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Interactive GPU Ray Casting for Biomedical

Imaging

Abstract

For many applications, such as walk-throughs or terrain visualiza-

tion, drawing geometric primitives is the most e�cient and e�ective

way to represent the data. In contrast, other applications require the

visualization of data that is inherently volumetric. For example, in

biomedical imaging, it might be necessary to visualize 3D datasets

obtained from CT or MRI scanners as a meaningful 2D image, in a

process called volume rendering. As a result of the popularity and use-

fulness of volume data, a broad class of volume rendering techniques

has emerged. Ray casting is one of these techniques. It allows for high

quality volume rendering, but is a computationally expensive tech-

nique which, with current technology, lacks interactivity when visual-

izing large datasets, if processed on the CPU. The advent of e�cient

GPUs, available on almost every modern workstation, combined with

their high degree of programmability, opens up a wide �eld of new

applications for the graphics cards. Ray casting is among these appli-

cations, exhibiting an intrinsic parallelism, in the form of completely

independent light rays, which allows to take advantage of the mas-

sively parallel architecture of the GPU. This document describes the

implementation and analysis of a set of shaders which allow interactive

volume rendering on the GPU by resorting to ray casting techniques.
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Ray Casting Interactivo para Visualização de

Imagens Biomédicas

Resumo

Em muitas aplicações, tais como walk-throughs ou visualização de

terrenos, a maneira mais e�ciente de representar os dados é dese-

nhando primitivas geométricas. Por outro lado, existem aplicações

que requerem a visualização de dados inerentemente volumétricos. Por

exemplo, no ramo das imagens biomédicas, pode ser necessário visu-

alizar conjuntos de dados 3D obtidos a partir de scanners TC ou IRM

sob a forma de uma imagem 2D, num processo designado por vol-

ume rendering. Em resultado da utilidade e popularidade dos dados

volumétricos, surgiu uma vasta gama de técnicas de volume rendering.

Ray casting é uma dessas técnicas. Permite realizar volume rende-

ring de alta qualidade, mas trata-se de uma técnica cara em termos

computacionais à qual, com a tecnologia actual, falta interactividade

quando se visualizam grandes conjuntos de dados, caso seja processada

no CPU. O surgimento de GPUs mais e�cientes, presentes em quase

todos os computadores modernos, combinado com o seu alto grau de

progamabilidade, abre um novo e vasto campo de aplicações para as

placas grá�cas. Ray casting está entre estas aplicações, exibindo um

paralelismo intrínseco, sob a forma de raios completamente indepen-

dentes, que permite tirar partido da arquitectura do GPU massiva-

mente paralela. Este documento descreve a implementação e análise

de um conjunto de shaders que permitem realizar volume rendering

interactivo no GPU fazendo uso de técnicas de ray casting.
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1 Introduction

Three dimensional volume datasets are frequently used in the scienti�c com-

munity. They are obtained by simulation, sampling or modeling. In eco-

nomics or �uid dynamics, for example, numerical simulations can generate

large scale volumetric datasets. In medical imaging, di�erent scanning tech-

niques such as Magnetic Resonance Imaging (MRI) or Computed Tomog-

raphy (CT) are used to collect samples of the interior of the human body,

which are stored as 3D datasets [12].

These datasets may be visualized in three dimensions, in order to allow

specialists to interpret the information. In traditional computer graphics,

3D objects are created using surface representations, by drawing geometric

primitives that create polygonal meshes [16]. However, using surface render-

ing techniques to display volumetric data results in the loss of a dimension

of information [12, 10]. For example, in CT datasets, the useful information

is not only contained on extracted iso-surfaces, but within the iso-surfaces as

well. Therefore, several volume rendering techniques were developed to visu-

alize the entire 3D data as a single 2D image. Volume rendering techniques

convey more information than surface rendering methods, but at the cost of

increased algorithm complexity and, consequently, increased rendering times

[2].

Ray casting [13] is one of these techniques. It evaluates the color of each

pixel in the �nal image by shooting a ray through the scene starting from the

viewer position. If the ray hits the volume, the color of the pixel is calculated

by sampling the data values along the ray at a �nite number of positions in

the volume and combining them together. This technique, however, has

a limitation when executed on CPUs: for large volume datasets and close

viewing planes that maximize the number of rays which must be shot, the

time to render a single image is too high to allow for a real time visualization.

In the particular case of visualization of medical images, doctors can ben-

e�t from the use of ray casting techniques for diagnostic purposes, planning of
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treatment, or surgery [2]. Three dimensional techniques allow the physicians

to see anatomical features and interrelationships explicitly and thus to take

decisions based on more information, and to communicate them better [23].

But widespread use depends on the ability to quickly �y-through the data,

even while the patient is on the scanner, and perform the diagnosis [23].

Driven by the demand of the game industry, the performance of modern

GPUs has exceeded the computational power of CPUs both in raw numbers

and in the growth rate [24, 27]. Consequently, Krüger and Westerman [14]

presented a di�erent approach for implementing the ray casting technique.

They proposed a GPU-based algorithm, capable of taking advantage of the

features of modern graphics cards (see also [22]):

• A massively parallel architecture

• A separation into two distinct units (vertex and fragment shader) that

can double performance if workload can be split

• Fast memory and memory interface

• Dedicated instructions for graphical tasks

• Vector operations on 4 �oats that are as fast as scalar operations

• Trilinear interpolation is automatically (and extremely fast) imple-

mented in the 3D texture

The ray casting algorithm �ts modern GPUs. It exhibits an intrinsic paral-

lelism, in the form of completely independent light rays, which allows to take

advantage of the massively parallel architecture of the GPU. But as a new

technology, GPU ray casting is not well established yet. Appropriate libraries

implementing the technique which are compatible with graphics processors

from the two main manufacturers, NVidia and ATI, cannot be found.

The work presented in this document is motivated by the creation of a

Human Atlas visualization tool which allows the user to navigate through
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human medical datasets (obtained from CT or MRI scanners) in real time,

using direct volume rendering. The development of a set of shaders, which

implement a GPU ray caster that is able to display 3D datasets with di�erent

compositing techniques (composite, Maximum Intensity Projection and X-

Ray), is described, and its performance is analyzed. Moreover, segmentation

data was used to identify distinct objects of interest present in the dataset.

A new approach for the implementation of a highlighting mechanism, which

allows the user to quickly highlight speci�c objects by shooting a highlight

ray into the volume, is also presented.

In the next section, the theory of volume rendering, as well as the main

approaches to render volume datasets are discussed. An historical perspective

of the evolution of the �eld is also presented. In Section 3, the foundations

of the ray casting technique are detailed. The implementation and results of

the rayCasting technique in the GPU are described in Section 4. Sections 5

to 8 present the endowing of the ray caster implemented in Section 4, and

are divided in two subsections: Implementation, and Results and Discussion.

The use of a stochastic jitter for reducing the wood-grain e�ect is shown in

Section 5. In the following section two empirical visualization modes (X-Ray

and MIP) are added to the application. In Section 7 segmented datasets

are used to visually di�erentiate areas of interest. A mechanism developed

to allow the user to interactively highlight objects of interest is presented in

Section 8. The last section contains the conclusions, and an outlook of the

work developed.
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2 Volume Rendering

Volumetric (or 3D) datasets are composed by a set of samples (x, y, z, v),

called voxels, representing the value v of some property of the data, at a 3D

location (x, y, z) [2]. Volume rendering describes a wide range of techniques

for generating a 2D image directly from one (or possibly more) of these

datasets. This process is alternatively named direct volume rendering, as it

operates directly on the actual data samples from the 3D dataset, without

generating intermediate geometric primitive representations.

The origin of volume rendering remounts to the decade of 1980, when

researchers �rst used computers to display volume information. Blinn [1]

proposed a set of physically based functions to describe the interaction of

light with cloudy objects, a typical volume rendering problem. Kajiya [13]

extended the ray tracing method presented by Whitted [30], in order to

render 3D datasets, in what would be the �rst ray casting algorithm. The

�eld kept on evolving, with the re�nement of the existing volume rendering

techniques [6, 21, 26, 29].

In the middle 1990s, boosted by the availability of more e�cient graphic

cards, Cullip and Newman [4] presented the �rst important GPU volume

rendering approach, further developed by Cabral et al. [3]. It consisted on

exploiting the GPU texture mapping capabilities, to create a set of sampling

planes of the volumetric data, and therefore, was later classi�ed as a texture

based approach. The sampling planes could be either object aligned with

a set of 2D-textures [28] or viewport aligned with one 3D-texture [19], and

were composed to produce the �nal image. This technique is now widely

accepted as a simple way to interactively render medium sized datasets with

reasonable quality, and has been �netuned and revisited [5, 7].

Krüger and Westerman [14] presented in 2003 an alternative approach, by

implementing a ray caster in the fragment shader of the GPU. The reason for

this late development was the demand for advanced fragment shader func-

tionality that was not available previously [10]. GPU ray casting is based on
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the existing CPU methods, essentially adopting them for graphics hardware.

Since its introduction by Krüger and Westerman, GPU ray casting became

a very active �eld of research, with many publications on the improvement

of the technique [22, 24, 20].

2.1 Light Transport and Optical Models

In order to create a 2D image of a volumetric dataset, it is necessary to

simulate the light transport within the volume. Therefore, a volumetric de-

scription of the physical properties of the participating medium must be pro-

vided. These physical properties are then used to compute light interactions

for actual image synthesis.

The physical basis for volume rendering relies on geometric optics [10].

In geometrical optics light can be described by the amount of radiant energy

traveling within some frequency interval into a given direction [8, 17]. The

light is assumed to propagate along straight lines, unless interaction between

light and the participating medium takes place. Three types of interactions

are typically taken into account [10, 8]. Each one of these phenomena can

be see in Figure 1.

Figure 1: Interactions between light and participating media which a�ect the
radiance along a ray.

In emission (Figure 1a), the material emits light, increasing the radiative

energy. A scattering interaction consists of a change of direction of the light
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propagation, due to a change of properties of the participating media. There

are two types of scattering: in-scattering (Figure 1b), where the light arriving

to a point from di�erent directions is absorbed, causing the light energy to

increase; and out-scattering (Figure 1c), where the light traveling in one

direction is scattered into multiple directions, causing the light energy to

decrease. Finally, in absorption (Figure 1d), the material absorbs light by

converting it into heat, reducing the light energy.

Because evaluating all the light interactions for volumes is computation-

ally intensive usually some simpli�ed models are used. The idea is to reduce

the type of light interactions that are taken into account. The following

models are commonly used [10].

• Absorption Only. It is assumed that the volume consists of perfectly

black material that may absorb incident light. No light is emitted or

scattered.

• Emission Only. The volume is assumed to consist of gas that only

emits light, but is completely transparent. Absorption and scattering

are neglected.

• Emission-Absorption Model. The gas can emit light and absorb

incident light. Scattering and indirect illumination are neglected.

• Single Scattering ans Shadowing. Single scattering of light that

comes from an external source (i.e., not from within the volume) is

included in this model. Shadows are modeled by taking into account

the attenuation of light that is incident from an external light source.

• Multiple Scattering. This model evaluates the complete illumina-

tion model for volumes, including emission, absorption, and scattering

e�ects.

The emission-absorption model is the most widely model used for volume

rendering, due to its good compromise between generality and e�ciency of
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computation. This model leads to the volume rendering integral, presented

in the following section.

2.2 The Volume Rendering Integral

The volume rendering integral (see Equation 1), �rst described by Kajiya

and Herzen [13], and then formally derived by Max [17], is an equation that

computes the light transport through a volume according to the emission-

absorption model. The equation takes into account emission and absorption

e�ects, but discards more advanced e�ects such as scattering and shadows.

Iλ(x, r) =

L̂

s0

Cλ(s)µ(s)e−
´ s
0 µ(t)dtds (1)

It integrates, along the direction of light �ow r, from the starting point

s = s0 to the endpoint s = L, the amount of light of wavelength λ, that is

received at point x. The variable µ represents the density of the particles

that compose the volume. Cλ is the amount of light of wavelength λ re�ected

and/or emitted at a location s in the direction r. To account for the higher

re�ectivity of particles with higher density, one must weight Cλ by µ. The

term ˆ s

0

µ(t)dt

is referred to as the extinction term between 0 and s, and can be interpreted

as the distance which light travels before being absorbed.

The goal of volume rendering is to compute the integral, shown in Equa-

tion 1. However, except for particular cases, the volume rendering integral

cannot be solved analytically. Therefore, most algorithms use numerical

methods to �nd an approximated solution of the integral. The common ap-

proach is to split the integration domain into n subsequent intervals, and

evaluate the Equation 1 using a discrete Riemann sum (see Equation 2).
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Iλ(x, r) =
L/∆s∑
i=0

Cλ(si)α(si)
i−1∏
j=0

(1− α(sj)) (2)

In Equation 2, α(si) represents the opacity values sampled along the ray,

assuming values from 0 to 1. Cλ(si) gives the local color values, derived from

the illumination model. C and α are referred to as transfer functions, and

assign color and opacity to each volume sample. The color of each sample

(Cλ(si)) is weighted by its corresponding opacity to account for the higher

re�ectivity of subvolumes with higher density. The term

i−1∏
j=0

(1− α(sj))

computes the light absorption from the volume entry point j, till the previous

sampling position i − 1. Thus, a practical implementation of Equation 2

traverses the volume from front to back, calculates colors and opacities at

each sampling position, and weights these values by the current accumulated

transparency (1 − α(sj)). These terms are added to the accumulated color

and opacity, which are then used to calculate the contribution of the next

sample along the ray.

2.3 The Volume Rendering Pipeline

To evaluate the discretized volume rendering equation (see Equation 2), a

sequence of steps, designated as the volume rendering pipeline, must be per-

formed. In general, the volume rendering pipeline is composed by the follow-

ing stages [27, 10, 12]:

• Data Traversal. The sampling positions of the 3D dataset are chosen.

This samples are the basis for the discretization of the volume rendering

integral.

• Interpolation. In general, the location of a sample does not coincide
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with any of the grid points of the 3D dataset. Therefore, the sample

value must be evaluated by reconstructing a continuous 3D data�eld

from the original discrete dataset.

• Gradient Computation. A gradient �eld of the scalar values that

composes the 3D dataset is needed, if the computation of local illumi-

nation is required.

• Classi�cation. Classi�cation is the process of assigning optical prop-

erties (color and an opacity) to the data samples. It allows to dis-

tinguish di�erent areas of the volume, by attributing di�erent optical

properties to distinct areas.

• Shading and Illumination. The process of evaluating the illumina-

tion model.

• Compositing. Compositing determines the contribution of a classi�ed

and shaded sample to the �nal image.

The �rst stage of the volume rendering pipeline consists of determining a set

of sampling positions throughout the volume. The resulting sampled values

are used to approximate the volume rendering integral. But the position of

these samples is, in general, di�erent from the grid point positions holding

the volume data. That is why a second stage, the interpolation stage, is

necessary. Whenever the sample position does not coincide with the grid

points of the 3D dataset, the sample value must be calculated by interpolating

the values from one or more neighboring grid points. Typically, for regular

grids, trilinear interpolation is used.

The gradient computation stage consists of calculating a gradient scalar

�eld of the volume, which can be used for computing local illumination [10].

However, this stage is not strictly needed. It can be included in the volume

rendering pipeline to simulate single scattering e�ects of the external light,
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introducing greater realism in the �nal image. Single scattering is approxi-

mated by a local illumination model that imitates local surface rendering (e.g.

Phong model), where the normal to the surface point is used to calculate the

light that is scattered in the direction of the viewer. In the case of local

illumination for volume rendering, the gradient �eld is used as the surface

normal for each volume point, producing an e�ect similar to an illuminated

iso-surface.

The classi�cation of a data sample is done using a transfer function. A

transfer function maps properties of the 3D dataset to optical properties for

the volume rendering integral, typically an RGBA value. This stage can be

executed in two distinct orders. With pre-classi�cation, optical properties

are �rst mapped to the grid points of the dataset, using the transfer func-

tion, and then resulting RGBA values are interpolated to obtain the sample

value. Post-classi�cation, in contrast, �rst interpolates the grid points val-

ues, and then assigns the corresponding optical properties by applying the

transfer function to the interpolated data value. The later approach was

proved to achieve better results, by being able to reproduce higher frequen-

cies of the transfer function than in pre-classi�cation, and therefore, reducing

the visual artifacts caused by the error in the approximation of the volume

rendering integral [10].

After the sample is assigned its optical properties, its contribution to the

resulting image is computed in the last two stages of the pipeline: the shading

and illumination stage, where, based on the optical properties of the sample

(and in some cases on its gradient), the color contribution of the sample is

calculated; and the compositing stage, where the contribution of each sample

is combined according to the chosen compositing method.

2.4 GPU-Based Volume Rendering Techniques

In the �eld of GPU-Based volume rendering [27, 10], there are two distinct

approaches to render 3D datasets at interactive rates: a texture based ap-
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proach, and a ray casting based approach. Below, these two approaches are

presented, along with their main features, advantages and drawbacks.

2.4.1 Texture Based Approach

The texture based approach was the �rst GPU-Based volume rendering tech-

nique, originally presented by Cullip and Newman [4], and further developed

by Cabral et al. [3]. In this approach, the volumetric data is stored in the

GPU memory as a stack of object aligned 2D textures [28] or as a viewport

aligned 3D texture [19]. These textures are then mapped onto a sequence of

semi-transparent 2D slices, called proxy geometry, using the built-in hard-

ware texture interpolation. The function of the proxy geometry is to provide

a sequence of polygons where the texture slices will be displayed. Finally,

the proxy geometry is rendered in back to front order, exploiting the per

fragment operations and alpha blending capabilities of the GPU.

The 2D texture approach requires three copies of the volume dataset,

each of them aligned with one of the main axis of the object (see Figure 2).

Figure 2: Object aligned sampling surfaces. For each of the three main
object axis (x, y, z), a stack of 2D textures is stored. During the rendering
process, the stack corresponding to the axis most parallel to the current
viewing direction is chosen, mapped to the proxy geometry, and rendered in
back to front order using alpha blending.
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This increases three times the amount of memory needed to store the vol-

umetric data. During the visualization process, one of the stacks is chosen to

be displayed, depending on the current viewing direction. The chosen stack

is the one corresponding to the axis most parallel to the viewing vector. To

map the texture slices to the proxy geometry, 2D interpolation within each

slice of the stack is used. When a given texture slice is mapped, the in-

formation from the previous and the next slices is not taken into account.

This causes the �nal result to have lower quality, usually resulting in visible

artifacts [10]. The way to increase the quality of the �nal image, thus remov-

ing these imperfections, is to increase the sampling rate by incrementing the

number of texture slices that store the volume on the graphics card, causing

the amount of memory necessary to be even larger.

Compared with the 2D texture solution, the 3D texture based approach is

superior, removing some of the signi�cant drawbacks while preserving almost

all the bene�ts [10]. With 3D textures only one copy of the volume dataset

is necessary, because trilinear interpolation allows for the extraction of slices

in arbitrary directions, for example diagonally (see Figure 3).

Figure 3: Viewport aligned sampling surface. The volume is stored as a single
3D texture. A set of slices parallel to the image is rendered in back-to-front
order, using alpha blending.

This reduces the size of the volume in the graphics card memory when

compared to the 2D texture approach. The volume is sliced by a set of
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planes parallel to the viewing direction, and the resulting slices are composed

to achieve the �nal image. Furthermore, the use of trilinear interpolation

instead of bilinear results in higher image quality. It also provides a natural

way of increasing the sampling rate only by increasing the number of slices of

the proxy geometry, without having to increase the size of the volume stored

in memory.

2.4.2 Ray Casting Approach

Ray casting is a well-known volume rendering algorithm designed by Kajiya

and Herzen [13] back in the 1980s. The basic idea is to trace rays from the

camera into the volume, computing the volume rendering integral along the

rays (see Figure 4).

Figure 4: Ray casting scheme. For each pixel in the image plane, a single
ray is shot. If the ray hits the volume data, a set of samples is collected at
discrete positions along the ray. These samples are then combined to achieve
the �nal pixel color.

For each pixel in the image, typically a single ray is cast into the volume.

The volume data is sampled at discrete positions along the ray. The contri-

bution of each sample is accumulated to obtain the �nal color and opacity of

the pixel.

This algorithm �ts very well the GPU architecture and capabilities [14,

22]. In GPU ray casting, the volume data is uploaded to the GPU memory as
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a 3D texture. A fragment shader program is used to implement the ray cast-

ing algorithm, working on the fragments generated by rendering a polygon

covering the screen space occupied by the volume bounding box. For each

fragment of the polygon a ray is cast. Due to the independence between the

per ray operations, and to the parallel architecture of the GPU, this opera-

tion can be done in parallel. The samples along the ray are taken using the

hardware trilinear interpolation, and composed to compute the �nal pixel

color (for more details, see section 3).

2.4.3 Texture Based vs Ray Casting Approaches

Compared with the ray casting technique, the texture based approach has

several drawbacks [10, 22]. First, it performs the evaluation of the volume

rendering integral for fragments that do not contribute to the �nal image

[24, 14] (e.g. occluded fragments). This characteristic signi�cantly increases

the amount of texture fetch operations, numerical operations, i.e. lighting

calculations, and per pixel blending operations that are executed. Due to the

in�exible nature of this algorithm, advanced acceleration techniques which

could correct this situation are hardly implementable.

Ray casting, on the other hand, is a much more �exible algorithm which al-

lows for the integration of acceleration techniques that can solve the problem

of unnecessary per fragment calculations [14, 24]. The early ray termination

mechanism which truncates the ray when the upcoming samples do not in�u-

ence the �nal result (see section 3.2), and the empty space skipping technique

[14] which skips volume regions that are considered empty are examples of

these techniques.

Another disadvantage of the texture based approach compared to the ray

casting technique is when a perspective view is applied (see Figure 5).
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Figure 5: Sampling distances in GPU volume rendering techniques. On
the left, the varying sampling distances of the texture based approaches are
shown. On the right, the constant sampling distances of the ray casting ap-
proach can be seen.

Using a texture based approach and a perspective view, the sampling

distances vary from ray to ray, introducing incoherences in the �nal image.

In contrast, ray casting maintains a constant sampling distance, therefore

avoiding visual artifacts [15].

For these reasons, the texture based techniques can be considered sec-

ondary for the implementation of a volume rendering framework, as they fail

to take full advantage of the hardware capacities.
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3 Ray Casting

Since its introduction by Kajiya and Herzen [13], ray casting became a well

known volume rendering technique. Its goal is to approximate the volume

rendering integral along each ray. These rays originate in the image plane,

and have the direction of the viewing vector (see Figure 5 in section 2.3.2).

3.1 The Ray Casting Pipeline

The ray casting pipeline can be described by the pseudo code presented in

Algorithm 1.

Algorithm 1 Ray Casting Pseudo Code

1. Ray set-up

2. Traversal loop:

2.1 Data access: get a volume sample at the current ray position

2.2 Classi�cation: apply the transfer function to the sampled value

2.3 Shading: compute the color contribution of the current sample

2.4 Compositing: add the contribution of the current sample to the �nal image

2.5 Advance ray position: go to the next position along the ray

2.6 Ray Termination: if the ray leaves the volume bounding box, or if the
threshold for the opacity is reached, the loop terminates

End loop

Two main components can be identi�ed, namely the Ray set-up and the

Traversal loop. In the Ray set-up phase, the ray direction and its entry

point in the volume are calculated according to the current viewing parame-

ters (see Figure 6). Depending on the implementation of the algorithm, the
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ray exit position, and the length of the ray can also be calculated.

Figure 6: Ray Casting Ray Set-Up.

Then, the Traversal Loop starts. This component is responsible for

traversing along the ray, collecting data samples and updating the pixel color

with the contribution of the current sample. It is composed by the following

six sub-components:

• Data Access and Interpolation. The 3D dataset is accessed at the

current ray position. The discrete 3D dataset might be reconstructed,

if the current ray position does not coincide with one of the dataset

grid points (usually interpolation is the most used �lter).

• Classi�cation. The transfer functions are applied to the sampled

value, yielding the corresponding optical properties (color and opacity).

• Shading and Illumination. Based on the optical properties of the

sample and on the illumination model, the color contribution of the

sample is calculated.
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• Compositing. The contribution of the current sample to the �nal

color of the pixel is used to update the previously accumulated color

and opacity.

• Advance Ray Position. The current ray position in incremented to

the position of the next sample.

• Ray Termination. If the ray leaves the volume bounding box or if the

threshold for opacity value is reached (see Section 3.2), the traversal

loop is terminated.

3.2 Early Ray Termination Mechanism

Early ray termination is a feature of the ray casting algorithm which consists

on truncating the light rays as soon as the volume elements further away

along the ray are occluded. The ray traversal loop can be stopped once the

accumulated opacity for the corresponding pixel reaches a certain threshold.

This introduces an error on the approximation of the volume rendering inte-

gral, but, with thresholds very close to 1 this error is negligible for the �nal

image quality [10]. A typical value used as a threshold is 0.95 and, therefore,

will be used throuought this thesis. This stopping criterion is combined with

other stopping criteria for the ray traversal loop (e.g. checking if the ray is

out of the volume bounding box).
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4 GPU Ray Casting

The basic idea of GPU Ray Casting is to implement the ray casting algorithm

(see Algorithm 1) in a fragment shader program. Multipass ray casting is an

approach used to implement a GPU ray caster. It was described in [14], by

Krüger et al., and consists on the following main steps:

• a �rst rendering pass, processed in the GPU, in which the exit point

for each ray is calculated

• a second pass, in which the entry point for each ray is obtained

• main passes 3 to N consist of sampling the volume dataset along

the ray and combine the samples to determine the pixel color. In each

pass, M steps along the ray are performed, and then an intermediate

pass is executed

• intermediate passes 3 to N, where the stop criterion is tested and

the ray is terminated in case it left the volume dataset boundaries or

if the opacity accumulated for the current pixel has reached a given

threshold

This multipass approach was �rst designed to overcome hardware limita-

tions, since early GPUs did not provide loops functionality and conditional

branches were hard to implement [10]. Therefore, the traversal of a ray was

initiated and driven by a CPU-based program. Currently, loops and condi-

tional branches are available in the instruction set of the GPU programming

languages, which permits the simpli�cation of the algorithm to two passes:

• in a �rst pass, the exit point for each ray is calculated

• in the second pass, the entry points of each ray are calculated, and

using a loop instruction the ray traversal is performed, combining the

samples collected, until the stop criterion is reached
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In the next two sections, the implementation of the multipass ray casting al-

gorithm, as well as the results obtained are described.

4.1 Implementation

The strategy to calculate the entry and exit points of the rays is to store

the volumetric dataset in a 3D-Texture and de�ne a bounding box for this

dataset. This bounding box is a cube where the color channel encodes the

3D-Texture coordinates of the volumetric dataset boundaries (which range

from 0 to 1). Rendering the front faces of the cube yields an image with

the entry position of the rays in the bounding box, encoded in color (see

Figure 7a). Drawing the back faces of the bounding box results in an image

encoding the exit position of the rays (see Figure 7b).

(a) (b)

Figure 7: Rendered front (a) and back (b) faces of the bounding box.

Subtracting the two images, shown in Figure 7, yields the lines going from

the ray start to the exit ray positions. These lines are used to calculate the

rays directions, necessary for the ray traversal step.

24



In the �rst pass of the algorithm, the back faces of the bounding box

are rendered using the OpenGL �xed functionality. The resulting image is

stored in a 2D-Texture (i.e. the exit texture). In the second pass, with the

ray casting shaders enabled, the front faces bounding box are rendered. This

will cause the GPU to receive the information of the entry points of the rays,

in the form of a color for each pixel. The GPU combines this information

with the exit points previously stored in a 2D-Texture and performs the ray

set up and ray traversal, evaluating the color for each pixel. Following is a

detailed description of the implementation.

Algorithm 2 shows the core of the CPU part of the multipass ray cast-

ing algorithm.

Algorithm 2 Multipass ray casting algorithm in the CPU.

For each frame:

1. Render the back face of the bounding box to a 2D texture
using the OpenGL �xed functionality

2. Enable the Ray Casting Shaders

3. Render the front face of the bounding box and perform the
Ray Casting using the Ray Casting Shaders

4. Disable the Ray Casting Shaders

5. Enable the OpenGL �xed functionality

It consists of a loop where, for each frame, the back face of the volume

bounding box is rendered to a 2D-Texture using the OpenGL �xed function-

ality. Then, with the ray casting fragment shader enabled (further described

in algorithms 2 and 3), the front face of the bounding box is rendered. This

way, an interpolated color for each pixel becomes available in the fragment

shader, corresponding to the texture coordinates of the ray starting point.

The shaders enter in action to calculate the color value of each pixel, sam-
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pling the volumetric dataset. Finally, the OpenGL �xed functionality is

re-enabled, and the display loop can be repeated.

To perform the second pass of the algorithm, a fragment shader program

was designed to drive the per pixel operations. The �rst task of the fragment

shader is the ray set up. It consists in �nding, for each pixel, the entry

and exit points of the ray in the volume bounding box. This information,

combined with the step size, allows to compute the ray direction, the ray

length and the step vector needed for the ray traversal. The next step is

to traverse the ray according to a given step size. The hardware built-in

trilinear interpolation is used to obtain the value of each data sample from

the 3D-Texture which stores the volume dataset. Finally, the color for each

pixel is calculated by compositing the samples obtained.

The structure of the fragment shader is divided in two parts. The �rst

one, called the ray set up, is described in Algorithm 3.

Algorithm 3 Ray Set Up in the fragment shader program.

Ray Set Up:

1. Get the ray exit position from the exit texture
exitRayPosition = getValue(current pixel position, exit texture);

2. Get the ray starting position from the color of the current pixel
startRayPosition = currentPixelColor;

3. Compute the maximum ray length, which can be used to terminate the ray
rayLine = exitRayPosition - startRayPosition;
maxRayLength = length(rayLine);

4. Compute the step vector
normalizedRay = normalize(rayLine);
stepVector = normalizedRay * stepSize;

For each pixel, the exit and entry points of the ray in the bounding box

are fetched (instructions 1 and 2 respectively). In step 3, the line from the

entry point to the exit point is calculated (rayLine) and used to compute

26



the maximum ray length (maxRayLength). The maximum ray length is used

later in the ray traversing loop (described in Algorithm 4) to test whether

to terminate the loop or not. Finally, in step 4, a step vector is calculated

(stepVector). The step vector is used to increment the sampling position during

the ray traversal. Its length is used to accumulate the total length traversed

so far.

The second part of the fragment shader program, called ray traversal, is

the one that actually �shoots� the ray, i.e. collects the samples and composites

them into the �nal pixel color (see Algorithm 4).

Algorithm 4 Ray traversal in the fragment shader program..

Ray Traversal:

1. Initialize accumulation variables
accumulatedColor = (0.0, 0.0, 0.0);
accumulatedAlpha = 0.0;

2. Ray traversal loop
while(currentRayLength < maxRayLength && accumulatedAlpha < 0.95)

2.1. Get a volume sample
sample = getSampleValue(volume texture, current ray position);

2.2. Get the optical properties for the sample
colorSample = getColorValue(color transfer function, sample);
alphaSample = getAlphaValue(opacity transfer function, sample) * stepSize;

2.3. Update the Volume Rendering Integral
accumulatedColor += (1.0 - accumulatedAlpha) * (colorSample * alphaSample);
accumulatedAlpha += (1.0 - accumulatedAlpha) * alphaSample;

2.4. Compute the next sample position
currentRayPosition += stepVector;

2.5. Compute the ray length traversed
currentRayLength += stepSize;

3. Attribute the accumulated color and opacity to the pixel
pixelColor = accumulatedColor;
pixelAlpha = accumulatedAlpha;
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It is assumed that the same amount of light reaches every point inside

the volume. The �rst step (1) is to initialize the variables where the color

and alpha values will be accumulated (accumulatedColor and accumulatedAlpha

respectively). In step 2, the ray traversal loop starts. The loop starts by

getting a volume sample using the 3D hardware built-in interpolation (step

2.1), corresponding to the �rst component of the volume rendering pipeline

described in section 3.1 (data access and interpolation). In step 2.2, the shad-

ing and illumination phase of the volume rendering pipeline is performed: the

value is classi�ed using the transfer functions, yielding a color and an alpha

values (colorSample and alphaSample). Notice that, to compute the volume ren-

dering integral, the alpha value is multiplied by the step size. That is because

the opacity value depends on the sampling distance (given by stepSize). The

volume rendering integral is updated in 2.3 (compositing phase in the volume

rendering pipeline), where the color and alpha contributions of the current

sample are incorporated according to Equation 2. The sampling position

and the traversed ray length are refreshed in steps 2.4 and 2.5 respectively,

accomplishing the advance ray position phase. This loop will be repeated

till the ray exceeds the previously evaluated maximum ray length, or till the

maximum opacity value is reached (ray termination component in section

3.1, implemented in the loop condition in step 2). The second loop condi-

tion (accumulatedAlpha < 0.95) actually implements the early ray termination

mechanism described in section 3.2. Finally, after the loop termination, the

accumulated color and opacity are displayed (step 3).

4.2 Results and Discussion

The objective of the tests described in this section is to verify the performance

of the multipass ray casting implemented. The performance was evaluated by

measuring the average frames per second (fps) obtained when the volume

makes a complete 360o rotation. This procedure was repeated 5 times, and

the �nal result was obtained by computing the average of the 3 best measures.
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All the results obtained in this thesis follow this description.

The results allow to evaluate how the rendering time is a�ected by the

opacity of the volume rendered and by the step size used. The in�uence of

the step size value in the quality of the rendered image is also discussed.

A dataset with a dimension of 512×512×246 (64.487.424 voxels), requir-

ing 61.5 MB of GPU memory was rendered to a 1000× 1000 viewport. The

machine used to execute the application is equipped with an ATI Radeon

HD 3450 GPU with 1024 MB of memory and OpenGL 2.1. Three di�erent

opacity transfer functions were used. Each of them, when applied to the

dataset, yields a volume with a di�erent opacity level (high, medium and

low). The shaders were implemented using the GLSL language.

In Figure 8, the number of steps processed per ray, for rendering the

volume with each of the three opacity levels, can be seen.

(a) (b) (c)

Figure 8: Comparison of the number of steps processed per ray for di�erent
opacity values. A top view was applied. The number of steps is encoded
in gray scale: black corresponds to the maximum number of steps possible,
according to the step size, and white corresponds to zero steps performed.
Image (a) shows number of steps for the most transparent volume. Images
(b) and (c) show the number of steps for the volumes with medium and high
opacity, respectively.

For the low opacity transfer function (see Figure 8a), the maximum num-

ber of steps possible is often achieved (black). In Figure 8b and Figure 8c,
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the increasing opacity yields �whiter� parts due to a decrease in the number

of steps performed per ray traversal. This decrease is justi�ed by the use of

the early ray termination mechanism (see section 3.2): the more opaque the

volume is, the earlier the maximum opacity value will be achieved during ray

traversal and, consequently, the sooner the ray will be truncated. Figure 9

shows the rays which were early terminated for the three di�erent volume

opacities.

(a) (b) (c)

Figure 9: Comparison of the early ray termination for the three volume
opacities tested. A top view was applied. The rays early terminated due
to the achievement of the maximum opacity value are represented in yellow.
Image (a) corresponds to the most transparent volume. Images (b) and (c)
show the result for the medium and high opacity volume datasets respectively.

It can be seen that in the most transparent volume (Figure 9a), the maxi-

mum opacity value was never reached during ray traversal, and therefore none

of the pixels is marked yellow. In Figure 9b, with the increased opacity of

the volume, some rays are early terminated, depending on the opacity of the

structures traversed by the ray. In Figure 9c, due to the high opacity of the

volume, many of the rays are terminated before leaving the volume bounding

box. The in�uence of the opacity of the volume in the �nal rendering time,

and consequently, the in�uence of the early ray termination mechanism, will

be appreciated later in Table 1.
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The variation of the quality of the �nal image due to the step size value

is shown in Figure 10.

(a) (b)

(c) (d)

Figure 10: Images obtained for di�erent step size values, when applying a
front view. In (a) a step size of 0.050, resulting in a maximum of 34 samples
per ray was used. Image (b) shows the result for a step size of 0.025, with
a maximum of 69 samples per ray. Images (c) and (d) were rendered with a
step size of 0.015 (115 samples) and 0.005 (346 samples) respectively.

31



It can be observed that the quality of the �nal image is dependent on

the step size. Using a big step size results in an undersampled, strongly

aliased image, with wood-grain e�ect (see Section 5). As the step size is

decreased, and consequently, the number of samples per ray increases, the

rendered image has a higher quality. Figures 10c and 10d show this behavior.

However, as we can see in Table 1 high quality may cause loss of interactivity.

Step Size
0.250 0.125 0.050 0.025 0.010 0.005

low opacity 56 43 24 13 6 4
medium opacity 56 43 25 14 7 4
high opacity 57 45 28 16 8 5

low quality medium quality high quality

Table 1: Rendering speed in frames per second achieved for the three volumes
rendered, and di�erent step sizes.

Table 1 shows the average framerate and the quality achieved, with 6

di�erent step sizes, for each of the three volume opacities tested, when a

complete rotation is applied to the dataset. The results show that for small

step sizes, the rendering speed decreases dramatically. This can be seen by

comparing the 25 fps framerate for the medium opacity volume with a step

size of 0.050, with the 7 fps yielded for a step size of 0.010. As expected,

the results also demonstrate that the number of frames per second (fps)

increases with more opaque volume datasets, due to the early ray termination

mechanism implemented.
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5 Stochastic Jittering

The use of a large step size which allows for a faster rendering time, can cause

aliasing in the �nal image, which results in visible artifacts named wood-grain

e�ects. These e�ects can be appreciated in Figure 10a. Stochastic jittering is

a technique used to hide wood-grain e�ects by introducing a variation in the

starting position of the rays, along the viewing direction [10]. This causes

the aliasing to be substituted by noise.

The variation introduced causes the samples along the ray to be o�set by

a random number ranging from 0 to the step size value. The samples along

a ray have the same o�set, while di�erent rays are likely to have assigned

a di�erent jitter value. Consequently, the coherence between pixels which

causes wood-grain e�ects is suppressed by noise.

5.1 Implementation

The implementation of the jittered multipass volume rendering does not dif-

fer much from the multipass ray casting algorithm described in section 4.1

(Implementation of the Multipass Ray Casting). The CPU part of the algo-

rithm, di�ers in that a 2D-Texture with size 32 × 32 is created, containing

a random number at each position. This texture is uploaded to the graph-

ics card memory, during the application set up phase, and is later used by

the fragment shader as a source of random numbers to perturb the starting

positions of the rays.

In the fragment shader program, the ray set up stage di�ers from the

implementation described in section 4.1, Algorithm 3. In the ray set-up of

the jittered version, a variation ranging from 0 to the current step size value

is introduced in the ray starting position. This value is calculated based on

the 2D-Texture holding the random numbers, and added to the ray starting

position. The ray traversal stage remains unchanged. Algorithm 5 shows the

ray set up stage for the Jittered multipass ray casting.

33



Algorithm 5 Ray Set Up for the Jittered Multipass Ray Casting.

Ray Set Up:

1. Get the ray exit position from the exit texture
exitRayPosition = getValue(current pixel position, exit texture);

2. Get the ray starting position from the cube color already interpolated
startRayPosition = currentPixelColor;

3. Compute the ray line
rayLine = exitRayPosition - startRayPosition;

4. Compute the step vector
normalizedRay = normalize(RayLine);
stepVector = normalizedRay * stepSize;

5. Introduce an o�set in the ray starting position along the ray direction
o�set = getRandomNumber(jitterTex, exitFragPosition * textureSize));
startRayPosition +=o�set * stepSize * normalizedRay;

6. Compute the maximum ray length, which can be used to terminate the ray
maxRayLength = length(rayLine) - (o�set * stepSize);

The sequence of steps 1 to 4 yields the normalized ray direction, the step

vector and its length, necessary to perform the ray traversal (for more details,

see section 4.1). In step 5, an o�set based on a random number extracted

from the jitter texture is calculated and added to the ray starting position.

The ray set up stage ends with the computation of the new ray length (step

6), and the ray traversal stage is ready to be executed.

5.2 Results and Discussion

In Figure 11, a comparison of the results obtained by rendering the volume

dataset with the medium opacity transfer function (see section 4.2, Figure

6b) with multipass ray casting and jittered multipass ray casting is shown. The

step size used was 0.025.
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(a) (b)

Figure 11: Comparison of the images obtained when rendering the volume
dataset, with medium opacity, with multipass ray casting (a) and with jittered

multipass ray casting. A step size of 0.025 was used.

The image resulting from rendering with a stochastic jitter (Figure 11b)

does not contain the regular patterns which can be observed in the original

image (Figure 11a). The patterns are substituted by noise caused by the

random variation introduced in the ray starting positions. For a human

being, the noise is easier to tolerate than the regular patterns present in the

non jittered image. As a conclusion, the result obtained with the jittered ray

casting is visually more acceptable.

Due to the increase of the per fragment operations, rendering a volume

with jittered multipass ray casting is slower than using the multipass ray cast-

ing technique. In Table 2 a comparison of the average framerate for the

medium opacity volume, obtained when applying a complete rotation to the

volume, can be seen. Di�erent step sizes were used, and combined with

jittered and non jittered ray set up.
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Step Size
0.250 0.125 0.050 0.025 0.010 0.005

jittered 33 23 16 11 6 4
non jittered 56 43 25 14 7 4

Table 2: Comparison of the fps obtained when rendering the medium opacity
volume with jittered multipass ray casting (jittered) and with multipass ray

casting (non jittered), for di�erent step sizes.

The results in Table 2 show that the jittered version is consistently slower

than the non jittered version. But the decrease of the number of fps for the

jittered version is not too high regarding the improvement. For example, for

the images shown in Figure 5 (rendered with a step size of 0.025), the di�er-

ence between the two versions is of 3 fps. As the step size decreases, the ray

set up overhead introduced in the jittered multipass ray casting becomes less

relevant for the rendering time and the results obtained with both techniques

converge (see for example the results for a step size of 0.010 and 0.005, in

Table 2).

The di�erence in the framerate registered with both techniques in Table

2 re�ects the time for accessing the texture containing the random numbers,

and for introducing the o�set for the ray (see step 5 in Algorithm 4). This

time di�erence is constant per pixel, and can be observed in Table 3, yielded

by converting the results shown in Table 2 from fps to seconds.

Step Size
0.250 0.125 0.050 0.025 0.010 0.005

jittered 0.030 0.043 0.063 0.091 0.167 0.250
non jittered 0.018 0.023 0.040 0.071 0.143 0.250

Table 3: Comparison of the time per frame obtained (in seconds) for ren-
dering the medium opacity volume dataset with jittered multipass ray cast-

ing (jittered) and with multipass ray casting (non jittered), for di�erent step
sizes.
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Table 3 shows that the di�erence in the time needed to compute a frame

for each of the techniques is constant. Excluding the result obtained for a

step size of 0.005, the di�erence is always close to 20 ms. The result for the

smallest step size tested is explained for the truncation used to calculate the

fps in Table 2.
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6 Empirical Visualization Methods

The Ray Casting technique can be used for alternative visualization tech-

niques which might be useful to understand the information contained in the

3D dataset, rather than to evaluate the volume rendering integral. Examples

of these alternative techniques are the X-Ray and the Maximum Intensity

Projection (MIP) compositing methods, often applied in medical imaging

applications [18, 10]. These two techniques compute the �nal image as de-

scribed following:

• X-Ray. The samples along each ray are summed up, resulting in a

�nal image close to an X-Ray image.

• Maximum Intensity Projection. For each pixel, only the sample

with the highest value along the ray is taken into account for the pixel

color.

In this section, the implementation of the X-Ray and MIP compositing meth-

ods is described, along with the results obtained and their discussion.

6.1 X-Ray

The X-Ray compositing technique consists of directly accumulating all the

sample values along each ray. For each sample taken, its opacity and color

(in gray scale) are directly given by the sample value, yielding a color scheme

where the most opaque values are colored in white. This leads to a �nal

image which looks as if it was composed by X-Rays.

6.1.1 Implementation

In Algorithm 6 the ray traversal scheme used to implement the X-Ray com-

positing method is presented. It is assumed that the ray set-up phase was

already executed, yielding all the information necessary to perform the ray
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traversal. The ray set-up phase can be either jittered (Algorithm 5) or non-

jittered (Algorithm 3).

Algorithm 6 Ray Traversing for X-Ray compositing.

Ray Traversal:

1. Initialize accumulation variables for color and opacity at zero

2. Ray traversal loop
while(currentRayLength < maxRayLegth && accumulatedAlpha < 0.95)

2.1. Get a volume sample
sample = getSampleValue(volume texture, current ray position) * stepSize;

2.2. Update the accumulated color and opacity
accumulatedColor += (1 - accumulatedAlpha) * volumeDataSample;
accumulatedAlpha += (1 - accumulatedAlpha) * volumeDataSample;

2.3. Compute the next sample position

2.4. Compute the ray length traversed

3. Attribute the accumulated color and opacity to the pixel

The �rst step in Algorithm 6 consists in initializing the variables where

the color and the opacity values are accumulated (1.). The ray traversal

loop is then executed until the ray is completely traversed, or until the early

ray termination mechanism (see Section 3.2) truncates the ray (2.). In each

cycle of the ray traversal, the volume is sampled at the current ray position

(2.1), and the sampled value is weighted by the step size. The accumulated

color and opacity are updated, based on the sample value (2.2). The sample

position is incremented to the next position in the ray (2.3), and the total

ray length traversed so far is recomputed (2.4). Finally, once the loop is

terminated, the accumulated color and opacity are attributed to the pixel

(3.).
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6.1.2 Results and Discussion

In Figure 12b, an image rendered with the X-Ray technique is shown. Figure

12a shows the same perspective of the dataset rendered with the composite

technique presented in Section 4.

(a) (b)

Figure 12: The same perspective of the dataset rendered with the composite
(a) and X-Ray (b) techniques. Both images were obtained with a step size
of 0.010.

The direct accumulation of the samples along the ray results in a �nal

image is similar to an X-Ray image. In Table 4, the average framerate

obtained when applying a complete rotation to the volume using the X-Ray

compositing method, is shown.
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Step Size
0.250 0.125 0.050 0.025 0.010 0.005

jittered 36 28 19 16 11 7
non jittered 64 50 34 20 12 7

Table 4: Comparison of the fps obtained for rendering the volume dataset
with the X-Ray compositing method. The volume was rendered with jittered
and non jittered ray set-up, and di�erent step sizes.

The results show that the performance of this technique is in line with

the results achieved previously (e.g. see Table 2), with the rendering time

increasing as the step size decreases. The simplicity of the operations during

the ray traversal causes the time to render an image with the X-Ray com-

positing method to be less than the one needed to evaluate of the volume

rendering integral (e.g. Table 2).

6.2 MIP

Maximum Intensity Projection is a popular compositing mode that searches

for the highest sample value along a ray. The main idea is to traverse the ray,

and attribute the value of the highest sample found, in gray scale, to the pixel

color. MIP is mostly used to display bone structures and contrast enhanced

vascular structures (vessels), where the measured intensity is signi�cantly

higher than the regular tissue value [18, 10].

6.2.1 Implementation

Algorithm 7 presents the ray traversal for the MIP compositing method.
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Algorithm 7 Ray Traversal for Maximum Intensity Projection.

Ray Traversal:

1. Initialize the variable holding the highest sample value
maxSample= 0.0;

2. Ray traversal loop
while(currentRayLength < maxRayLegth)

2.1. Get a volume sample

2.2. Store the current sample value if it has the highest value so far
if (sample > maxSample)
maxSample = volumeDataSample;

2.3. Compute the next sample position

2.4. Compute the ray length traversed

3. Attribute the color in gray scale, and set the opacity to 1 (maximum)
pixelColor = (maxSample, maxSample, maxSample);
pixelAlpha = 1.0;

The �rst step of the algorithm is to initialize the variable where the maxi-

mum sampled value is stored. Then, the traversal loops is executed until the

ray in completely traversed (step 2.). For each loop, the volume is sampled

at the current position (2.1). If the sample value is higher than the maximum

sample value taken so far, the variable maxSample is refreshed with the current

sample value (2.2). The sample position is incremented to the next position

on the ray, and the total ray length traversed so far is computed (2.3 and 2.4).

The loop is repeated until the whole ray is traversed. At last, after the loop

termination, the accumulated color and opacity are attributed to the pixel

(3.).
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6.2.2 Results and Discussion

Figure 13b show the result of rendering the dataset using the MIP tech-

nique. In Figure 13a, the same perspective of the dataset rendered with the

composite technique (see Section 4) is shown.

(a) (b)

Figure 13: The same perspective of the dataset rendered with the composite
(a) and MIP (b) techniques. Both images were obtained with a step size of
0.010.

The bone and vascular structures present in the dataset were emphasized

by the MIP technique. A drawback of MIP is that it does not provide the

viewer with depth information of the structures that are shown, since no

attenuation information is used. This creates the risk of misinterpreting the

spatial relationships of di�erent structures.

Table 5 shows the average framerate achieved while rendering a complete

rotation of the dataset using the MIP compositing technique.
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Step Size
0.250 0.125 0.050 0.025 0.010 0.005

jittered 37 29 21 18 11 7
non jittered 66 54 37 22 12 7

Table 5: Comparison of the framerates obtained for rendering the volume
dataset with the MIP compositing method. The volume was rendered with
jittered and non jittered ray set-up, and di�erent step sizes.

The framerates achieved are very similar to the ones from X-Ray, because

both techniques have a similar complexity. With the decreasing of the step

size the rendering time increases.
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7 Rendering Segmented Datasets

When visualizing a 3D dataset with volume rendering techniques, it is com-

mon that the viewer wants to identify distinct objects of interest present in

the dataset. Some of these objects can be visually di�erentiated by using a

well tuned transfer function, which assigns di�erent visual properties to the

scalar values that characterize each of them. Nevertheless, there are cases

where di�erent areas of interest are assigned the same scalar value by the CT

or MRI scan (e.g. parts of the same organ), causing them to be visually un-

di�erentiable using a single transfer function. The result is that the user will

not distinguish between those areas of interest when the dataset is rendered.

An approach to solve this problem is to identify and tag the di�erent

regions or structures present in the dataset, in a process called segmentation

[9]: each voxel of the original dataset is tagged as belonging to an object con-

tained in the volume. During the rendering process this information is used

to visualize each object with di�erent optical properties, by using a distinct

transfer function for each of the objects. This allows for the di�erentiation

of voxels that belong to distinct objects but that have the same scalar value.

The segmentation information can be represented in two major ways:

• using a binary segmentation mask [11]

• using a second volume dataset, usually called object ID volume [9]

The �rst option consists in representing each object by a single binary seg-

mentation mask. This mask contains the value 0 for the voxels which do

not belong to the current object, and one for the voxels which are part of

it. During rendering time, this mask is used to determine whether or not

the current voxel belongs to the given object. This approach requires several

volumes (as many as the number of objects existent in the dataset) to be

uploaded to the GPU memory in the form of 3D textures. Consequently, it

is not suitable for GPU Volume Rendering, as it clearly con�icts with the

limited amount of texture memory available in the graphic card.
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The alternative is to use a single object ID volume which stores, for

each voxel, the ID of the object it belongs to. The objects are enumerated

consecutively starting with one. A single 8 bit 3D texture is enough to

store the info of up to 255 objects, making this approach more suitable to

be used for GPU Volume Rendering. During rendering time, the object

membership of a given voxel is determined, and a speci�c transfer function

is used according to it.

Several programs specialized on the manipulation of biomedical images

(e. g. Amira) can be used to segment the dataset and make the segmen-

tation information available for the ray casting application. However, this

subject is out of the scope of this thesis and, therefore, it is assumed that

the segmentation information is already available.

7.1 Boundary Interpolation

To obtain the object ID for a given fragment, the nearest neighbor interpola-

tion can be used. Nevertheless, this interpolation causes artifacts in the �nal

image [9] (see Figure 16a), making the object boundaries easily discernible as

individual voxels. Using the hardware trilinear interpolation is not a valid so-

lution for this problem. If three or more objects are contained in the dataset,

the result of the interpolation might be incorrect. For example, in case there

are three objects, numbered 1, 2 and 3, for a fragment that is placed at the

border between objects 1 and 3, the value 2 would be attributed, instead of

1 or 3, which would be the correct result.

The solution to this problem was presented primarily by Tiede et al in

[25] and further developed by Hadwiger et al in [9]. It consists of interpo-

lating the object ID texture, using nearest neighbor interpolation, at the

current fragment position, yielding σ, the number of the object the fragment

belongs to. Then, the 8 corner points on a cube surrounding the fragment

are also sampled using the nearest neighbor interpolation. For each of the

surrounding points, if the membership value is σ, their value is mapped to 1,
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otherwise it is mapped to 0. The value of the current fragment is trilinearly

interpolated in the fragment shader, based on the values mapped for the 8

surrounding points. If the computed value is higher than 0.5, then the trans-

fer function corresponding to the object σ is applied, otherwise the fragment

contribution to the �nal image is discarded.

7.2 Implementation

It was decided that the segmentation information should be stored in an

8 bit 3D texture, for the reasons explained previously in Section 7. Each

of the objects present in the dataset is assumed to have its own transfer

function. Instead of storing the transfer function of each object separately,

as 1D textures, these are packed into a single 2D texture. The 2D transfer

function is indexed by the ID number of the segment on the y-axis, and by the

volume data scalar values on the x-axis. The signature of such a function is

(r, g, b, a) = f(segID, sampleV alue), where (r, g, b, a) is the tuple containing

the optical properties of the sample with value sampleV alue, which belongs

to segment segID. Figure 14 shows this indexing strategy.

Figure 14: A 2D texture containing the color transfer function for all the
objects present in the dataset.

The use of a single 2D transfer function allows to keep the 1D transfer

functions of each object in a single texture, independently of the number of
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objects existent in the dataset. However, the size of the texture depends on

the number of objects. This procedure is used for both the color and the

opacity transfer functions.

The implementation of the segmented volume rendering (see Algorithm 8)

was based on the composite ray traversal algorithm presented in Algorithm

4, Section 4.1.

Algorithm 8 Ray Traversal for Rendering Segmented Datasets.
Ray Traversal:

1. Initialize sampling and accumulation variables

2. Ray traversal loop

2.1 Get a volume sample

2.2 Get the object to which the current sample belongs
membership = getMembershipValue(membership texture, current ray position);

2.3 Use trilinear interpolation to determine if the current sample is rejected or not
reject = interpolation(current ray position, membership);

2.4 In case the current sample is not rejected
if(reject == false)

2.4.1 Compute the object index to access the 2D transfer function
membershipIndex = membership + (0.5/numberOfObjects);

2.4.2 Get the optical properties of the sample
colorSample = getColorValue(color transfer function,

volumeDataSample, membershipIndex);

alphaSample = getAlphaValue(opacity transfer function,
volumeDataSample, membershipIndex) * stepSize;

2.4.3 Update the VR integral

2.5 Compute the next sample position

2.6 Compute the ray length traversed

3. Attribute the accumulated color and opacity to the fragment
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As in the traditional composite method, the main idea is to traverse the

volume data and, for each sample, get the respective color and opacity. The

samples collected along a ray are then composited to obtain the �nal pixel

color. However, Algorithm 8 has two major di�erences when compared to

the compositing method presented in Algorithm 4. The �rst is that the

current sample only contributes to the �nal pixel color if it belongs to the

current object set (stored in membership), as explained in Section 7.1. This

binary decision is taken based on trilinear interpolation implemented in the

fragment shader (steps 2.3 and 2.4). The other di�erence refers to the access of

the transfer functions: to correctly index the y-axis of the transfer function,

the membershipIndex value is computed in step 2.4.1, based on the number of the

current object set (membership) and on the total number of objects existing in

the dataset (numberOfObjects). Then, in step 2.4.2, the membership value, along

with the value of the current volume sample, collected in step 2.1, are used

to get the optical properties of the sample. The volume rendering integral is

updated accordingly in 2.4.3.

7.3 Results and Discussion

The segmentation information was represented by an object ID volume with

the same resolution of the original 3D dataset. The object ID volume iden-

ti�es four main areas of interest (see Figure 15b):

• all the voxels which belong to the empty space surrounding the ab-

domen were tagged with 0;

• 1 identi�es the voxels that form the abdomen (in red and white in

Figure 15b);

• 2 is the value of the aorta artery (in blue in Figure 15b);

• 3 tags the pathological aorta tissue (in green in Figure 15b);
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Figure 15 shows a comparison of rendering a segmented dataset with and

without segmentation information.

(a) (b)

Figure 15: Comparison of the volume rendered with (a) and without (b)
segmentation information.

It can be seen, in Figure 15b, that the voxels that have the same scalar

value but belong to di�erent objects of interest are now visually di�erenti-

ated using multiple transfer function and the segmented data. This contrasts

with the result in Figure 15b, where a single transfer functions and no seg-

mentation information were used.

Figure 16 depicts the in�uence of boundary �ltering on the �nal result.
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(a) (b)

Figure 16: Object boundaries with voxel resolution (a) versus object bound-
aries determined per-fragment with trilinear interpolation (b).

Figure 16a was rendered using boundaries with voxel resolution. When

compared to Figure 16b, rendered with boundaries obtained at the pixel

resolution, more artifacts resulting from boundary interpolation are visible

in Figure 16a. These are specially noticeable in the pathological aorta tissue

(in green in Figure 16). Once again, the improvement in the quality of the

�nal image has a cost on the framerate achieved, as it can be seen in Table

6.

Step Size
0.250 0.125 0.050 0.025 0.010 0.005

voxel resolution 37 29 21 16 8 5
pixel resolution 24 18 11 6 3 2

Table 6: Comparison of the framerates obtained for rendering the volume
dataset with boundaries with voxel and with pixel resolution. The volume
was rendered with jittered ray set-up, and di�erent step sizes.
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When rendering a complete rotation of the dataset with the per fragment

boundary interpolation, the framerate is consistently lower than when the

voxel boundary resolution is used. This is due to the computational weight

of the interpolation mechanism implemented in the fragment shader, which

requires eight additional memory accesses to the object ID volume texture

and some extra computations.
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8 Interactive Highlighting of Objects of Inter-

est

When visualizing segmented datasets, the object of interest on which the

user wants to focus can be occluded by other objects in the dataset. A

possible solution for this problem is to set a low opacity for the occluding

objects, by manually changing their transfer function. However, this would

require expertise from the users on the scene setting, i.e. knowing which

objects occlude the object of interest. Moreover, such manual tuning could

take up to several minutes, which can be considered long and tedious for an

interactive user interface.

In this section, a solution to this problem is proposed. The system is

endowed with a functionality which enables to quickly highlight speci�c seg-

mented objects, without having to manually check for the objects that are

occluding the area of interest, and having to adapt their transfer functions.

Shortening the highlight process, making it semi-automatic, can also help

the user to be aware of the context in which that same object is placed in, by

being able to see the change, from the image with no highlight to an image

where a speci�c object is highlighted.

The main idea is to allow the user to pick the objects of interest with

the mouse. Upon a mouse command, one or more objects located below the

mouse cursor are highlighted. For this, a highlight detection pass is executed

before the ray casting pass computes the �nal image. In the highlight pass

a ray is shot from the cursor position and, using the GPU, the IDs of the

objects traversed are collected (see Figure 17).
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Figure 17: Extraction of the membership the samples taken by the highlight
ray.

The result is written into a texture, which is read back by the CPU.

This information is then used in the ray casting pass to highlight objects

present in the dataset, according to some additional criteria. For example,

to highlight the nth object which is traversed by the ray, or to highlight all

the objects traversed by the ray. The actual mechanism to select a given

object is application dependent and out of the scope of this thesis, which

focuses on GPU and rendering functionalities.

8.1 Implementation

The strategy used to implement the highlight mechanism described above

is to render a line, corresponding to the ray, into a texture. The highlight

ray is mapped to this texture and, therefore, the number of pixels of this

texture will determine the resolution of the highlighting ray. Each pixel

corresponds to a sampling point along the ray and, after the execution of

the highlight pass, they will hold the membership of the object to which the

sample belongs.
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The display loop presented in Section 4.1, Algorithm 2, which drives the

operations performed per frame, had to be adapted to execute the highlight-

ing detection pass before the ray casting rendering (see Algorithm 9).

Algorithm 9 Ray Casting algorithm from the OpenGL side.
For each frame:

1. Render the back face of the bounding box to a 2D texture
using the OpenGL �xed functionality

2. Render the front face of the bounding box to a 2D texture
using the OpenGL �xed functionality

3. if (Highlight Click)

3.1. Enable the Highlight Shaders

3.2. Render the line corresponding to the highlight ray to a 1D texture
using the Highlight Shaders

3.3. Disable the Highlight Shaders

4. Enable the Ray Casting Shaders

5. Perform the Ray Casting using the Ray Casting Shaders

6. Disable the Ray Casting Shaders

7. Enable the OpenGL �xed functionality

The �rst modi�cation is the rendering of the front face to a 2D texture

(step 2). The front face colors, which encode the ray starting positions, can

be passed to the ray casting shaders using the vertices of the bounding box

surrounding the volume, and then be used directly by the ray casting shader.

However, in the highlight pass, a line corresponding to the ray is drawn,

instead of the volume bounding box. This requires the front face to be also

rendered and stored in a 2D texture. It is then passed to the highlight shader

in order to determine the ray starting position. The second modi�cation is

the execution of a highlight pass upon a user request, triggered by a mouse
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action (step 3). It consists of enabling the highlight shaders (step 3.1), render

the highlight ray to a 1D texture (step 3.2), and disable the highlight shaders

(step 3.3). This sequence of three steps detects the IDs of the objects which

are traversed by the highlight ray, and stores them in a 1D texture. This

information is used in the ray casting pass.

The highlight shader is described below.

Algorithm 10 Fragment shader responsible for detecting the ID informa-
tion.

At the current sampling point of the ray:

1. Get the ray exit position from the exit texture
exitRayPosition = getValue(current pixel position, exit texture);

2. Get the ray starting position from the color of the current pixel
startRayPosition = getValue(current pixel position, entry texture);

3. Compute the ray length
rayLine = exitRayPosition - startRayPosition;

4. Compute the step vector
stepVector = rayLine / textureSize;

5. Attribute the current ray position
vec3 currentRayPosition = startRayPosition.xyz + pixelIndex * stepVector;

6. Get a volume sample
membership = texture3D(membershipTexture, currentRayPosition).a;

7. Write back the membership in the texture
pixelAlpha = membership

Algorithm 10 is executed in parallel for each sample of the highlight ray,

once the line corresponding to the ray is drawn by OpenGL (step 3.2, Algo-

rithm 9). In steps 1 and 2, the ray entry and exit positions are computed,

by fetching the colors which correspond to the pixel where the user required

the highlight ray in the front and back face textures. Steps 3 and 4 yield the
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stepVector, terminating the ray set up phase. Notice that the stepVector, which

contains the distance between two consecutive samples, is computed by di-

viding the rayLine for the number of pixels contained in the ray 1D texture

(textureSize). The sampling position corresponding to the current fragment is

computed in step 5: to the ray starting position, the distance from the ray

starting position to the current sampling position is added. This distance

is obtained by multiplying the index of the current pixel (which can range

from 1 to textureSize), by the stepVector. Using the current ray position, the

membership of the current sampling position is fetched, in step 6, from the

object ID volume. At last, in step 7, the membership is written to the 1D

texture holding the �nal result.

The ray traversal of the composite fragment shader, presented in Algo-

rithm 8, Section 7.2, was also modi�ed to highlight the selected objects by

varying their color and opacity.
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Algorithm 11 Changes made to the composite fragment shader, to support
objects highlight.
Ray Traversal:

1. Initialize sampling and accumulation variables

2. Ray traversal loop

(...)

2.4 In case the current sample is not rejected by the boundary interpolation

2.4.1 Compute the object index to access the 2D transfer function
membershipIndex = membership + (0.5/numberOfObjects);

2.4.2 Get the optical properties of the sample
colorSample = getColorValue(color transfer function,

volumeDataSample, membershipIndex);

alphaSample = getAlphaValue(opacity transfer function,
volumeDataSample, membershipIndex) * stepSize;

2.4.3 if (highlight current fragment)
colorSample *= enhancementFactor;
alphaSample *= enhancementFactor;

2.4.4 else (fade current fragment)
colorSample *= attenuationFactor;
alphaSample *= attenuationFactor;

2.4.3 Update the VR integral

During the ray traversal loop, if the contribution of the current sample is

not rejected by the boundary interpolation (step 2.4), its color and opacity

are fetched from the textures containing the transfer functions (in steps 2.4.1

and 2.4.2 like in Algorithm 8). The highlight is then performed: if the current

sample is to be highlighted, then its color and opacity samples are enhanced

(step 2.4.3), otherwise, the color and opacity are attenuated (step 2.4.4).
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8.2 Results and Discussion

The dataset used to test the highlight mechanism was identical to the one

used in Section 7 (dimensions 512 x 512 x 246), but with a di�erent trans-

fer function. An object ID dataset with the same resolution as the origi-

nal dataset, containing segmentation information, was also used. The aorta

artery, and the pathological aorta tissue, are represented by the transfer func-

tion in yellow and blue respectively. The abdomen, mainly composed of bone

and organs, is represented in white and red (see Figure 18a).

During the visualization of the segmented dataset, the shooting of a high-

light ray was requested on the pixel where the mouse cursor was placed (see

Figure 18a). The highlight ray detected three objects while traversing the

volume: the abdomen, the aorta artery, and the pathological tissue, by this

order. Based on this information, it was then requested that each of the

objects was highlighted individually, by the order of detection. The result

is depicted in Figures 18b, 18c, and 18d. In Figure 18b, the abdomen is

highlighted. Figure 18c shows the highlighting of the aorta artery and, in

Figure 18d, the focus is put on the pathological aorta tissue. A ray cast-

ing step size of 0.005 was used, as well as per pixel boundary interpolation

and jittered ray set up. The resolution of the highlight ray used was 887, the

maximum number of voxels which can be traversed in the current dataset .

The attenuation and increasing factors used (see Algorithm 11) were 0.3 and

1.5 respectively.
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(a) (b)

(c) (d)

Figure 18: Highlighting di�erent objects of interest.

The results show that the mechanism implemented is e�ective in detecting

and highlighting objects of interest which are placed in the direction of the
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pixel where the highlight ray is requested. When comparing Figure 18a with

Figure 18d, it is possible to realize that the mechanism allowed the user to

focus on an occluded object. In the former, the pathological tissue (in blue)

is partially occluded by the aorta artery (in yellow), making it di�cult to

distinguish the contours of the object. In the latter it is possible to see more

clearly the extent of the pathological tissue. In Table 7, the average fps

achieved using the highlight mechanism are shown.

Ray Casting Step Size
0.250 0.125 0.050 0.025 0.010 0.005

highlight mechanism 24 18 11 6 3 2
no highlight mechanism 24 18 11 6 3 2

Table 7: Comparison of the framerates obtained for rendering the volume
dataset with object highlight, with boundaries at pixel resolution. The vol-
ume was rendered with jittered ray set-up, and di�erent step sizes.

These results show that the overhead of the highlight mechanism in the

composite fragment shader is negligible, as the results are identical to those

achieved without highlight, shown in the bottom line (the results in this line

were previously presented in Table 6, Section 7.3).

The scope of this section is to state the development of a mechanism

capable of using the GPU for detecting the segmented objects placed in the

direction of a given pixel. However, further investigation can be done about

how to use the information produced by the highlight pass. For example,

di�erent attenuation/enhancement factors can be explored. Setting the at-

tenuation factor to zero, for the objects which are not to be highlighted,

would allow the user to visualize only the object of interest. Furthermore,

the value of the attenuation/enhancement factors used for this dataset, might

not suit datasets with distinct visual properties. In this case, an automatic

or semi-automatic mechanism for the attribution of these factors could be

developed. The question about which are the objects to be highlighted, once

the highlight ray returns the information of the objects which are traversed,
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is also a subject where further investigation can be made.
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9 Conclusion and Outlook

In this thesis, a set of shaders used to perform volume ray casting on the GPU

was presented. Comparisons were performed among di�erent compositing

techniques, and the e�ect of di�erent step sizes along each ray was also

evaluated. Larger step sizes result in faster rendering, but aliasing becomes

apparent in the resulting images. Jittering of the origin of the rays was

introduced to minimize this problem, using this stochastic process to trade

noise for aliasing, with a small computational cost. Noise is more easily

tolerated by the Human Visual System than the visible artifacts caused by

the aliasing, which allows for the utilization of larger step sizes achieving the

same subjective image quality.

Moreover, segmentation data was used to identify distinct objects of inter-

est present in the dataset, using multiple transfer functions. Per pixel bound-

ary interpolation was implemented, improving image quality on boundary

areas. A highlighting mechanism was developed allowing the user to quickly

highlight speci�c objects, by shooting a highlight ray into the volume.

This project was motivated by the creation of a Human Atlas visualization

tool, based on volume rendering techniques, which could allow a real time

interaction. The large rendering times obtained by using traditional CPU

ray casting, prohibitive for a real time visualization, and the availability of

extremely e�cient and highly programmable GPUs, drove the project to

the �eld of GPU ray casting. The results achieved so far are satisfactory

regarding both image quality and rendering time. The parallel nature of

the ray casting algorithm, where each ray is processed independently of the

other rays, suggests that the shaders implemented would scale well when the

number of rays shot increases, if the GPU has the resources to process all

the rays in parallel.
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