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Abstract—In this paper we present a low-cost system based 
on computer vision algorithms, which automatically inspects 
blow-molded plastic tubes used as outer covers of car dampers. 
The small size of the typical defects, the dark color and the 
specular reflection of this kind of black plastic parts makes the 
automation of this process a challenging task. Customers are 
becoming more exigent and they can even reject full batches of 
thousands of pieces only because of some non-valid samples 
(e.g., a limit of 10 defective tubes per million), therefore a 
correct quality checking is very important for companies. There 
are several standard industrial solutions designed for the 
automatic inspection of several kinds of pieces but not for these 
specific tubes. The proposed computer vision method obtains 
the tube surface aspect from the deformed laser beam 
projections observed by an uncalibrated camera, and identifies 
defects by comparing its shape with respect to the one expected. 
Experimental results show the suitability of the system to detect 
holes, burrs and deformations of these tubes, improving the 
quality checking process at a low cost. 
  

Keywords—Computer Vision, Defect Detection, Plastic 
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I. INTRODUCTION 

HERE are several solutions for the automatic 
inspection of industrial pieces [1], but there is not 

still a satisfactory one for the inspection of blow-molded 
plastic tubes due to their shape, color and the shininess of 
their surface. Therefore, the inspection of this kind of 
pieces is usually done by operators that practically cannot 
do anything else. They have to take the tubes just released 
from the blowing machine, visually verify their quality 
and reject those with non-admissible failures. 

These pieces are built in the following way: firstly, the 
cast polymer emerges from a pipe and falls forming an 
extruded hollow profile called parison (left image of Fig. 
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1). Once this has an adequate length, the two part mold 
covers it and compressed air is injected inside. 
Consequently, the parison expands to occupy the interior 
of the mold and then it cools down to get its form. 
Finally, a set of rotating blades cut the piece with the 
desired length and the mold opens up to let the tube fall 
down with its definitive shape (right image of Fig. 1). 
 

  
Fig. 1 On the left, a plastic parison falling between the mold’s 
two parts, and on the right, the REINER blowing machine for 

tubes used as outer covers of car dampers [17]. 
 

As it can be seen in Fig. 2, the typical failures of these 
tubes can be small and difficult to be quickly detected. 
Apart from being a cumbersome task for humans, it is 
prone to errors: the operator may not do the work paying 
the same attention for hours and it is usual to let some 
failures pass through [2]. The problem is that clients are 
becoming more exigent and, in occasions, they reject full 
batches of thousands of tubes due to a reduced number of 
non-valid pieces (e.g., a limit of 10 defective per million), 
which can lead to economic and logistic breakthroughs to 
manufacturing companies. 

The typical approach to determine if a piece is correct, 
in Industry, is to obtain its 3D reconstruction and then 
compare it with respect to a canonical shape, which 
usually corresponds to the CAD model of its design. 
There are several techniques to reconstruct the real 3D 
shape of objects for further quality inspection: e.g., stereo 
vision [3]-[5], Time-of-Flight (ToF) [6], digital fringe 
projection [7], space-time stereo [8] or structured light 
approaches (see [9] for a review), which include, laser 
based solutions [10], binary encoding [11]-[13], encoding 
by means of multiple grey-level values [14][15] and De 
Bruijn sequences based methods [16]. 
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Fig. 2 From left to right and top to bottom: a deformed tube, a hole, a burr and diverse defective cuts. 

 
However, these techniques are not the most suitable to 

reconstruct these tubes for detecting failures on them, fast 
enough to increase the productivity of the quality 
assurance process. The dark color of the material and 
specular reflection of their surface prevent to visualize 
clearly their projections in 2D images and therefore 
invalidate the techniques based on directional 
illumination or light patterns. On the other hand, their 
tubular shape makes it difficult to obtain the 3D 
reconstruction quickly as many high resolution calibrated 
views are needed to obtain a good enough quality to 
detect small failures. 

In this work we show how to build a low-cost system 
based on computer vision algorithms to reconstruct the 
shape of the surface of this kind of tubes, with precision 
using an uncalibrated camera and a laser beam. This 
system allows detecting deformations, holes and burrs on 
them, at a high speed using existing computing devices. 
Experimental results with tubes from REINER [17], show 
the suitability of the proposed system and methods for the 
automation of these tasks, improving in this way the 
productivity of blow-molded tube quality control process. 

II.  RELATED WORK 

There exist specific solutions for the reconstruction of 
industrial pieces and the detection of failures on them, 
depending on the type of piece, material, and/or defect. 
For instance, Biegelbauer and M. Vincze [18] focused 
their work on bore surface inspection using a robotic 3D 
vision-guided system that can deal with small and 
medium lot sizes. Beyerer [19] explained key ideas for 
the automated visual inspection for core shops and 
foundries, and remarked the importance of sophisticated 
illumination techniques and elaborated optical front ends 
for such task. Bonnot [20] aimed his efforts at detecting 
scratch and lack of machining defects on metallic 
industrial parts with streaked surface, and used for it a 
trained classification, created with well known typical 
objects of each class. Budd [21] patented a solution that 

allows the inspection of large cast machined surfaces 
without movement of the component, sensor or 
illumination system during acquisition of an image. Smith 
and Smith [22] described an approach for two- and three-
dimensional surface data capture from moving surfaces, 
based upon an evolution of the existing photometric 
stereo technique. Later on, Farooq et al. [23] adapted and 
extended these concepts for the high speed inspection of 
ceramic tiles. Pernkopf and O'Leary [24] presented an 
adaptive threshold selection algorithm for image 
segmentation, usable for the inspection of bearing rolls, 
where the surface reflectance properties are modeled and 
verified with optical experiments. 

In order to attain a more generality on X-ray inspection 
systems for non-destructive testing, Herold et al. [25] 
showed how a flexible automatic defect recognition 
system can be achieved using software building blocks to 
cope with all the different requirements and demands. 

In the case of tubes similar to those studied in this 
paper, Picon et al. patented a solution, described in [26], 
which achieves the inspection of each extreme side of 
metal tubes with a rotating scanner, usable for detecting 
failures such as defective cuts or deformations in those 
tube regions. Nevertheless, we demonstrate in this paper 
that it is not really necessary to perform the complex task 
of calibrating the views in order to detect deformations, 
holes and burrs on the surface of blow-molded tubes. 

III.  TUBE SHAPE RECONSTRUCTION 

Blow-molded tubes can be reconstructed using a 
standard 3D scanner. However, apart from being a time-
consuming task which would certainly lower the 
productivity of the checking process, it is not a 
satisfactory method to find holes and burrs on it. Fig. 3 
shows an example of the 3D scanning of one of these 
tubes. It can be seen that even if the mesh has a high 
enough density in order to model correctly holes, it is not 
capable of doing it (the hole’s position is marked in red). 
The distance between obtained surface vertices is smaller 



 

 

than the hole but, due to the small hole size and the dark 
color of the tube, the system is not able to distinguish 
between the hole and the surface at that place, and hence 
it “detects” some surface mesh vertices that do not 
correspond to the tube’s real shape. 

 

 
Fig. 3 An example of how a standard 3D scanner cannot detect 

a hole even if the point cloud density is high enough. 
 
On the other hand, it can be seen in Fig. 4 how a burr is 

modeled as a hole in the mesh. This happens because the 
system is not capable of modeling the abrupt laser 
deformation at that place with precision. It would be a 
good way of detecting burrs, but it is not in this case 
because, as it can be observed in the image, holes appear 
in the mesh even where there are no actual holes or burrs 
in the real object. Moreover, there are also some other 
small and isolated mesh regions “in the air” which should 
not be there. All these scanning errors occur because of 
the difficulty that the scanner has with the specular and 
dark surface of this kind of tubes. 

 

 
Fig. 4 An example of how a 3D scanner models a burr as a hole. 

 
The quality of this 3D reconstruction could have been 

improved if we would have applied on the tubes a thin 
matt and light liquid (or spray) to turn them into diffuse 
reflectors, but this is not suitable for our purpose of 
automating the failure detection process at a low cost. 

Instead of using this approach, we propose two system 
layouts to reconstruct the tube shapes. Both are composed 
of a linear laser beam perpendicular to the piece’s axis 
and a camera that observes the resulting laser projection 

profile from an oblique point of view (top image of Fig. 
5). The differences between both set-ups are the relative 
distances of the components and that in one of them the 
tube rotates around its axis while in the other the tube 
moves along it. Additionally, in the case of the translating 
set-up, as it is necessary to verify the whole surface, 
further cameras and laser beams, or various passes would 
be required. 
 

 
Fig. 5 From top to bottom: the translating and rotating tube 

system outlines, the observed laser profiles, and the obtained 
tube shape reconstructions for both systems. 

 
The procedure to reconstruct tube surface shapes is 

shown in Fig. 6. The first task to be done is to segment the 
line the laser projects from the images. This can easily be 
done if no ambient light is used at all, as high grey-level 
values directly correspond to those of the laser beam. On 
the contrary, the red color channel would be used from 
RGB images in the same way. 
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Fig. 6 Tube shape reconstruction diagram. 

 
Next, the first derivative of the laser profile is 

estimated and stored in a grey-level values slice. In order 
to obtain a smooth profile the following three steps are 
applied: 

1. The XY coordinates of the laser pixels are referred 
with respect to that of its extreme left one. 

2. For each pixel, the mean Y value of the N previous 
(meanYprev) and also the mean Y value of the next N 
neighboring pixels (meanYnext) to the current one are 
obtained. In our tests we have set N = 5, but in the 
extremes, only those available are used. 

3. Finally, meanYnext is subtracted with meanYprev and the 
result is divided by the difference between the 
previous and the next pixel X positions, i.e., by 2. 

Afterwards, the grey-level values of the resulting slice 
are normalized to improve the visualization quality. This 
is done by rescaling the grey-level values always with the 
same scaling factor for all slices obtained through time. 
This value is determined experimentally by the user. This 
must be done because there can be negative derivatives, 
while the final grey-level values must always be positive 
or zero. Therefore, negative derivatives will correspond 
to lower grey-level values. And finally, the obtained slice 
is added to the image that will conform through time the 
tube profile. 

The final reconstruction speed of the whole system 
depends on several factors, such as the camera’s 
framerate, resolution, field of view, the tube’s motion 
relative to the view, the tube’s size, the laser beam 
characteristics, the CPU speed, the RAM memory, the 
programming language, etc., whose relations are not 
studied in this work, but it can be stated that the proposed 
algorithm is not computationally expensive for off-the-
shelf equipment and that it leads to real-time framerates. 

IV.  TUBE DEFECT DETECTION 

Using our reconstruction approach the detection of 
holes is straightforward because the laser beam in their 
position is not reflected in the camera. The pixels of the 
slice where the laser is not detected are marked in the 
reconstruction image as red pixels. Hence, consecutive 
slices presenting a hole form a red blob or connected 
component in the reconstruction image. Thus, these blobs 

are detected looking for contours in the red channel of the 
image, and their area is used in order to reject small red 
regions, which are not real holes, like those produced by 
the laser being occluded by the embossed letters or 
symbols (see the reconstruction results at the bottom of 
Fig. 5). Once a red cluster with a considerable area is 
found in the reconstructed image, it is labeled with a 
message alerting to its presence. This algorithm works in 
the same way in the translating and rotating set-ups, but in 
the former the resolution of the camera may be 
concentrated in a smaller area of the tube, so even the 
smallest holes can be detected. 

The burr automatic detection algorithm is very similar 
to that of the holes (both procedures are shown in Fig. 7). 
In the rotating system the burrs produce an occlusion of 
the laser big enough to be detected as holes. The 
difference with respect to these comes from their shape 
and position, as burrs usually appear as elongated holes in 
the tube extremes. In principle, both burrs and holes could 
be simply labeled as “defects”, but distinguishing 
explicitly between holes and burrs is interesting for 
statistics analyses and system parameters adjustment. 

 

 
Fig. 7 Hole and burr detection procedure. 

Segment laser 
profile 

Input image 

Estimate first 
derivative of 

profile and store 
it in a grey-level 

slice 

Normalize 
obtained grey-
level values of 

slice 

Add slice to 
reconstructed 

image 

Refer XY 
coordinates of 

pixels respect to 
profile’s extreme 

left corner 

Calculate mean Y 
value of N previous 

and next 
neighboring pixels 

Subtract next 
and previous 

mean Y values 
and divide by 2 

Mark slice 
discontinuities in red 

Detect red blobs 
through connected 

components 

Check blob size and 
spatial ratio 

Hole 
(trans. and rot.) 

Burr 
(only rotation) 



 

 

The deformations or bulges are detected with the 
rotating system analyzing the curvature of the laser profile 
over the straight parts of the tube (Fig. 8). The profile of a 
correct tube is presented as a straight line. On the 
contrary, when a deformation appears, the profile forms a 
curve. This way the profile pixels located out of the 
straight line are marked as blue pixels in the 
reconstruction image. Therefore, consecutive slices 
presenting a deformation form a blue blob or connected 
component in the reconstruction image. 
 

 
Fig. 8 Deformation detection procedure. 

V. EXPERIMENTAL RESULTS 

The middle and bottom images of Fig. 5 show samples 
of observed laser profiles and resulting reconstructions 
for both translating and rotating tube systems. Darker 
grey-level values correspond to those in which the 
derivatives have lower values, while brighter to higher 
values, and therefore the reliefs of the tube surface can be 
appreciated. Moreover, it can be seen that the 
reconstructions have good enough quality even to permit 
reading the numbers engraved by the mold on the tube. 

In Figures 9-11 three samples containing holes, a burr 
and deformations on reconstructed tube shapes are shown. 
It can be observed how the holes and burrs are correctly 
labeled, and the deformed regions are highlighted by the 
system. The shape of the shadow projected by the burr 
during the reconstruction is marked in red (Fig. 10), the 
same as the shapes of the holes (Fig. 9), which correspond 
to those instants in which the laser beam profile is “cut” 
while the tubes are being moved. It can also be observed 
how the aspect ratio of holes and burrs has a remarkable 
difference so that both types of defects can be easily 
distinguished from one another. 

Finally, it can be observed that there are big enough 
areas marked in blue in Fig. 11, which correspond to 
those regions in which the difference between the 
expected shape and the measured one transgress the 
threshold. This piece can thus be considered as defective 
and consequently be rejected from the production line. It 
must be remarked that these detections are obtained while 
the piece is being scanned, so it is not really necessary to 
scan them completely and defective tubes can be rejected 

as soon as failures are detected on them. 
 

 
Fig. 9 Hole automatic detection. 

 

 
Fig. 10 Burr automatic detection. 

 

 
Fig. 11 Deformation automatic detection (marked in blue). 

VI.  CONCLUSION 

Two system set-ups have been proposed in this work 
for low-cost automatic defect detection in blow-molded 
tubes used as outer cover of car dampers [17]. The core 
of both systems only requires an uncalibrated camera and 
a laser beam for the visual analysis of the laser beam 
projection shape on the tubes. No ambient illumination is 
needed at all. 

In both systems the laser beam is set perpendicular to 
the tube’s axis, and the camera that observes the resulting 
laser is set from another point of view but in the same 
plane. In one of the layouts the tube rotates around its axis 
while in the other the tube moves along it. Both system 
configurations can be integrated in a manufacturing line 
in order to automatically check the pieces quality. 

Firstly, the laser beam profile is segmented, then its 
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shape’s smooth derivative is obtained, and finally it is 
rescaled to show the reconstructions as grey-level images. 
Those regions where the laser beam is not reflected are 
labeled as holes or burrs, depending on their position and 
shape. Deformations are detected in the rotating system 
by comparing the curvature of the laser profile over the 
straight parts of the tube with respect to straight lines. 

Experimental results show the suitability of the 
proposed method to detect the mentioned defects while 
tubes are being scanned. The presented procedure could 
be integrated with the solution proposed by Picon et al. 
[26], to inspect the extreme sides of the tubes. 
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