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Abstract. Abdominal Aortic Aneurysm (AAA) is a dangerous condition where 

the weakening of the aortic wall leads to its deformation and the generation of a 

thrombus. To prevent a possible rupture of the aortic wall, AAAs can be treated 

non-invasively by means of the Endovascular Aneurysm Repair technique 

(EVAR), which consists of placing a stent-graft inside the aorta in order to 

exclude the bulge from the blood circulation and usually leads to its 

contraction. Nevertheless, the bulge may continue to grow without any apparent 

leak. In order to effectively assess the changes experienced after surgery, it is 

necessary to segment the aneurysm, which is a very time-consuming task. Here 

we describe the initial results of a novel model-based approach for the semi-

automatic segmentation of both the lumen and the thrombus of AAAs, using 

radial functions constrained by a priori knowledge and spatial coherency. 
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1   Introduction 

Abdominal Aortic Aneurysm (AAA) is a cardiovascular disease that is caused by a 

degenerative process of the aortic wall, which leads to its wear and deformation. If 

not treated, AAAs increase in size progressively and may result in rupture, and, 

eventually, death [1]. 

There are currently two main repair techniques for AAAs: Open Aneurysm Repair 

(OR), and Endovascular Aneurysm Repair (EVAR). EVAR is a minimally invasive 
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technique where an endograft, typically a cloth graft with a stent exoskeleton, is 

placed within the lumen of the AAA, extending distally into the iliac arteries. This 

serves as a bypass and decreases the pressure on the aortic wall, leading to a reduction 

in AAA size over time and a decrease in the risk of aortic rupture. An Intraluminal 

Thrombus (ILT) forms in the majority of abdominal aortic aneurysms. Correctly 

excluded aneurysms progressively shrink after EVAR surgery. Nevertheless, there 

may be leaks into or from the sac due to incorrect positioning, displacement or torsion 

of the graft. In order to ensure that the graft is accomplishing its intended goal, close 

follow-up is required after endovascular repair, with CT scans performed at one, six, 

and 12 months, and then yearly. 

In order to assess the evolution of the bulge, the aneurysm must be delineated. Due 

to low-contrast in the ILT region compared to adjacent structures, the segmentation of 

the thrombus is not a trivial task. Manual segmentation by trained radiologists is a 

time-consuming task, and suffers from intra- and inter-observer variability. 

Thrombus segmentation of AAAs has been addressed less frequently in the 

literature [2][3][4][5][6]. The works presented in [2] and [3] need initial manual 

delineations to initialize their models, and the method by de Bruijne et al. [3] needs 

posterior user intervention in case of thrombus boundary overflow. Olabarriaga et al. 

[4] employ a binary thresholding to obtain the lumen, which is used as an 

initialization for a deformable model to segment the thrombus. Simple thresholding 

takes into account other tissues not connected to the lumen, so further processing is 

usually needed to avoid those structures. Furthermore, the use of deformable models 

needs a fine parameter optimization to obtain acceptable results. Zhuge et al. [5] 

present an algorithm based on a level-set approach whose main advantage is the 

automatization and parameter insensitivity. Nevertheless, the required time (order of 

several minutes) is a main drawback. The works by Borghi et al. [6] make use of 

region growing segmentation techniques in order to obtain the lumen boundary, but 

then use manual delineation of the aneurysm wall to obtain a 3D model of a TAA 

(Thoracic Aortic Aneurysm). 

In this paper, we present the preliminary results of a novel semi-automatic 3D 

technique for the segmentation of the AAA lumen and thrombus. Segmentation of the 

lumen is based on a 3D region growing algorithm starting from two or more manually 

selected seed points. The aortic centerline is calculated from the lumen segmentation 

using an image moment on connected components. The thrombus contour is modeled 

as a radial function. Starting from the centerline, a polar resampling of the input 

image is obtained. This image is analyzed by obtaining radial and slice-level 

connected components which are filtered based on a priori knowledge and spatial 

coherency. The radial function for the thrombus is obtained from the resulting 

connected components and defines the target segmented region. The main advantages 

of this method are its robustness and speed. 

The remainder of this paper is organized as follows. The region growing algorithm 

for lumen segmentation is explained in Section 2. The proposed centerline extraction 

technique is explained in Section 3. Thrombus segmentation is discussed in Section 4. 

Results and discussion are presented in Section 5 and, finally, conclusions are 

provided in Section 6. 



2   Region Growing based Lumen Segmentation 

Segmentation of the lumen is based on a 3D region growing algorithm. First, the 

image is preprocessed to reduce noise and a Volume of Interest (VOI) is defined in 

order to reduce the extent of the data. A seed point on the lumen is at least required 

for the region growing algorithm. The algorithm, implemented in ITK [7], includes 

voxels that lie in a confidence interval of the current segmented region over an 

iterative process. At each iteration, all neighborhood voxels are visited and the 

confidence criterion is evaluated. Then, statistics are recomputed and the next 

iteration begins. 

The resulting segmentation is smoothed by morphological closing, which also fills 

possible small holes. 

3   Centerline Extraction 

The centerline approximates the centroid of the lumen region at each slice and is a 

good approximation of the morphological skeleton of the whole aorta. It also serves 

as the starting point for the thrombus segmentation. A single point on the centerline is 

obtained for every slice, since the aorta is almost normal to axial slices. 

The centerline extraction is performed on a slice-by-slice basis using 2D image 

moments. Image moments provide information on the geometry features of a given 

structure. The moments of a 2D image are defined as 
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On each slice connected components are detected and the centroid of each object is 

computed. The Euclidean distance is then calculated from each of the candidate 

centroids to the centroid kept in the previous slice and the nearest candidate centroid 

is kept as the one corresponding to the structure of interest. The algorithm, described 

below, yields a series of points that when displayed in three dimensions depict the 

central line or skeleton of the lumen. 
 

Algorithm 1. Centerline extraction. 

1: Initialization of region: center line in first processed slice 

2: Iterative process: for all slices in 3D image do 

3: identify connected components 

4: for components in slice do 

5: compute candidate centroids 

6: compute Euclidean distances to centroid in previous slice 

7: end for 



8: keep nearest candidate centroid 

9: end for 

4   Thrombus Segmentation 

In this paper, we propose modeling the internal and external radius of the thrombus of 

the aneurysm as radial functions in cylindrical coordinates. Then, we can express the 

volume of interest around the lumen centerline as 
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At every  value, we choose the origin of these functions to be the centerline point 

at the corresponding slices. The external and internal radii of the thrombus and the 

aneurysm can be defined as two contours given by 
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The segmentation procedure consists of calculating the internal and external radii 

that define  T r min  and T r max  at every point, and which enclose the region 

corresponding to the thrombus. The model is depicted in Figure 1. 
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Figure 1. Radial model for the thrombus. 

 

Conversion of Cartesian to polar coordinates requires resampling the input volume 

of interest. For every slice, a new image is obtained, where the X  coordinate 

represents the radius, starting from the centerline point at the left, and the Y  

coordinate represents the angle, starting from the top and covering 360 degrees. This 

is represented in Figure 2, where an original slice is shown (left), together with its 

corresponding polar representation (center). 

 



   
   

Figure 2. Axial slice (left), corresponding polar representation (center) and median filtered 

version with threshold for lumen and stent (right). Left origin is taken on the centerline on each 

slice for the polar representation. 

 

The polar representation presents several advantages. First, the VOI is converted to 

a cylindrical VOI, instead of the typical rectangular prism, but it is treated as a 

standard volume with a regular grid. Second, the speed of the computations is 

increased, since resampling is only performed once and the polar slices are processed 

as standard images. 

In order to remove noise, the polar image slices are filtered using a median filter. 

Each image is thresholded above 150 HU (Hounsfield Units) to a background value of 

-100 HU. This removes the lumen and the stent on the left side and makes the 

thrombus the brightest structure closest to the centerline. We can use this a priori 

information for the segmentation. The result is shown in Figure 2 (right), where 

significant noise has been eliminated and the structures of interest smoothed. 

Localization of the external radius of the thrombus on each slice in polar 

coordinates is achieved by a local analysis based on two concepts: radial connected 

components (RCC) and slice connected components (SCC). We define an RCC as a 

connected component on a row of a polar slice and a SCC as a connected component 

on a polar slice. We store this RCCs using run-length encoding by just storing first 

and last index. 

First, a row-by-row analysis is performed in all slices to create an image of RCCs. 

An RCC is created for consecutive pixels of a row that follow a given membership 

criterion. We use the absolute difference from the mean of the current RCC with a 

threshold value of 20 HU as the membership criterion. In the same process, the lumen 

radius is identified as the first RCC with an average value of -150 HU, as was set 

before by thresholding. The algorithm for creating the RCCs is as follows: 

 

Algorithm 2. RCC extraction. 

1: Initialization of region: center line in first processed slice 

2: Iterative process: for all polar slices do 

3: for all rows in current polar slice do 

4: create new RCC and insert first voxel in row 

5: for all voxels in current row do 

6: if ( intensity(voxel)  Intensity range(RCC) ) then 

7: insert voxel in current RCC 

8: else 



9: create new RCC and insert current voxel 

10: end if 

11: calculate and store lumen external radius for the row 

12: end for 
13: end for 

14: end for 
 

Next, we proceed to filter the RCCs. First, RCCs whose average values are not in 

the range of 0-200 HU are removed. These values are quite conservative in order to 

be valid for most datasets. Second, RCCs that do not start 5 mm away from the 

external lumen radius are removed too. Results of the RCC computation procedure 

are shown in Figure 3. It can be seen that the thrombus has been almost completely 

isolated, but some RCCs that are not part of the thrombus still remain (Figure 3, 

right). 

 

   

Figure 3. RCCs (left) and filtered RCCs (center and right). RCCs along each row are 

depicted using a different grey value. 

 

SCCs are computed in a similar way, by using connectivity and the same intensity 

criteria as for the RCCs. Each SCC keeps a list of contained RCCs. SCCs are used to 

filter RCCs by using spatial coherency information on each slice. First, SCCs (and 

corresponding RCCs) that contain less than 10 voxels are discarded since they are not 

significant at a slice level. Next, SCCs are filtered by the position of the centroid. We 

compute the centroids of all the RCCs on a slice and calculate their median value. 

Then we compute the distance from the centroid of every SCC on that slice to the 

median centroid value, and if the distance is greater than 20 mm, the SCC is 

completely removed. 

Initial values for T r int  and T rext  are obtained by taking, for every row on all 

slices, the first index of the first RCC and the last index of the last RCC on that row. 

This results in a good approximation to the real external thrombus contour, with the 

exception of some areas where the thrombus region invades adjacent structures. These 

areas represent a discontinuity in the RCC as shown in Figure 5 (left). 

In order to solve this problem, a continuity constraint is imposed over T rext  where 

the contour points whose radii are part of a discontinuity are interpolated. 

Discontinuities are first identified as significant radius changes from line to line. 

Then, the radii in these areas are linearly interpolated in order to obtain the final 

result. 



5   Results and Discussion 

Our method has been initially tested on a real human contrast-enhanced dataset 

obtained from a LightSpeed16 CT scanner (GE Medical Systems, Fairfield, CT, 

USA) with 512x512x354 voxel resolution and 0.725x0.725x0.8 mm spatial 

resolution. Two points inside the lumen, defining the limits of the thrombus region in 

axial direction, were manually selected as seed points for the segmentation of the 

lumen (Figure 4). The lumen centerline is then extracted from it and is used as the 

origin for the polar representation in an area of radius 10 mm around the centerline. 

Finally, the described radial function-based model is used to segment the thrombus. 

 

 

Figure 4. Lumen segmentation. 

 

Initial results of the thrombus segmentation method can be seen in Figure 5 where 

the initially estimated and the corrected external contours of the thrombus are shown. 

The thrombus segmentation shows promising results in defining the external contour, 

whose density is very similar to adjacent structures, and very prone to segmentation 

leaks in those areas. One of the main advantages of the method is its computational 

speed. It took less than 20 s to process 80 slices on a Pentium Core 2 Quad at 2.4 

GHz. However, the method requires further improvements, since we have observed 

an underestimation of the radius in some places which were identified as leaks (Figure 

5, right). 

 

   

Figure 5. Correction (green) of the initial thrombus external radius (blue). Right correction 

(left and right) and underestimation (right). 



6   Conclusion 

We have developed a novel technique for semi-automatic segmentation of AAAs. The 

lumen is obtained applying a region growing-based algorithm, from which the 

centerline is obtained for use as the origin of a polar coordinate representation of the 

input slices. The thrombus is modeled as a radial function that varies with the angle 

and the slice starting from the centerline. The function for the external radius is 

obtained by local and slice-level analysis of connected components and an a priori 

knowledge of the location, size and intensity of the thrombus. 

The algorithm does not depend on any user-defined contour or initial manual 

segmentation. User interaction is minimal: it only needs two seed points contained in 

the lumen and defining the range of slices of interest. Moreover, the speed of the 

whole process makes it also suitable for routine clinical use. 

The algorithm is being initially tested on human datasets and results are promising. 

Accurate segmentations are obtained in areas where it is difficult to distinguish the 

thrombus from adjacent structures. 

Future work will be oriented to improve the thrombus model, fine-tune the 

parameters of the process for a large number of datasets and validate the segmentation 

by comparison with manual segmentations and other methods. 
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