
Extending Marching Cubes with Adaptative

Methods to obtain more accurate iso-surfaces

John Congote1,2, Aitor Moreno2, Iñigo Barandiaran2, Javier Barandiaran2,
and Oscar Ruiz1

1 CAD/CAM/CAE Laboratory, EAFIT University, Medelĺın, Colombia
2 VICOMTech, San Sebastian, Spain

Abstract. This work proposes an extension of the Marching Cubes al-
gorithm, where the goal is to represent implicit functions with higher
accuracy using the same grid size. The proposed algorithm displaces the
vertices of the cubes iteratively until the stop condition is achieved. Af-
ter each iteration, the difference between the implicit and the explicit
representations is reduced, and when the algorithm finishes, the implicit
surface representation using the modified cubical grid is more accurate,
as the results shall confirm. The proposed algorithm corrects some topo-
logical problems that may appear in the discretization process using the
original grid.

1 Introduction

Surface representation from scalar functions is an active research topic in dif-
ferent fields of Computer Graphics such as medical visualization of Magnetic
Resonance Imaging (MRI) and Computer Tomography (CT) [1]. This represen-
tation is also widely used as an intermediate step for several graphical processes
[2], such as mesh reconstruction from point clouds or track planning. The rep-
resentation of a scalar function in 3D is known as implicit representation and is
generated using continuous algebraic iso-surfaces, radial basis functions [3] [4],
signed distance transform [5], discrete voxelisations or constructive solid geom-
etry.

The implicit functions are frequently represented as a discrete cubical grid
where each vertex has the value of the function. The Marching Cubes algorithm
(MC) [6] takes the cubical grid to create an explicit representation of the implicit
surface. The MC algorithm has been widely studied as has been demonstrated
by Newman [7]. The output of the MC algorithm is an explicit surface repre-
sented as a set of connected triangles known as polygonal representation. The
original results of the MC algorithm presented several topological problems as
demonstrated by Chernyaev [8] and have already been solved by Lewiner [9].

The MC algorithm divides the space in a regular cubical grid. For each cube,
a triangular representation is calculated, which are then joined to obtain the
explicit representation of the surface. This procedure is highly parallel because
each cube can be processed separately without significant interdependencies. The

Fig. 1. Optimised Grid with 203 cubes representing the bunny.

resolution of the generated polygonal surface depends directly on the input grid
size. In order to increase the resolution of the polygonal surface it is necessary
to increase the number of cubes in the grid, increasing the amount of memory
required to store the values of the grid.

Alternative methods to the MC algorithm introduce the concept of generating
multi-resolution grids, creating nested sub-grids inside the original grid. The
spatial subdivision using octrees or recursive tetrahedral subdivision techniques
are also used in the optimization of iso-surface representations. The common
characteristic of these types of methods is that they are based on adding more
cells efficiently to ensure a higher resolution in the final representation.

This work is structured as follows: In Section 2, a review of some of the best
known MC algorithm variations is given. Section 3 describes the methodological
aspects behind the proposed algorithm. In Section 4 details the results of testing
the algorithm with a set of implicit functions. Finally, conclusions and future
work are discussed in Section 5.

2 Related Work

Marching Cubes (MC) [6] has been the de facto standard algorithm for the pro-
cess generating of explicit representations of iso-surfaces from scalar functions or
its implicit definition The MC algorithm takes as an input a regular scalar volu-
metric data set, having a scalar value residing at each lattice point of a rectilinear
lattice in 3D space. The enclosed volume in the region of interest is subdivided
into a regular grid of cubes. Each vertex of all cubes in the grid is set by the
value of the implicit function evaluated at the vertex coordinates. Depending

(a) Original Grid. The two
spheres are displayed as a
singular object due to the
poor resolution in the re-
gion

(b) Intermediate Grid.
Both spheres are displayed
well, but are still joined

(c) Final Grid. The new
resolution displays two
well shaped and separated
spheres with the same
number of cubes in the grid

Fig. 2. 2D slides representing three different states in the evolution of the algorithm
of two nearby spheres

on the sign of each vertex, a cube has 256 (28) possible combinations, but us-
ing geometrical properties, such as rotations and reflections, the final number of
combinations is reduced to 15 possibilities. These 15 surface triangulations are
stored in Look-Up Tables (LUT) for performance reasons. The final vertices of
the triangular mesh are calculated using linear interpolation between the values
assigned to the vertices of the cube. This polygonal mesh representation is the
best suitable one for the current generation of graphic hardware because it has
been optimized to this type of input.

MC variations were developed to enhance the resolution of the generated
explicit surfaces, allowing the representation of geometrical lost details during
MC discretization process. Weber [10] proposes a multi-grid method. Inside an
initial grid, a nested grid is created to add more resolution in that region. This
methodology is suitable to be used recursively, adding more detail to conflictive
regions. In the final stage, the explicit surface is created by joining all the recon-
structed polygonal surfaces. It is necessary to generate a special polygonization
in the joints between the grid and the sub-grids to avoid the apparition of cracks
or artifacts. This method has a higher memory demand to store the new values
of the nested-grid.

An alternative method to refine selected regions of interest(ROI) is the octree
subdivision [11]. This method generates an octree in the region of existence of
the function, creating a polygonization of each octree cell. One of the flaws of this
method is the generation of cracks in the regions with different resolutions. This

problem is solve with the Dual Marching Cubes method [12] and implemented
for algebraic functions by Pavia [13].

The octree subdivision method produces edges with more than two vertices,
which can be overcome by changing the methodology of the subdivision. Instead
of using cubes, tetrahedrons were used to subdivide the grid, without creating
nodes in the middle of the edges [14]. This method recursively subdivides the
space into tetrahedrons.

The previous methodologies increment the number of cells of the grid in order
to achieve more resolution in the regions of interest. Balmelli [15] presented an
algorithm based on the warping of the grid to a defined region of interest. The
warping of the vertices is performed in a hierarchical procedure, the volume is
considered as a single cell of the grid, and then, the central point of the grid is
warped in the direction of the ROI. Then, this cell is divide then in eight cells
and the process is repeated until the number of selected cells is achieved. The
result is a new grid with the same number of cells, but with higher resolution
near to the ROI. The algorithm was tested with discrete datasets, and the ROI
is created by the user or defined by a crossing edges criteria.

The presented method generates a similar warping grid as Balmelli does,
but we avoid the use of hierarchical procedures and our region of interest is
automatically generated based in the input implicit function, obtaining dense
distribution of vertices near the iso-surface. (see Figure 2)

3 Methodology

The presented algorithm in this work is an extension of the MC algorithm. The
main goal is to generate a more accurate representations of the given implicit
surfaces with the same grid resolution.

Applying a calculated displacement to the vertices of the grid, the algorithm
reconfigure the position of the vertices of the grid to obtain more accurate repre-
sentations of the iso-surface. In order to avoid self-intersections and to preserve
the topological structure of the grid, the vertices are translated inside the cells
of the neighbor of the vertex. The displacement to be applied to all the vertices
are calculated iteratively until a stop condition is satisfied.

Let be Θ a rectangular prism tessellated as a cubical honeycomb, W the
vertices of Θ [Eq. 1], B the boundary vertices of Θ [Eq. 2], and V the inner
vertices of Θ [Eq. 3]. For each vertex vi ∈ V , a Ni set is defined as the 26
adjacent vertices to vi, denoting each adjacent vertex as ni,j [Eq. 4]. (see Figure
3). f(w) is the value of the function in the position w and A is the scale value
for the attraction force for the displacement of the vertices.

W = {wi/wi ∈ Θ} (1)

B = {bi/bi ∈ δΘ} (2)

V = W − B (3)

Ni = {ni,j/ni,j is j th neighborhood of vi} (4)

(a) Grid nomenclature, Θ cubical grid,
f(x, y, z) = 0 implicit function, N vertex
neighborhood, V vertices inside the grid, B

vertices at the boundary of the grid

(b) two consecutive iterations are
show where the vertex v is moved be-
tween the iterations t = 0 and t = 1.
The new configuration of the grid is
shown as dotted lines.

The proposed algorithm is an iterative process. In each iteration, each vertex
vi of the grid Θ is translated by a di displacement vector [Eq. 6], obtaining
a new configuration of Θ, where i) the topological connections of the grid are
preserved, ii) cells containing patches of f are a more accurate representation
of the surface, and iii) the total displacement [Eq. 7] of the grid is lower and is
used as the stop condition of the algorithm when it reach a value ∆(see Figure
3).

The distance vector di is calculated as shown in [Eq. 6] and it can be seen
as the resultant force of each neighboring vertex scaled by the value of f at
the position of each vertex and the attraction value A. In order to limit the
maximum displacement of the vertices and to guarantee the topological order of
Θ, the distance vector di is clamped in the interval expressed in [Eq. 5]

The attraction value A is empirical value which scale the value of the function
in all the grid. This value control the attraction factor of the vertices of the
grid to the iso-surface, values between 0 and 1 produces a grid avoids the iso-
surface, values lesser than 0 generate incorrect behavior of the function. The
recommended and useful values are equal or greater than 1, very high values of
A could generate problems for the grid, produces big stepping factors for the
displacement vectors di and then some characteristics of the iso-surface could be
lost. The A value is highly related to the value of the distance of the bounding
box of the grid, and the size of the objects inside the grid.

0 ≤ |di| ≤ MIN

(

|ni,j − vi|

2

)

(5)

di =
1

26

∑

ni,j

ni,j − vi

1 + A|f(ni,j) + f(vi)|
(6)

∑

vi

|di| ≥ ∆ (7)

The algorithm stops when the sum of the distances added to all the vertices
in the previous iteration is less that a given threshold ∆ [Eq. 7] (see Algorithm
1).

repeat
s := 0;
foreach Vertex vi do

di := 1
26

∑

ni,j

ni,j−vi

1+A|f(ni,j)+f(vi)|
;

mindist := MIN
(

|ni,j−vi|
2

)

;

di := d̄iCLAMP(|di|, 0.0, mindist);
vi := vi + di;
s := s + |di|;

end

until s ≥ ∆ ;

Algorithm 1: Vertex Displacement
Pseudo-algorithm. |x| represents the mag-
nitude of x, v̄ represents the normalised
vector of v

4 Results

The proposed algorithm was tested with a set of implicit functions as distance
transforms (see Figure 3) of a set of spheres, the spheres are define as a point in
the space with their radius. The result of the sphere data set (3(d),4(a),5(a)) and
the two-sphere data set (3(c),4(b),5(b)) are presented, but the algorithm also has
been tested with datasets composed of more than 1000 spheres (see Figure 1).
The algorithm has been tested also with other non-distance transform implicit
functions, but the generation of false ROI in the grid degenerates the structure
of the grid resulting in bad representations of the iso-surface. For demonstration
purposes, the number of cells has been chosen to enhance visual perception of the
improvements produced by the algorithm. For the visualization process we use
Marching Tetrahedra[16] because it produces correct topological representation
of the iso-surface, and allows the identification of the topological correctness of
the algorithm.

The obtained results of the algorithm are visually noticeable, as shown in
Figure 2. Without using the algorithm, the two spheres model is perceived as
a single object (see Figure 2). In an intermediate state the spheres are still
joined, but their shapes are more rounded. In the final state, when the algo-
rithm converges, both spheres are separated correctly, each one being rendered
as a near-perfect sphere. Thus, using the same grid resolution and the proposed

(c) Two spheres in different posi-
tions with a scalar function as the
distance transform, representing the
behavior of the algorithm with dif-
ferent objects in the space.

(d) Sphere in the center of the space
with a scalar function as the dis-
tance transform. The slides shows
the different warping of the grid in
the different positions

Fig. 3. Implicit function of spheres as distance transforms

algorithm, the resolution of the results has been increased and also topological
errors of the original explicit representation were considerably reduce with the
algorithm.

Accuracy of the explicit representations of the algorithm were measured us-
ing the methodology of De Bruin [17] which is based on the Hausdorff distance
explain by Dubuisson [18]. The figures 4 and 5 shows the behavior of the al-
gorithm where, in almost all the iterations, the Hausdorff distance between the
implicit iso-surface and the explicit surface are decreasing. The iterations where
there is an increment of the distance, could represent a point where the configu-
ration of the grid is not suitable for optimization and then the algorithm needs
to modify the grid looking for suitable configurations.

Figure 4 presents the results of the algorithm with the same implicit surfaces
but with different attraction factor values (A). As the results show the accu-
racy of the iso-surface is highly related with the (A) value, because the allowed
warping of the grid is bigger obtaining a dense grid near to the iso-surface, but
this over-fit of the grid can be dangerous if the grid is going to be used for
other implicit functions, like time varying functions, because the grid need more
iterations to adapt to the new iso-surface.

Figure 5 shows the behavior of the algorithm with different grid sizes. The
accuracy of the final explicit representation of the iso-surfaces shows an improve-

(a) Sphere implicit function

(b) Two sphere implicit function

Fig. 4. Hausdorff distance of the explicit representations of the figures in each iteration
of the algorithm with different attraction values

ment of the accuracy of the representation. Then it is possible with the algorithm
to represent iso-surfaces with good accuracy and quality without increasing grid
sizes. This characteristic allow us to use smaller grids for the representation with-
out loss of accuracy or quality in the representation and saving computational
resources.

5 Conclusions and Future Work

Our proposed iterative algorithm has shown significant advantages in the rep-
resentation of distance transform functions. With the same grid size, it allows a
better resolution by displacing the vertices of the cube grids towards the surface,

(a) Sphere implicit function

(b) Two sphere implicit function

Fig. 5. Hausdorff distance of the explicit representations of the figures in each iteration
of the algorithm with different grid sizes

increasing the number of cells containing the surface. The algorithm was tested
with algebraic functions, representing distance transforms of the models. The
generated scalar field has been selected to avoid the creation of regions of false
interest [19], which are for static images in which these regions are not used.

The number of iterations is directly related to the chosen value ∆ as it is
the stop condition. The algorithm will continuously displace the cube vertices
until the accumulated displacement in a single iteration is less than ∆. The
accumulated distance converges quickly to the desired value. This behavior is
very convenient to represent time varying scalar functions like 3D videos, where
the function itself is continuously changing. In this context, the algorithm will
iterate until a good representation of the surface is obtained. If the surface varies

smoothly, the cube grid will be continuously and quickly re-adapted by running
a few iterations of the presented algorithm. Whenever the surface changes can
be considered no be small, the number of iterations until a new final condition is
reached will be low. Then the obtained results will be a better real-time surface
representation using a coarser cube grid.

The value ∆ is sensitive to the grid size, so a better stop condition should
be evaluated which represent the state of the quality of the representation and
reduce the number of iteration which are unnecessary. The model used in this
algorithm is close to a physics spring model, a close comparison of the proposed
algorithm with the spring model could be done.

6 ACKNOWLEDGEMENTS

This work has been partially supported by the Spanish Administration agency
CDTI, under project CENIT-VISION 2007-1007. CAD/CAM/CAE Laboratory
- EAFIT University and the Colombian Council for Science and Technology -
Colciencias-. The bunny model is courtesy of the Stanford Computer Graphics
Laboratory.

References

[1] Krek, P.: Flow reduction marching cubes algorithm. In: Proceedings of ICCVG
2004, Springer Verlag (2005) 100–106

[2] Oscar E. Ruiz, Miguel Granados, C.C.: Fea-driven geometric modelling for mesh-
less methods. In: Virtual Concept 2005. (2005) 1–8

[3] Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum,
B.C., Evans, T.R.: Reconstruction and representation of 3d objects with radial
basis functions. In: SIGGRAPH ’01: Proceedings of the 28th annual conference
on Computer graphics and interactive techniques, New York, NY, USA, ACM
(2001) 67–76

[4] Morse, B.S., Yoo, T.S., Rheingans, P., Chen, D.T., Subramanian, K.R.: Inter-
polating implicit surfaces from scattered surface data using compactly supported
radial basis functions. In: SIGGRAPH ’05: ACM SIGGRAPH 2005 Courses, New
York, NY, USA, ACM (2005) 78

[5] Frisken, S.F., Perry, R.N., Rockwood, A.P., Jones, T.R.: Adaptively sampled
distance fields: a general representation of shape for computer graphics. In: SIG-
GRAPH ’00: Proceedings of the 27th annual conference on Computer graphics
and interactive techniques, New York, NY, USA, ACM Press/Addison-Wesley
Publishing Co. (2000) 249–254

[6] Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface con-
struction algorithm. SIGGRAPH Comput. Graph. 21(4) (1987) 169–169

[7] Newman, T.S., Yi, H.: A survey of the marching cubes algorithm. Computers &
Graphics 30(5) (October 2006) 854–879

[8] Chernyaev, E.: Marching cubes 33: Construction of topologically correct isosur-
faces. Technical report, Technical Report CERN CN 95-17 (1995)

[9] Lewiner, T., Lopes, H., Vieira, A., Tavares, G.: Efficient implementation of march-
ing cubes’ cases with topological guarantees. Journal of Graphics Tools 8(2) (2003)
1–15

[10] Weber, G.H., Kreylos, O., Ligocki, T.J., Shalf, J.M., Hamann, B., Joy, K.I.: Ex-
traction of crack-free isosurfaces from adaptive mesh refinement data. In: Data
Visualization 2001 (Proceedings of VisSym ’01), Springer Verlag (2001) 25–34

[11] Shekhar, R., Fayyad, E., Yagel, R., Cornhill, J.F.: Octree-based decimation of
marching cubes surfaces. In: VIS ’96: Proceedings of the 7th conference on Vi-
sualization ’96, Los Alamitos, CA, USA, IEEE Computer Society Press (1996)
335–ff.

[12] Schaefer, S., Warren, J.: Dual marching cubes: Primal contouring of dual grids.
In: PG ’04: Proceedings of the Computer Graphics and Applications, 12th Pacific
Conference, Washington, DC, USA, IEEE Computer Society (2004) 70–76

[13] Paiva, A., Lopes, H., Lewiner, T., de Figueiredo, L.H.: Robust adaptive meshes
for implicit surfaces. SIBGRAPI 0 (2006) 205–212

[14] Kimura, A., Takama, Y., Yamazoe, Y., Tanaka, S., Tanaka, H.T.: Parallel volume
segmentation with tetrahedral adaptive grid. ICPR 02 (2004) 281–286

[15] Balmelli, L., Morris, C.J., Taubin, G., Bernardini, F.: Volume warping for adaptive
isosurface extraction. In: Proceedings of the conference on Visualization 02, IEEE
Computer Society (2002) 467–474

[16] Carneiroz, B.P., Y, C.T.S., Kaufman, A.E.: Tetra-cubes: An algorithm to generate
3d isosurfaces based upon tetrahedra. In: IX Brazilian symposium on computer,
graphics, image processing and vision (SIBGRAPI 96). (1996) 205–10

[17] Vos, D.B., Bruin, P.W.D., Vos, F.M., Post, F.H., Frisken-gibson, S.F., Vossepoel,
A.M.: Improving triangle mesh quality with surfacenets. In: In MICCAI. (2000)
804–813

[18] Dubuisson, M.P., Jain, A.K.: A modified hausdorff distance for object matching.
In: Pattern Recognition, 1994. Vol. 1 - Conference A: Computer Vision & Image
Processing., Proceedings of the 12th IAPR International Conference on. Volume 1.
(1994) 566–568 vol.1

[19] Congote, J., Moreno, A., Barandiaran, I., Barandiaran, J., Ruiz, O.: Adaptative
cubical grid for isosurface extraction. In: 4th International Conference on Com-
puter Graphics Theory and Applications GRAPP-2009, Lisbon, Portugal (Feb 5-8
2009) 21–26

