

Real time accurate collision detection for virtual
characters

Andoni Mujika, David Oyarzun, Aitor Arrieta, María del Puy Carretero

VICOMTech - Visual Interaction and Communication Technologies Center
Mikeletegi Pasealekua, 57 - Parque Tecnológico

E-20009 Donostia - San Sebastián, Spain

{amujika, doyarzun, aarrieta, mcarretero}@vicomtech.org

ABSTRACT
This paper presents an accurate real time collision detection algorithm for interactively animated virtual

characters using sphere-trees as Bounding Volume Hierarchies. We build upon a fast mathematical method for

on-demand sphere refitting during the animation and improve it for being applicable to any object, without

dependency on its geometrical level of detail or its dynamic/static behavior. It uses sphere-plane intersection test

as the exact test in the collision detection algorithm instead of the usual triangle-triangle one. Corner-trees, a

special hierarchy that ensures the utilization of the plane-sphere intersection test is right, are also presented. In

the worst case, the optimization decreases in 25% the time needed to process a frame in extreme conditions. The

algorithm has been successfully tested on a real time and collaborative 3D virtual world.

Keywords
Real-time Collision Detection, Bounding Volume Hierarchies, Virtual Character Animation.

1. INTRODUCTION
Collision detection (CD) is a key issue in almost all

fields of computer graphics. Real time virtual objects

and virtual characters’ animation are not exceptions.

In most of cases they need to have realistic behaviors

that imply CD, i.e. not to penetrate other objects.

Therefore, many algorithms have been proposed in

recent years.

Accurate algorithms are usually very expensive

computationally speaking. Then, applications that

make use of collision detection algorithms have to

balance between preciseness of the detection and

velocity of the algorithm.

For instance, a very fast performance of the collision

detection algorithm is needed in Massively

Multiplayer Online Games (MMOGs) and a very

precise detection is crucial in serious games and

virtual prototyping. On the other hand, continuous

collision detection (CCD) was presented to solve the

main problem that discrete algorithms presented, the

tunneling effect, i.e. the miss of some collisions.

However, the velocity of the algorithm obtained was

not appropriate for real time purposes.

Although the problem has been widely studied for

rigid bodies, there is a lot to do regarding CD for real

time deformable objects such as clothes, interactive

virtual humans, etc. The problem increases in case of

collaborative virtual worlds, with lot of avatars

interacting among themselves and with objects at the

same time. It is usual to see very fast but imprecise

CD algorithms.

Therefore, in this article, we focus on real time

humanlike animation in collaborative virtual worlds

and propose an algorithm to obtain a fast and precise

CD for interactive virtual characters of high level of

detail. In order to be used in both, virtual worlds and

precise simulations, the algorithm is based on these

features:

- A fast update of the spheres in the Bounding

Volume Hierarchy.

- Utilization of the sphere-plane intersection

test instead of the slower triangle-triangle

test.

- Implementation of the corner-trees, a novel

hierarchy for the correct and fast

performance of the algorithm.

The paper is structured as follows. In section 2 we

summarize the related work. In section 3 we describe

our virtual character animation platform and its

collision detection algorithm. In section 4 we analyze

the major problem we found for a fast performance

of the algorithm and in section 5 we describe two

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

methods to solve it. In section 6 we present and

compare the obtained results and finally, in section 7,

we analyze future extensions to improve the

performance of our CD algorithm.

2. RELATED WORK
When detecting collision detection between a virtual

character and its environment, first, the character’s

movement has to be computed, i.e. the new position

of the avatar’s vertices has to be calculated. And

then, the second stage will be the CD itself, taking

into account the new positions of the vertices.

Sections below deal with related work in each of

these stages.

Virtual Character Animation
Virtual character animation has been widely studied

in computer graphics. In this research field, one of

the main goals is the realistic simulation of human

movements. Especially in 3D animation, many

efforts have been done in recent years. Although

there are some methods such as Blend Shape

Deformation [Moh03a] and Free-Form Deformation

[Sed86], skeletal animation systems are the most

used. The primitives that form the virtual character

are transformed depending on the movements of a

skeleton. We can classify these methods by the way

they skeleton affects the primitives. Linear Blend

Skinning [Moh03b] manipulates the triangle-mesh

associating each vertex to a group of joints of the

skeleton and giving a weight for each joint (the sum

of the weights is one). Then, the transformation of

the vertex is a linear combination of the joints’

transformations. Spherical Blend Skinning [Kav05a]

works similarly, but the relation between joints’

transformations and vertices’ transformations is not

linear. It is based on Spherical Linear Interpolation.

Collision Detection
When detecting collisions between two objects,

testing each primitive-couple is too costly. Detecting

collisions between two objects with and

primitives would cost operations, where

is the number of basic operations needed in an

intersection test between primitives. Therefore, a

method that detects which primitives are more likely

to be colliding (broad phase) is used before executing

the exact test between primitives (narrow phase)

[Mol97, Tro05].

Usually, Bounding Volume Hierarchies (BVHs), i.e.,

sets of volumes that bound the object getting

different levels of tightness, are used in the broad

phase. During the collision detection, the volumes in

the hierarchies of the objects are tested to be

colliding. If they don’t collide, all the primitives

inside the volumes don’t collide, but if they do

collide, next levels of tightness are checked. Once the

algorithm finds two colliding leaf-nodes, i.e. volumes

that enclose only one primitive, the exact intersection

test between primitives is called.

The number of operations needed to detect collisions

between bounding volumes is much lower than

between primitives. For instance, a collision test

between spheres consists of 10 operations and the

best collision test between triangles consists of 96

operations.

We can sort these methods by the type of volume

they use:

 Spheres [Qui94, Hub96]

 Axis-Aligned Bounding Boxes (AABBs)

[Van98]

 Oriented Bounding Boxes (OBBs) [Got96],

 k-Discrete Orientation Polytopes (k-DOPs)

[Klo98]

Most of these methods were presented for collision

detection between rigid objects. Nevertheless, CD for

deformable objects also makes use of BVHs. Once

again, different types of BVHs appear such as

spheres [Bro01] and AABBs [Lar01, Zac06].

Regarding collision detection for avatars, i.e. virtual

characters, there have been different approaches in

recent years. Kavan et al. use spheres to create the

BVH. They refit the sphere-tree for bodies that are

moved based on a skeleton. They proposed collision

detection methods for Linear Blend Skinning

[Kav05b] and Spherical Blend Skinning [Kav06].

All the results shown so far are discrete, i.e. they

sample objects’ motions. As opposed to these

methods, continuous collision detection (CCD)

methods compute the first time of contact during the

collision detection. Six different approaches to CCD

have been presented in the literature: algebraic

equation-solving [Cho06], swept volumes [Abd02],

adaptive bisection [Red02], kinetic data structures

(KDS) [Aga01], the configuration space approach

[Van04], and conservative advancement [Cou06]

However, these methods performance is not as fast as

is required.

There are also some continuous collision detection

results for avatars. Zhang et al. [Zha07] use OBB-

trees and create AABBs during the motion

interpolation using Taylor Models, i.e. a

generalization of interval arithmetic. Instead, Redon

et al. [Red04] use swept volumes (SV) for CCD in

scenes with a simple articulated avatar.

3. ALGORITHM OVERVIEW
The developed collision detection algorithm is a

discrete collision detection method and works with

spheres as bounding volumes. Spheres were chosen

because of the fast performance of the sphere-sphere

intersection test and the low space needed to store the

data.

Virtual Character Animation
Regarding the animation stage, in our system, the

vertices are associated to a unique joint and the

transformation of a vertex is obtained computing the

product of the transformations of all joints upon the

associated joint in the skeleton-tree and the weighted

transformation of the associated joint.

where is the group of joints upon the associated

joint in the skeleton-tree, the transformation of the

vertex, s the transformations of the joints in ,

the transformation of the associated joint and the

weight associated to the vertex. This way of

animation provides an adequate balance between

performance and realism for its use in collaborative

virtual worlds.

Collision detection
The collision detection algorithm begins with the

sphere-tree construction. This construction of the

sphere-tree is based on Quinlan’s work [Qui94]. First

a binary tree is constructed: in each step, the triangles

of a sphere are divided in two groups and two

spheres are constructed enclosing each group

[Gae99]. In this case, to make the division, the

triangles are ordered depending on their position in

one of the axes, so as to get two spheres as far as

possible one from the other. Moreover, the axis is

chosen to be the one where the spheres are most

spread. As in [Kav05b], the binary tree is turned into

a n-ary tree eliminating the spheres the radius of

which is similar to their parent’s radius. This way,

when testing for collision, tests between similar

spheres are avoided.

Since each vertex is associated to a single joint in our

platform, instead of creating a unique tree, a tree is

constructed for the group of vertices associated to

each joint, so as to prevent the algorithm having

spheres affected by no-adjacent-joints. To merge all

the trees, an enclosing sphere for all vertices is

computed as the root of the main tree and a sphere

for each extremity to form the second level are

created.

Sphere update
The sphere update of our algorithm is inspired by the

main contribution of Kavan and Zara [Kav05b]. In

the preprocess, all the vertices of a sphere are visited

to compute the minimum and maximum weights for

each joint affecting this sphere.

Then, during the animation, when a joint is visited to

update the vertices associated to it, the spheres

containing vertices associated to this joint are also

visited. For each visited sphere, two new spheres

(one if maximum and minimum weights are the

same) are created applying the same transformation

as to the vertices to the center of the sphere but using

the maximum and minimum weights. The radii are

the same as the original sphere.

where is the center of the sphere, and

are the new centers and and are the

precomputed maximum and minimum.

Finally, the enclosing sphere of the new spheres is

created, ensuring that all the vertices are inside the

new sphere.

where and are the center and the radius of the

final updated sphere and and are the centers and

the radii of the spheres obtained with all the

maximum and minimum weights.

Narrow phase
During the collision detection, when two spheres in

the lowest level of the hierarchies are colliding, an

exact collision test between the triangles enclosed by

those spheres is called. We use the fast algorithm

presented by Tropp et al. [Tro05]. When detecting

intersection between edges of a triangle and the other

triangle, all the redundant operations to calculate

determinants are discarded.

4. OPTIMIZATION
Since we want our platform to cope with virtual

characters containing more than 40000 vertices, the

algorithm needs some optimization. It has to be able

to handle the big amount of spheres generated with

this number of vertices.

In order to reduce the number of triangles that take

part in the collision detection algorithm, we

implemented an optimization proposed by Curtis et

al. [Cur08]. They realized that many collision tests

between primitives are made more than once and

developed a method to avoid these duplications. In

our case, we assume that each edge of the triangle-

mesh has to be tested once. Then, taking into account

a triangle surrounded by three triangles that have

already been taken into account is not necessary (see

Figure 1). Therefore, we assume this triangle doesn’t

exist for the collision detection. One may think that

some collision may be skipped this way. In fact, the

penetration of a smaller triangle in a “not existing”

triangle without touching its edges wouldn’t be

detected, but we have seen that in practice, this

extreme case doesn’t occur with avatars of so high

level of detail. After implementing the optimization,

the number of triangles used for the collision

detection decreased 40%.

Figure 1 The triangle among the other 3 triangles

is not taken into account in the CD algorithm.

Big triangles, a problem
When an avatar is walking in an environment,

usually the triangles that compose the environment

(walls, tables, windows, etc.) are much bigger than

the ones that compose the avatar. This fact is a

serious drawback when trying to get a fast

performance of the collision detection system.

The leaf-node of the sphere-tree that corresponds to a

big triangle is a big sphere. So, when the avatar is

near a big triangle, it’s possible that all the spheres in

the BVH of the avatar are inside the big enclosing

sphere of the triangle. This leads to a huge number of

collision tests between spheres and a huge number of

exact collision tests between triangles, since all the

leaf-nodes of the avatar hierarchy are inside the leaf-

node of the environment. We have checked that the

algorithm can’t cope with this number of operations,

especially because of exact tests.

5. SOLVING BIG TRIANGLES’

PROBLEM
A solution for the problem with big triangles could

be just to divide big triangles in smaller triangles.

Nevertheless, it is not always possible to manipulate

the model received and dividing all big triangles until

the leaf-nodes are small enough can increase the

weight of the model drastically.

From now on, we denote the small triangle in the

avatar’s triangle mesh that takes part in an exact

intersection test as and the big triangle of the object

in the environment as . We denote their enclosing

spheres, i.e. their leaf-nodes in the sphere-tree as

and respectively.

Sphere Division
Although the division of the model’s vertices may be

impossible to carry out, a similar approach can be

applied.

We want the avatar not to be inside . So, we create

a hierarchy inside the enclosing sphere of the big

triangle to ensure that when exact test is called the

primitives are really close. When the triangle is too

big (we use a border value for the lengths of the

edges), the triangle is divided in four new triangles

joining the intermediate points of the edges and four

new enclosing spheres are created to form the next

level in the hierarchy (see Figure 2). The division

finishes when the triangles are smaller than the

threshold.

Figure 2 The enclosing sphere (black) of a

triangle. The triangle divided in four triangles and

their enclosing spheres (red).

During the animation, the collision detection

algorithm runs as before, calling the spheres of the

lower levels if the ones in upper levels collide, but in

this case, the leaf-nodes doesn’t enclose a triangle.

They point to the big triangle .

This way, when the avatar is not really close to ,

only intersection tests between spheres are called. So

the algorithm’s performance is much faster.

Moreover, when the avatar is close to the object that

contains , the exact collision test is only called for

those triangles that are really close, avoiding the huge

number of exact intersection test we had before.

The results obtained with this implementation were

satisfactory, but we saw that a better performance

could be obtained. Results will be shown in section 6.

Plane-Sphere intersection test
Virtual characters with high level of detail are

composed by very small triangles comparing with the

triangles that compose some objects of the

environment. When the enclosing sphere , of the

small triangle, , is colliding with a big triangle, ,

is colliding with or it is very near. Therefore,

testing and and testing and are nearly the

same.

If the intersection test between a triangle and a sphere

is not very costly, it is worth to use it instead of the

exact test between two triangles. Nevertheless, we

can see in [Eri05] that the sphere-triangle test is quite

costly.

However, a simple and very efficient collision test

between spheres and planes is presented in [Eri05]

(see Algorithm 1) and it seems that can be

considered as a plane when testing with . That way,

the biggest bottle-neck in our algorithm would be

solved due to the substitution of the exact test

between triangles.

The problem of this substitution is that it is usual to

find a leaf-node in the hierarchy of the avatar inside

 which is not colliding with , but colliding with

the plane defined by . This leads to a not existing

collision detection.

So, before calling the plane-sphere collision test, we

have to ensure that the sphere is in front of the

triangle and it is not in the part of the enclosing

sphere that the triangle doesn’t occupy.

Working as in the latest subsection, we can create a

quaternary tree inside the enclosing sphere . Then,

when the collision detection algorithm reaches leaf-

nodes and calls the plane-sphere test, we can be sure

that the sphere is in front of and we can consider it

as a plane.

Besides, a smaller tree than the quaternary-tree can

be used without losing any property. For instance,

when dividing the triangle in four smaller triangles,

we can assume that if is colliding with the

enclosing sphere of the central triangle it is in front

of .

So, in the algorithm that recursively creates the

hierarchy inside , only triangles that have an edge

that matches one of ’s edges are divided into four

new triangles again. We call the new hierarchy

Corner-tree (see figure 3).

One may think that it is better to continue dividing

the central triangles, because of the higher cost of the

plane-sphere test. Nevertheless, it is less costly one

plane-sphere test (30 operations) than four sphere-

sphere tests (4x10 operations).

Figure 3 Division of a triangle to create the

corner-tree.

Moreover, the number of the spheres in the hierarchy

decreases drastically with this new algorithm. If is

the number of levels of the hierarchy, in the

quaternary-tree the number of spheres in the th level

is . A huge number comparing to the new

algorithm, which creates spheres in

each level (see table 1).

Level 1 2 3 4 5 6 7

Corner-tree 1 4 12 36 84 180 372

Quaternary 1 4 16 64 256 1024 4096

Table 1 Number of spheres in the th level in the

Corner-tree and in the quaternary-tree

bool SpherePlaneTest(sphere s, triangle t){

 edge1 = t.v1 – t.v0;

 edge2 = t.v2 – t.v0;

 p = edge1 edge2;

 n = s.center – t.v0;

 return (|p · n| < s.radius * ||p||);

}

Algorithm 1 Plane-sphere intersection test for

sphere S and tirangle t

6. RESULTS
The collision detection algorithm has been applied in

our platform for the animation of virtual characters in

collaborative virtual worlds successfully [Oya07]

(see Figure 4).

We have checked our algorithm with an avatar

composed by 44345 vertices in two different

scenarios: a virtual museum with 9482 vertices and

virtual living-room with 133139 vertices.

Both virtual worlds have triangles that are bigger

than the avatar and we have checked the performance

of the algorithm in extreme conditions, i.e. when the

avatar is very close to these triangles without

colliding. Moreover, the collision detection algorithm

was run without any optimization and with the sphere

division optimization to compare them with the latest

version. All the tests were made with an Intel Core 2

Duo CPU at 2.20 GHz.

Figure 4 A virtual character in a virtual living-

room.

First, we counted the basic operations (sum and

multiplication) needed in each basic collision test: 10

operations in the sphere-sphere test, 96 in the

triangle-triangle test [Tro05] and 30 in the plane-

sphere test. Then, we ran the animation platform

counting the number of these basic tests per frame so

as to obtain the maximum number of operations

made in a frame.

Table 2 and table 3 show the results obtained. The

space needed to store sphere hierarchies, maximum

times the intersection tests are called in one frame,

the sum of basic operations in those maxima and the

duration of the frame in the case of maximum

operation.

In both cases, the space to store the information

about the sphere hierarchies is much bigger when the

algorithm has an optimization. Nevertheless, the

space needed is not big enough to be a problem. As

we stated before, we can see that the corner-tree is

smaller than the quaternary-tree.

Virtual

Museum

Original Sphere

Division

Plane-

Sphere

Data 548 KB 65 MB 24 MB

Sph-Sph tests 200000 15000 5000

Tri-Tri tests 150000 150

Pla-Sph tests 2000

Operations 17000000 165000 110000

Table 2 Results obtained for the animation in the

virtual museum.

Living-room Original Sphere

Division

Plane-

Sphere

Data 3.21 MB 49.2 MB 37.5 MB

Sph-Sph tests 80000 80000 8000

Tri-Tri tests 70000 50000

Pla-Sph tests 275

Operations 7000000 5000000 90000

Table 3. Results obtained for the animation in the

virtual living-room.

As wished, sphere division optimization decreases

the number of exact tests, especially in the virtual

museum. This leads to a decrease in the duration of a

frame.

Moreover, the plane-sphere optimization decreases

the number of tests made in both the broad phase and

the narrow phase. Combining this with the lower

complexity of the plane-sphere collision test, we

obtain a very fast performance.

In conclusion, we can see in the tables that increasing

the stored data, i.e. creating bigger sphere

hierarchies, we can decrease the time spent detecting

collisions. In the virtual museum, the difference

between the optimizations is not considerable, but in

the living room, the time gained with the plane-

sphere optimization is twice as the time gained with

the sphere division optimization.

7. CONCLUSIONS AND FUTURE

WORK
This article presents a fast and precise collision

detection algorithm for real-time virtual character

animation.

The utilization of the intersection test between a

sphere and a plane instead of the triangle-triangle test

resulted in a much faster performance of the

algorithm.. We also presented the corner-tree, a novel

sphere hierarchy that makes the algorithm detect

collisions correctly.

We implemented the algorithm in a virtual world

composed of several interactive avatars of high level

of detail and objects of different levels of detail. The

velocity obtained is fast and the collision detection is

precise enough. We also implemented the collision

detection for an online version of our platform.

Since discrete collision detection methods sometimes

miss collisions (tunneling effect), continuous

collision detection is becoming an important topic of

research. Most of the new CCD methods are based

on discrete methods, so it seems natural to try to

convert our contribution into a CCD algorithm.

In recent years, the utilization of the GPUs has

become very important when accelerating

algorithms’ performance. Since collision detection is

one of the most important bottle-neck in animation, it

is important to study how GPUs can accelerate the

collision detection.

8. REFERENCES
[Abd02] Abdel-Malek, K., Blackmore, D. and Joy,

K. Swept volumes: foundations, perspectives, and

applications. International Journal of Shape

Modeling. 2002.

[Aga01] Agarwal, P. K., Basch, J., Guibas, L. J.,

Hershberger, J. and Zhang, L. Deformable free

space tiling for kinetic collision detection. In

Workshop on Algorithmic Foundations of

Robotics, 83–96. 2001.

[Bro01] Brown, J., Sorkin, S., Bruyns, C., Latombe,

J. C., Montgomery, K. and Stephanides, M. Real-

time simulation of deformable objects: Tools and

application. Computer Animation 2001, 2001.

[Cho06] Choi, Y.-K., Wang, W., Liu, Y. and Kim,

M.-S. Continuous collision detection for elliptic

disks. IEEE Transactions on Robotics 22, 2.

2006

[Cou06] Coumans, E. Bullet Physics library.

http://www.continuousphysics.com. 2006.

[Cur08] Curtis, S., Tamstorf, R. and Manocha, D.

Fast collision detection for deformable models

using representative-triangles. Proceedings of the

2008 symposium on Interactive 3D graphics and

games, 61-69. 2008

[Eri05] Ericson, C. Real-time Collision Detection.

The Morgan Kaufmann Series in Interactive 3-D

Technology. 2005

 [Gae99] Gaertner B.: Fast and robust smallest

enclosing balls. In ESA ’99: Proceedings of the

7th Annual European Symposium on Algorithms

, Springer-Verlag, pp. 325–338. 1999.

[Got96] Gottschalk, S., Lin, M. C. and Manocha, D.

Obb-tree: A hierarchical structure for rapid

interference detection. Proceedings of the 23rd

annual conference on Computer graphics and

interactive techniques, pages 171 – 180, 1996.

[Hub96] Hubbard, P.M. Approximating polyhedra

with spheres for time-critical collision detection.

ACM Transactions on Graphics (TOG), Volume

15 , Issue 3:179 – 210, 1996.

[Kav05a] Kavan L. and Zara J. Spherical blend

skinning: a real-time deformation of articulated

models. Proceedings of the 2005 symposium on

Interactive 3D graphics and games. 9 – 16. 2005.

[Kav05b] Kavan, L. and Zara J. Fast collision

detection for skeletally deformable models.

Computer Graphics Forum, 2005.

[Kav06] Kavan, L., O’Sullivan, C. and Zara, J.

Efficient collision detection for spherical blend

skinning. Proceedings of the 4th international

conference on Computer graphics and interactive

techniques in Australasia and Southeast Asia,

Fast graphics:147 – 156, 2006.

[Klo98] Klosowsky, J. T., Held, M., Mitchell, J.S.B.,

Sowizral, H. and Zikan, K. Efficient collision

detection using bounding volume hierarchies of

k-dops. IEEE Transactions on Visualization and

Computer Graphics, Volume 4 , Issue 1:21 – 36,

1998.

[Lar01] Larsson, T. and Akenine-Möller, T. Collision

detection for continuously deforming bodies.

Eurographics, pages 325–333, 2001.

[Moh03a] Mohr, A. and Gleicher, M. Building

Efficient, Accurate Character Skins from

Examples, ACM Trans. Graph., Vol. 22, No. 3,

pp. 562-568. 2003.

[Moh03b] Mohr, A., Tokheim L. and Gleicher M.

Direct manipulation of interactive character skins.

Proceedings of the 2003 symposium on

Interactive 3D graphics. 27 – 30. 2003.

[Mol97] Möller, T. A fast triangle-triangle

intersection test. journal of graphics tools,

2(2):25–30, 1997.

[Oya07] Oyarzun, D., Lehr, M., Ortiz, A., Carretero,

M. P., Ugarte, A., Vivanco, K. and García-

Alonso, A. Using Virtual Characters as TV

Presenters. Technologies for E-Learning and

Digital Entertainment, 225-236. 2007.

[Qui94] Quinlan, S. Efficient distance computation

between non-convex objects. International

Conference on Robotics and Automation, 1994.

[Red02] Redon, S., Kheddar, A. and Coquillart, S.

Fast continuous collision detection between rigid

bodies. Proc. Of Eurographics (Computer

Graphics Forum). 2002.

[Red04] Redon, S., Kim Y.J., Lin, M.C., Manocha,

D. and Templeman, J. Interactive and Continuous

http://www.continuousphysics.com/
http://portal.acm.org/author_page.cfm?id=81335489690&coll=Portal&dl=GUIDE&trk=0&CFID=50939438&CFTOKEN=84108866
http://portal.acm.org/author_page.cfm?id=81100289069&coll=Portal&dl=GUIDE&trk=0&CFID=50939438&CFTOKEN=84108866
http://portal.acm.org/author_page.cfm?id=81100618474&coll=Portal&dl=GUIDE&trk=0&CFID=50939438&CFTOKEN=84108866
http://portal.acm.org/author_page.cfm?id=81100550151&coll=Portal&dl=GUIDE&trk=0&CFID=50625841&CFTOKEN=56933562
http://portal.acm.org/author_page.cfm?id=81100271934&coll=GUIDE&dl=GUIDE&trk=0&CFID=50607370&CFTOKEN=88644109
http://portal.acm.org/author_page.cfm?id=81100639618&coll=GUIDE&dl=GUIDE&trk=0&CFID=50607370&CFTOKEN=88644109
http://portal.acm.org/author_page.cfm?id=81100639618&coll=GUIDE&dl=GUIDE&trk=0&CFID=50607370&CFTOKEN=88644109
http://portal.acm.org/author_page.cfm?id=81100639618&coll=GUIDE&dl=GUIDE&trk=0&CFID=50607370&CFTOKEN=88644109
http://portal.acm.org/author_page.cfm?id=81100342764&coll=GUIDE&dl=GUIDE&trk=0&CFID=50607370&CFTOKEN=88644109
http://www.springerlink.com/content/t14j5863076r/?p=1cf298d969724e589ba241e3a4565903&pi=0
http://www.springerlink.com/content/t14j5863076r/?p=1cf298d969724e589ba241e3a4565903&pi=0

Collision Detection for Avatars in Virtual

Environments. IEEE Virtual Reality Conference

2004 (VR 2004). 2004.

[Sed86] Sederberg, T. W. and Parry, S.R. Free-form

deformation of solid geometric models, In

SIGGRAPH '86: Proceedings of the 13th annual

conference on Computer graphics and interactive

techniques, ACM Press, pp. 151-160. 1986.

[Tro05] Tropp, O., Tal, A. and Shimshoni, I. A fast

triangle to triangle intersection test for collision

detection. Journal of Graphics Tools, Volume 2 ,

Issue 2:25 – 30, 2005.

[Van98] Van Den Bergen, G. Efficient collision

detection of complex deformable models using

aabb trees. Journal of Graphics Tools, Volume 2 ,

Issue 4:1 – 13, 1998.

[Van04] Van Den Bergen, G. Ray casting against

general convex objects with application to

continuous collision detection. Journal of

Graphics Tools. 2004.

[Zac06] Zachmann, G. and Weller, R. Kinetic

bounding volume hierarchies for deformable

objects. Proceedings of the 2006 ACM

international conference on Virtual reality

continuum and its applications, Session F5:189 –

196, 2006.

[Zha07] Zhang, X., Redon, S., Minkyoung, F. and

Kim, Y.J. Continuous collision detection for

articulated models using Taylor models and

temporal culling. International Conference on

Computer Graphics and Interactive Techniques.

2007

http://portal.acm.org/author_page.cfm?id=81350600854&coll=Portal&dl=GUIDE&trk=0&CFID=51171926&CFTOKEN=30619034
http://portal.acm.org/author_page.cfm?id=81100239543&coll=Portal&dl=GUIDE&trk=0&CFID=51171926&CFTOKEN=30619034
http://portal.acm.org/author_page.cfm?id=81318495139&coll=Portal&dl=GUIDE&trk=0&CFID=51171926&CFTOKEN=30619034
http://portal.acm.org/author_page.cfm?id=81318495139&coll=Portal&dl=GUIDE&trk=0&CFID=51171926&CFTOKEN=30619034
http://portal.acm.org/author_page.cfm?id=81318495139&coll=Portal&dl=GUIDE&trk=0&CFID=51171926&CFTOKEN=30619034
http://portal.acm.org/author_page.cfm?id=81318495139&coll=Portal&dl=GUIDE&trk=0&CFID=51171926&CFTOKEN=30619034

