

somes is like having the decisional DNA of an organization, because

what has been collected is a series of inference strategies related to such

enterprise (see Fig. 4).

In conclusion, the SOEKS is a compound of variables, functions,

constraints, and rules, which are uniquely combined to represent a

formal decision event. Multiple SOEs can be collected, classified, and

organized according to their efficiency, grouping them into decisional

chromosomes. Chromosomes are groups of SOEs that can comprise a

decision strategy for a specific area of an organization. Finally, sets of

chromosomes comprise what is called the decisional DNA of the organi-

zation. Furthermore, the decisional DNA can be used in platforms to

support decision making, and new decisions can be made based on it.

In this text, a concise idea of the SOEKS and the decisional DNA was

offered; for further information, the work of Sanin and Szczerbicki

(2005a, 2006b) should be reviewed.

After having instantiated the SOEKS-OWL with real values, the pur-

pose of the case study is to exemplify how the SOEKS-OWL is converted

into a reflexive ontology by the use of the ReflexiveQueryStorer class and

the changes it generates in such an ontology.

Initially, Fig. 5 shows the visualization of the SOEKS-OWL instan-

tiated (base ontology as presented in the architecture). The next step

comprises the adaptation of the ReflexiveQueryStorer class with some

initial values such as the path of the ontology, options of saving the

Figure 4. Decisional DNA.

REFLEXIVE ONTOLOGIES 183

D
ow

nl
oa

de
d

B
y:

 [T
or

o,
 C

ar
lo

s]
 A

t:
13

:0
0

29
 F

eb
ru

ar
y

20
08

reflexive structure and the query instances, and the type of query to be

performed. This is expressed in Java code as follows:

public static String

ONTOLOGY AND PATH¼"C:==VICOMTech==testOntology==
SOEKS TEST:owl";

public static boolean

SAVE ONTOLOGY WHEN CREATE REFLEXIVE STRUCTURE¼true;
public static boolean

SAVE ONTOLOGY WHEN INSTANTIATE REFLEXIVE STRUCTURE¼true;

public static boolean PERFORM SIMPLE CHECK¼true;

For explanation purposes, three queries will be exemplified in this case

study. The first query is defined in the code as public static String

SIMPLE RFLEXIVE QUERY¼"CLASS variable with the PROPERTY var name

EQUALS to X1"; notice that this is a value-type query. Such a query is written

in a human-readable form, but in other terms, it means ‘‘retrieve all the

variables of the ontology that have the variable name X1.’’

The execution of the code offers information about the type of query

executed and the successful saving of the reflexive ontology structure

(created for the first time) as well as the query executed with results. Fol-

lowing, the results can be seen as a query successfully executed with the

Figure 5. SOEKS-OWL instantiated.

184 TORO ET AL.

D
ow

nl
oa

de
d

B
y:

 [T
or

o,
 C

ar
lo

s]
 A

t:
13

:0
0

29
 F

eb
ru

ar
y

20
08

new instance in the SOEKS-OWL transformed into a reflexive ontology

(see Fig. 6):

---START-------------------------------------

Testing Simple query : CLASS variable with the PROPERTY

var name EQUALS to X1

--

... saving successful.

File modification saved with 0 errors.

--END---

The next example includes a data-type query: public static

String SIMPLE RFLEXIVE QUERY¼"CLASS term with the PROPERTY

withVariable EQUALS to X2 1"; in other words, it means ‘‘retrieve all

the terms in the ontology that involve the variable with name X2 1.’’

Its results are as follows (Fig. 7):

---START-------------------------------------

Testing Simple query : CLASS term with the PROPERTY

with Variable EQUALS to X2_1

--

.... saving successful.

File modification saved with 0 errors.

--END---

Figure 6. SOEKS-OWL transformed into a reflexive ontology with its new elements.

REFLEXIVE ONTOLOGIES 185

D
ow

nl
oa

de
d

B
y:

 [T
or

o,
 C

ar
lo

s]
 A

t:
13

:0
0

29
 F

eb
ru

ar
y

20
08

In these results, the term 2 and term 4 are valid for the query; in other

words, those terms contain the X2 1 variable. As an example, the term 2

is shown in Fig. 8.

One of the features of reflexive ontologies is that when a new query

comes, it is not necessary to perform it again, if it was already done. In

such a case, the reflexive ontology class will return the following answer:

---START-------------------------------------

Testing Simple query : CLASS term with the PROPERTY

with Variable EQUALS to X2_1

--

query has been made before

--END---

The queries are stored according to the architecture presented in the

query storer class that has been created. Finally, a complex query is

performed comprising Property 3 (autopoietic behavior) and Property 4

(support for logical operations) (see Fig. 9):

---START-------------------------------------

Testing Complex query : CLASS simfactor with the PROPERTY

hasSterm EQUALS to term 1 AND CLASS

simfactor with the PROPERTY hasSterm EQUALS to term 2

Figure 7. SOEKS-OWL with a data-type query executed.

186 TORO ET AL.

D
ow

nl
oa

de
d

B
y:

 [T
or

o,
 C

ar
lo

s]
 A

t:
13

:0
0

29
 F

eb
ru

ar
y

20
08

CLASS simfactor with the PROPERTY hasSterm EQUALS to term 1 AND

CLASS simfactor with the PROPERTY hasSterm EQUALS to term 2

Sub queries in query 2

--

. . . saving successful.

File modification saved with 0 errors.

--END---

Figure 8. term 2 with confirmation of query results.

Figure 9. Complex query executed on the SOEKS-OWL.

REFLEXIVE ONTOLOGIES 187

D
ow

nl
oa

de
d

B
y:

 [T
or

o,
 C

ar
lo

s]
 A

t:
13

:0
0

29
 F

eb
ru

ar
y

20
08

As previously shown, the reflexive ontology transformation includes the

creation of a new class inside the ontology—in this case, the SOEKS-

OWL. Additionally, when different simple or complex queries (data type

or value type) are executed, they are inserted as instances in the new

reflexive ontology; this change facilitates the application of similarity

elements among the SOEs and will allow extended logic handling over

the SOEKS, as it comprises Property 5 of the RO (self-reasoning over the

query set).

This step can also be seen in the architecture, as the RO is strongly

attached to the base ontology in order to extend it.

CONCLUSIONS

In this article, we introduced the concept of reflexive ontologies (RO).

The presented schema can be applied to an existing ontology to improve

its query capabilities. We described the RO properties and benefits of

having self-contained queries, and within the architecture of the RO

we presented a case study that extends a previously presented OWL

ontology called SOEKS.

In future work, some additional features must be developed in order

to offer a more user-friendly environment: implementation of a graphical

user interface (GUI) by the means of an API, which should help in the

transformation of an ontology into a RO; implementation of a GUI for

the query engine; and extension of the query logic elements into a more

humanlike language.

In addition, a formalization from a mathematical point of view

will be presented in a future work, taking advantage of the possi-

bility to define possible theorems and lemmas that model the RO

behavior.

Finally, similarity features for the decisional DNA in conjunction

with the RO will improve its implementation. This will constitute a very

important line of future work based on the SOEKS paradigm.

REFERENCES

Arnold, W. and Bowie, J. 1985. Artificial intelligence: A personal commonsense

journey. New Jersey: Prentice Hall.

Berners-Lee, T., Hendler, J., and Lassila, O. 2001, May. The Semantic Web—A

new form of Web content that is meaningful to computers will unleash a

188 TORO ET AL.

D
ow

nl
oa

de
d

B
y:

 [T
or

o,
 C

ar
lo

s]
 A

t:
13

:0
0

29
 F

eb
ru

ar
y

20
08

revolution of new possibilities. Scientific American, May 2001, No. 284,

pp.34–43.

Flanagan, O. J. 1981. Psychology, progress, and the problem of reflexivity: A

study in the epistemological foundations of psychology. Journal of the History

of the Behavioral Sciences, 17: 375–386.

Gruber, T. R. 1995. Toward principles for the design of ontologies used for knowledge

sharing. International Journal of Human-Computer Studies 43(5–6): 907–928.

Luhmann, Niklas R. 1997. Organizaci�oon y Decisi�oon, Autopoiesis y Entendimiento

Comunicativo. Barcelona: Anthropos.

Maturana, H. and Varela, F. 1980. Autopoiesis and cognition. Boston: Reidel.

Reflexivity. 2007. In Wikipedia, The Free Encyclopedia. Retrieved September 6,

2007, from http://en.wikipedia.org/w/index.php?title=Reflexivity_%28social_

theory%29&oldid=150538764

Sanin, C. and Szczerbicki, E. 2005a. Set of experience: A knowledge structure for

formal decision events. Foundations of Control and Management Sciences 3:

95–113.

Sanin, C. and Szczerbicki, E. 2005b. Using XML for implementing set of experi-

ence knowledge structure. In Proceedings on International Conference on

Knowledge-Base and Intelligent Information and Engineering Systems—KES,

edited by R. Koshla, R. Howlett, and L. Jain., Berlin, Heidelberg: Springer,

pp. 946–952.

Sanin, C. and Szczerbicki, E. 2006a. Extending set of experience knowledge

structure into a transportable language extensible markup language. Cyber-

netics and Systems 37(2–3): 97–117.

Sanin, C. and Szczerbicki, E. 2006b. Using set of experience in the process of

transforming information into knowledge. International Journal of Enterprise

Information Systems 2: 45–62.

Sanin, C., Toro, C., and Szczerbicki, E. 2007. An OWL ontology of set of experi-

ence knowledge structure. Journal of Universal Computer Science 13(2):

209–223.

Sevilmis, N., Stork, A., Smithers, T., Posada, J., Pianciamore, M., Castro, R., et al.

2005. Knowledge sharing by information retrieval in the semantic web. In

Lecture notes in computer science. Germany: Springer Berlin, Heidelberg,

pp. 471–485.

Toro, C., Termen�oon, M., et al. 2007. Ontology supported adaptive user interfaces

for structural CAD design. In CIRP Conference on Digital Enterprise Tech-

nology (DET), edited by Cunha, Pedro Felipe, u.a.: Proceedings. Berlin;

Heidelberg: Springer, p. 8.

Zhang, Z. (2005). Ontology query languages for the semantic Web p. 57. Master’s

thesis, University of Georgia, Athens.

REFLEXIVE ONTOLOGIES 189

