
J Real-Time Image Proc manuscript No.
(will be inserted by the editor)

Iñigo Barandiaran · Céline Paloc · Manuel Graña

Real-time Optical Markerless Tracking for Augmented Reality
Applications

Received: date / Revised: date

Abstract Augmented Reality (AR) technology consists in
adding computer-generated information (2D/3D) to a real
video sequence in such a manner that the real and virtual
objects appear coexisting in the same world. In order to get
a realistic illusion, the real and virtual objects must be prop-
erly aligned with respect to each other, which requires a ro-
bust real-time tracking strategy - one of the bottlenecks of
AR applications. In this paper we describe the limitations
and advantages of different optical tracking technologies,
and we present our customized implementation of both re-
cursive tracking and tracking by detection approaches. The
second approach requires the implementation of a classifier
and we propose the use of a Random Forest classifier.

We evaluated both approaches in the context of an AR
application for design review. Some conclusions regarding
the performance of each approach are given.

Keywords Augmented Reality, Optical Markerless track-
ing, Tracking by Detection

1 Introduction

The term Augmented Reality (AR) refers to a technology
that allows to add virtual information to the scene seen by
the user. In contrast to Virtual Reality where the entire en-
vironment is completely virtual, AR combines both virtual
and real objects in the same scene. Therefore, while Virtual
Reality substitutes the reality, AR enhances it. It is further-
more important to distinguish between AR and the special
effects of the film industry or TV production, where some
virtual characters or virtual objects appear perfectly inte-
grated within real objects. The main difference is that AR is

Iñigo Barandiaran
VICOMTech Paseo Mikeletegi, 57
20009, San Sebastian, Spain
Tel.: +34-943309230
E-mail: ibarandiaran@vicomtech.org

Céline Paloc E-mail: cpaloc@vicomtech.org · Manuel Graña E-mail:
ccpgrrom@si.ehu.es

meant to be used in real-time, while special effects produc-
tion can be processed off-line allowing the use of sophisti-
cated techniques which can be computationally expensive.

Most of the computational costs are due to the tracking
process, in order to align properly the real and virtual objects
with respect to each other and to produce a realistic illusion
of fusion between the two worlds. The eyesight is one of the
most important senses for the perception of the human be-
ing. Hence, any discrepancy between real and virtual object
would be automatically detected by the human’s eye and the
AR effect would be missed. Despite the rapid development
of computational power and specialized hardware such as
programmable graphics units (GPUs), tracking technology
still suffers from a notorious lack of robustness and high
computational costs. These drawbacks get drastically worse
in an uncontrolled context such as outdoor, where it is dif-
ficult to calibrate the environment, add landmarks, control
lighting and limit the operating range to facilitate tracking.
In this paper we address the tracking problem for AR appli-
cations in uncontrolled environments.

While a large variety of tracking systems are commer-
cially available (mechanical, acoustic, magnetic, inertial and
optical sensors), most of those systems are meant to be used
in perfectly known contexts, where the variables that affect
the tracking can be controlled easily. In uncontrolled envi-
ronment, the tracking process should work without adapting
the object or the environment to be tracked, such as plac-
ing special landmarks or references. This issue is known
as markerless tracking. Optical sensors have been recently
widely explored to answer markerless tracking [11].

Optical markerless tracking uses natural features such as
edges, corners or texture patches, extracted from the images
acquired by a camera. By using natural features, the use of
artefacts such as reflective markers is avoided, allowing the
system to be more flexible and being able to work in non-
well controlled conditions. In our approach we use the fact
that natural plane surfaces are common structures either in
an indoor or outdoor scenario. The ground, the building fa-
cades or walls can be seen as planes. Therefore we propose
to focus our work on optical markerless tracking for planar
structures in unprepared environments.



2

The paper is structured as follows: in Section 2 we re-
view some requirements for an optical markerless tracking
method to be reliable. Section 3 describes two approaches
we evaluated to solve the camera pose estimation problem.
In Section 4, implementation details and some results are
given. Finally, Section 5 summarizes some conclusions and
future work.

2 Requirements for Optical Markerless Tracking

Optical markerless tracking technology is basically based on
image processing, using a digital camera as a main input data
device.

Figure (2) shows a typical design of an AR application
based on optical tracking. A camera is capturing images from
the world (environment). These images are transferred to a
computing workstation where they are processed to extract
useful information, such as the camera pose transformation.

Fig. 1 Schema of an AR application based on optical markerless track-
ing.

The term camera pose refers to the transformation, trans-
lation and orientation, between the objects or environment
coordinate system and the camera coordinate system, as de-
picted in Figure 2. This transformation should be estimated
dynamically, as fast as possible, in order to realistically in-
tegrate virtual objects between real ones, during the track-
ing sequence. This estimation must be very accurate so that
virtual objects appear rigidly fixed to the real world. If this
transformation is inaccurate, the objets will not appear cor-
rectly aligned, as shown in Figure 3. Depending on the qual-
ity of the images, or the user motion, the pose estimation
might be difficult to solve and the tracking process might
fail. In these cases, some user interaction, such as the man-
ual input of some specific points, or initial camera pose esti-
mation could be required to help the system to compute the
next camera values.

The requirements stated in this section pay special atten-
tion to the software features as well as its integration with the
hardware. Key features of software are usability of the user

Fig. 2 World, object and camera coordinate systems.

interface, efficiency, real-time performance and robustness;
the most important aspects related to hardware are portabil-
ity, reliability, and costs.

2.1 Robustness

The tracking must be achieved with a minimum level of ro-
bustness, without failing, or continuously re-initializing the
tracking process. Besides tracking loss, some other problems
may appear such as drift or jitter. The drift problem refers to
the displacement of the origin of the world coordinate sys-
tem. When recursive techniques are applied to estimate the
camera pose, some error accumulation over time may occur.
This error accumulation causes the impression that the vir-
tual objects are floating between real ones. The jitter prob-
lem is caused by small variation in the camera pose trans-
formation between frames, even when there is no variation
in neither the objects nor the camera. This difference causes
the effect that virtual objects appear flickering in the images,
not being rigidly fixed in the real world. Such effects should
be avoided as much as possible.

Fig. 3 (a)Wrong camera pose estimation, (b) Correct camera pose es-
timation, the virtual object appears correctly aligned with real world.

2.2 Performance

The tracking process must be fast, minimizing the time needed
for the pose computation, so that achieve near real time sys-



3

tem performance is achieved. Any delay between image ac-
quisition and final image generation will deteriorate the ef-
fect of integration of virtual and real objects. In some cases,
the rendering of the final image can be synchronized with the
virtual object generation, for example when using a video
see through head mounted display. However, with this ap-
proach the frame rate could be lower than real-time. If the
generated images are highly delayed, the user will perceive
the difference between the physical stimulus of its move-
ments and the visual stimulus, making the AR application
uncomfortable. Such delay should be reduced as much as
possible.

2.3 Set-up Time

The initial setup on-site includes the following tasks:

1. Camera calibration: The calibration step is mainly re-
lated to the estimation of the internal camera parame-
ters, i.e. focal length, principal point, and possible radial
or tangential distortion. The calibration should be per-
formed only once.

2. Model acquisition: Some a priori knowledge of the en-
vironment or object to be tracked must be obtained. This
task consists in acquiring and processing some informa-
tion of the environment that the user wants to track in
order to construct a model used as a reference.

The initial on site setup must be as short as possible for the
AR application to be practical.

3 Methods

Our approach to obtain the camera pose is based on the
tracking of plane surfaces. The 3D world planes (ground,
building facades, walls) and their projection in the image
are related by a plane to plane projective transformation,also
known as homography or collineation. It can be modelled as
a 3x3 matrix H with eight degrees of freedom. The camera
pose can be recovered by estimating this homography be-
tween a world plane and its image. This estimation can be
carried out by tracking points lying on the world plane, and
matching them frame by frame.

For optical markerless tracking two main groups can be
distinguished: recursive and tracking by detection techniques.
Recursive techniques start the tracking process using an ini-
tial guess or a rough estimation, and then refine or update
it over time. They are called recursive because they use the
previous estimation for calculate the next one.

Contrary, tracking by detection techniques can do a frame
by frame computation independently from previous estima-
tions. In this case, some a priori information about the envi-
ronment or the objects to be tracked is needed.

We have worked on the camera pose estimation problem
using two different approaches. The first one is based on re-
cursive tracking and the second one based on tracking by

detection method. The latter requires the implementation of
a keypoint classifier, which directly impacts on the tracking
performance. In the following, we present these methods in
detail.

3.1 Camera Pose Estimation

As described in section 2 this problems tries to find the geo-
metric transformation between two coordinate systems, more
precisely, between the world or object coordinate system and
the camera coordinate system. When this transformation is
obtained, a virtual camera can be transformed accordingly,
and so the virtual objects can be accurately aligned in the
images.

The camera pose represents a transformation compound
of a rotation matrix R and a translation vector t between two
coordinate systems.

Rt =




R11 R12 R13 | tx
R21 R22 R23 | ty
R31 R32 R33 | tz


 (1)

Besides the external camera parameters of Equation 1, the
internal or intrinsic camera parameters define how the cam-
era projects the points on to the image plane, excluding ge-
ometrical distortions:

K =




fx s cx
0 fy cy
0 0 1


 (2)

where cx and cy represents the coordinates of the principal
point, fx and fy the focal length and s the skew, all in pixel
units. This internal camera parameters of Equation 2 are in-
dependent of the camera pose.

The whole world to image projection mechanism can be
described as:



x
y
1


 = KRt




X
Y
Z
1


 (3)

Equation (3) represents the projection of a point defined in
world coordinate system, to a point in image coordinate sys-
tem, both in homogeneous coordinates, given a pinhole cal-
ibrated camera model. This equation is usually represented
more briefly as m = PM, where P = KRt.

If we choose that the Z coordinate equals zero for all
points M of the world plane π , we obtain:

m = PM = [p1 p2 p3 p4]




X
Y
0
1


 = [p1 p2 p4]




X
Y
1


 (4)

where each pi represents a column vector of the matrix P.
Then the mapping between points on the world plane Mπ =
(X ,Y,1)t and their image m is a planar homography m =



4

HMπ , where H = [p1 p2 p4]. This expression can be written
as:

H = K [r1,r2, t] (5)

where ri are the columns of the rotation Matrix R and t the
translation vector.

For the estimation of the homography H, it is needed to
find some point correspondences in both planes Mπi ⇔ mi,
where Mπi is the point in the world plane π and mi is its cor-
responding point in the image. In the context of markerless
tracking, these points are known as natural features.

The expression m = HMπ can be rewritten as:

mxHMπ = 0 (6)

Each correspondence Mπi ⇔mi gives rise to two linearly in-
dependent equations in the entries of H. Therefore, as a ho-
mography has eight degrees of freedom, only four coplanar
non-collinear points are needed. Given four or more corre-
spondences, we obtain a set of equations Ah = 0 where A is
a matrix of equation coefficients contributed from each cor-
respondence and h is the vector of unknown entries of H.

If more than four correspondences are given, then the lin-
ear system Ah = 0 is over-determined and usually noisy. So,
only an approximated solution can be obtained, for example
by using singular value decomposition (SVD). This method
is known as Direct Linear Transformation (DLT)[8].

As mentioned above, a calibrated camera is represented
as P = KRt. Once H and the internal camera parameters K
are known, the camera pose Rt can be recovered from equa-
tion 5,as:

HK−1 = (R1R2t) (7)

where K−1 is the inverse of the internal camera parameters
matrix, t is the translation vector, r1r2 are the two columns of
the camera rotation matrix. The third column of the rotation
matrix R3 can be obtained by the cross-product of r1 and r2.

Since we are using the internal camera parameters for the
camera pose estimation, the camera must be calibrated be-
forehand. This calibration task is carried out by taking sev-
eral images of a calibration pattern, for example a picture
with white and black squares from different distances and
points of view as shown in Figure 4 [20].

3.2 Recursive Tracking

In the first steps of the development of the markerless track-
ing module, we implemented a recursive tracker to solve the
homography estimation. Recursive tracking techniques start
the tracking process from an initial guess or a rough estima-
tion, and then refine or update it over time. They are called
recursive because they use the previous estimation to propa-
gate or calculate the next estimation.

In this recursive approach, the initialization of the track-
ing process consist in selecting manually in the images the
projection of four points lying on the same plane in the 3D

Fig. 4 Images of a calibration pattern taken with different orientations
and scales.

world. Once these four points are available, the first homog-
raphy estimation takes place starting the tracking process.
During the tracking process, this homography is continu-
ously updated by extracting points from images, using the
Harris operator [9], matching them between previous and
current images and calculating a new homography.

When only four points are used to estimate the homog-
raphy, it is said that a minimal solution is obtained. In this
context, minimal means that any error generated in the loca-
tion of any of the four points will degenerate the estimation.
Depending on the generated error, the estimated homogra-
phy can be completely distorted.

For this reason the homography estimation is typically
performed using more than four points correspondences. A
point correspondence is considered an outlier if it is gener-
ated from another plane or if it is a wrong correspondence
(mismatch) between points of the same plane. Algorithms
using random sampling are well-known methods for robust
matching even in the presence of outliers. Those algorithms,
applied to homography estimation search randomly a combi-
nation of four points from the available candidates and esti-
mate a transformation. The estimated transformation is then
tested with the rest of points. The transformation that obtains
more support (number of inlier points) after some fixed num-
ber of iterations is selected as the best one. In our prototype,
we integrated the RANSAC method.

During the estimation process several errors may occur,
such as point miss-matching due to severe changes of the il-
lumination conditions or fast movements (motion blur). Due
to the recursive nature of this kind of tracking, this approach
is highly prone to error accumulation. The error accumu-
lation over time may induce a tracking failure, requiring a
re-initialization of the tracking process, which can be cum-
bersome and not feasible in practical applications.



5

3.3 Tracking by Detection

Other approaches are known as tracking by detection. In this
kind of techniques some information of the environment or
the object to be tracked is known a priori. They are also
known as model-based tracking because the identification
of some features in the images (texture patches or corners)
corresponding to a known model are used to recognize such
objects.

This kind of tracking does not suffer from error accu-
mulation because, generally, does not rely on the past. Fur-
thermore, these methods are able to recover from a tracking
failure since they are based on a frame by frame estimation.
They can handle problems such as matching errors or partial
occlusion, being able to recover from tracking failure with-
out intervention [19].

Tracking by detection needs data about the objects to be
tracked prior to the tracking process itself. This data can be
in form of a list of 3D edges (CAD model) [18], color fea-
tures, texture patches or point descriptors [13, 14]. Then the
tracker is trained with this a priori data, to be able to rec-
ognize the object from different points of view. A good sur-
vey about different model-based tracking approaches can be
found in [11, 21].

Some authors propose the use of machine learning tech-
niques to solve the problem of wide baseline keypoint match-
ing [3, 15]. Supervised classification systems requires a pre-
processing, where a system is trained with a determined set
of known examples (training set) that represents variations in
all their independent variables. Once the system is trained, it
is ready to classify new examples. Some of the most widely
used supervised classifiers are for example, k-Nearest Neigh-
bors, Support Vector Machine or decision trees. While k-
Nearest Neighbors or Support Vector Machine can achieve
good classification results, they are still too slow and there-
fore not suitable for real-time operation [10].

Recently the approach based on decision trees has been
successfully applied to tracking by detection during feature
point matching task, by training the classifier to establish
correspondences between detected features in a training im-
age and those in input frames [15].

In previous work [2], and based on the work of [12], we
showed that Random Forest is a suitable classifier that can
be applied in markerless tracking. This classifier is compu-
tationally fast and able to support a large number of different
classes in high dimensional spaces (the number of features
in each class).

In the following section the approach based on Random
Forest is described in more detail.

3.3.1 Random Forest

We propose a supervised classification method based on Ran-
dom Forest for interest point matching. This classifier is a
multi-classifier based on Random Trees. This classifiers are
a specific variation of a decision tree [4]. When the tree is
constructed and trained, each node contains a discriminant

criteria which allows to decide how to go down or traverse
the tree. The classifier is able to detect key-point occurrences
even in the presence of image noise, variations in scale, ori-
entation and illumination changes.

A Random Tree is called random because instead of per-
forming exhaustive search in order to find the best combi-
nation of features to define a discriminant criteria in each
node, just some random combinations of them are evaluated.
When the number of different classes to be recognized and
the size of the descriptor of such classes is high, an exhaus-
tive analysis is not feasible. Additionally, the examples to
be used for the training process are selected at random from
the available ones. The combination of several random trees
forms a multi-classifier known as Random Forest. One of
the advantages of the Random Forest is its combinational
behavior. If a random tree can be weak itself, i.e. its recogni-
tion rate is low, then the combination of such weak tree can
generate a strong classifier [4].

3.3.2 Training

In a typical supervised learning scenario, a training set is
given and with the goal to form a description that can be
used to predict previously unseen examples and recognize
known examples. Each class must be defined and described
before the training process itself. In supervised classification
a class Ci is defined as a set of attributes ai, known as features
Ci = {a1,a2, ...,an}.

In order to define the classes that will be recognized by
the classifier, we use a point extractor [17] to get the candi-
date points and their surrounding patches, as shown in Fig-
ure 5.

Fig. 5 (a) Interest point p, (b) Pixels surrounding the interest point p
[17]

Then, the classifier assigns a class number to each point,
and their class descriptor is defined. The descriptor of each
class is constructed as the pixel intensity values of the ex-
tracted patch centered at the interest key-point. Once the
classes to be recognized by the classifier are defined, a train-
ing set must be generated. As described in [12], we can ex-
ploit the fact that the patches belong to a planar surface.
Therefore, we can then synthesize different new views of
the patches using warping techniques as affine deformations.
These affine transformations are needed to allow the classi-
fier to identify or recognize the same class seen from differ-
ent points of view and at different scales. This step is par-



6

ticularly important, when the camera will be freely moving
around the object.

Once the training set is ready, the training task can be
started. During this task, a number of examples are randomly
selected from the available ones. These examples are pushed
down in the trees. In order to decrease the correlation be-
tween trees, and thus increase the strength of the classifier,
different examples from the training set must be pushed down
in each tree. This randomness injection favors the minimiza-
tion of trees correlation and avoids overfitting as well. This
term refers to the situation in which the training algorithm
generates a classifier which perfectly fits the training data
but has lost the capacity of generalizing instances not pre-
sented during training.

While building up the tree, each non-terminal node of
every tree is treated as follows:

1. N training examples from the training reach the current
node.

2. A random set of n pixel positions within the image are
selected and written in that node.

3. The examples are tested with the selected set of pix-
els. Depending on the result of this test, they are pushed
down to their corresponding child node.

4. The above process is recursively applied to the children
nodes, whether until there is only one example, or only
one class is represented in the remaining examples or the
maximal predefined depth is reached. As shown in Fig-
ure 6 when the examples reach a leaf node, the posterior
probability distribution are updated with those examples.

Once the descriptors reach the bottom (maximal depth)
of the tree, it is said that they have reached a terminal node
or a leaf node, and the recursion stops. In leaf nodes the class
posterior probability distributions are stored. These distribu-
tions represent the ratio class examples from the training set
that has reached that node, with respect to the total number
of examples in the training set. When an example of a given
class has reached a leaf node, the posterior probability dis-
tribution stored in that node must be updated accordingly.

The tests to be performed in each node j in every tree k
can be, for example, binary tests based on the comparison of
the intensity values of two pixels as:

nk, j =
{

GoLe f tChild i f (p j,1− p j,2)≥ t
GoRightChild otherwise (8)

Where v(p j,1) and v(p j,2) represent the intensity values
of two pixels located respectively at positions p j,1 and p j,2
stored in node j. The values of these positions were ran-
domly selected during the training step. The value of t repre-
sents a threshold that can also be randomly selected during
training. We have also experimented that, given the weak-
ness of the tests, smoothing every patch before training and
classification, significantly increases the final reliability of
the classification.

Fig. 6 Random Tree construction: When the examples reach leaf
nodes, then the posterior probability distributions are updated.

3.3.3 Tracking

Once the classifier is built, i.e. the pixels to be tested in each
node and the class posterior distributions of all classes are
calculated, it is ready to identify keypoints. During the clas-
sification task any example (image patch) is dropped down
in every tree that constitutes the forest. These examples will
be dropped down the tree until they reach a leaf(terminal)
node. The node they reach will depend on the results of
the tests (Equ. EQU:travers) obtained in the previous non-
terminal nodes they visit, as depicted in Figure (7).

As depicted in Figure 7 the example to be classified tra-
verses the tree until it reaches a leaf node. When the example
reaches a leaf node, the tree will return the posterior proba-
bility distribution vector stored in that node. This probabil-
ity vector represents, for each class, the probability of the
example to be an instance of one of the trained class. This
is P(Y = Ci|Ti,n = η) where Ti is a given tree of the forest
and η is the reached node by the example (image patch) Y
and Ci represent every class that was previously trained, dur-
ing the training step. The size of the posterior distributions
vector equals the number of different classes trained by the
classifier.

As explained in Section 3.3.1, a Random Forest is a multi-
classifier, i.e. is a set M of classifiers Ti M = T1,T2, ...,Tn.
The main idea of a combination methodology is to combine
a set of models (classifiers), each of them solving the same
original task, in order to obtain a better composite global
model, with more accurate and reliable estimates or deci-
sions than those obtained from a single model. Like any
other multi-classifier, the Random Forest needs to combine
the independently generated output by each tree in the forest
in order to assign a final class label to the examples to be
classified.

In our approach we are using a distribution summation
combining method [1]. This method sums up the conditional
probability vector obtained independently by each tree in the
forest. The selected class is chosen according to the highest



7

Fig. 7 Example of image patch classification: The image patch tra-
verse the tree until a terminal node is reached.

value in the total vector:

Class(x) = argmaxci ∑
k

Pk(Y = ci|x) (9)

During tracking, the Random Forest classifier is applied to
interest point matching between points m extracted from im-
ages and points M of the model. With the set of putative
matches Mi ⇔ mi the homography estimation can be ob-
tained as explained in Section 3.1. After the classification
step, wrong classified examples (outliers) can be removed
by using robust estimation techniques such as RANSAC [7]
in order to obtain a more accurate homography estimation.
Furthermore, the final estimation can be refined by using
Levenberg Marquardt non-linear minimization starting from
the estimation obtained by RANSAC, and using all the inlier
points. This non-linear minimization favors the reduction of
the jitter problem (see Section 2), obtaining more accurate
estimations. More details are given in [1].

4 Application to markerless tracking

The approaches for markerless tracking described previously
were applied within an innovative system for collaborative
mobile mixed reality design indoor and outdoor review. In
the next section we describe this application more in detail.

4.1 Implementation Details

As described before, our tracking module is based on mark-
erless techniques using natural features to estimate the posi-
tion and orientation of the digital camera. The tracking mod-
ule can be used either in indoor or outdoor scenarios, where
a well textured plane is present. Figure 8 shows the tracking
module working on indoor and outdoor scenarios.

The application involves the integration of different mod-
ules such as visualization device (HMD, display wall), ren-
dering, image transmission and tracking. All these modules

Fig. 8 (a) Outdoor tracking of a building facade, (b) indoor tracking
of a textured floor.

can interact and share information through a communication
module or communication backbone. Similarly the other sub-
systems proposed in the design, the tracking subsystem needs
to be connected to the communication backbone in order
to deliver tracking information to other modules, like the
rendering module. The rendering module will uses tracking
information (camera pose) to update the virtual camera ac-
cordingly and therefore renders the virtual objects correctly
aligned with real ones. The connection of the markerless
tracking module with the communication backbone is re-
alized by using OpenTracker [16]. OpenTracker is an open
software architecture that allows the interaction between dif-
ferent tracking approaches and tracking input devices.

During the tracking process, every new camera pose esti-
mation must be converted to an OpenTracker state structure
and delivered through the communication backbone to be
accessible for other clients.

As described earlier, tracking by detection techniques re-
quire an off-line process when the classifier is trained. For
this task, one image of a highly textured plane, such as a
building facade or a picture over a table, must be acquired.
After the acquisition, some feature points and their surround-
ing texture patches are extracted from the image, and syn-
thetic views of the plane are generated. Afterwards, the train-
ing step starts automatically using the generated views as the
training set. Once the training period is finished, the system
is ready for tracking as shown in Figure (9).

Fig. 9 (a) Keypoints extracted from a building facade. (b) Classifier
training.

The markerless tracking module uses OpenCV for image
acquisition and processing, and our own C++ implementa-
tion of the Random Forest classifier for the keypoint recog-
nition and matching.



8

4.2 Results

The approach based on recursive tracking is very unstable,
tending to fail easily. Moreover, it does not allow to move
rapidly the camera, as of image blur generates tracking error.
In comparison with the recursive tracking implementation,
the tracking by detection module allows the tracking to run
faster, being more robust against partial object occlusion, or
fast camera movement.

The classifier integrated in the tracking by detection mod-
ule is trained to be able to recognize about 150 different
classes (image patches). The Random Forest classifier is con-
structed with 15-20 trees. As mentioned before, every tree
that forms the forest is independent from the rest and will
generate an individual output. The forest is trained with a
training set of 1000 synthetically generated new examples.
This training step, i.e. the set up preparation takes less than
5 minutes. This size of the training set is a good compro-
mise between training time and final accuracy of the clas-
sifier. Training time is a very important factor in practical
situations such as outdoor.

In order to evaluate the computational costs of the method,
we conducted some tests using different hardware with the
same memory amount but different CPUs. The obtained frame
rate on different CPUs is given on Figure 10. The obtained

Fig. 10 Frame Rate Tracking Results

frame rate with SVGA image resolution is about 20-25 frames
per second (near real-time) on a 1.6Ghz dual core CPU by
using the Random Forest based classification technique. This
frame rate may vary depending on the accuracy of the tracker,
i.e. depending on the number of different points to be recog-
nized. More details can be found in [2].

For about 150 points the tracker obtains good accuracy
and the frame rate is near real-time. The drift and jitter are
well controlled, so no severe displacements of the objects
occur. On older CPUs, the obtained frame rate is lower, for
the same number of points and trees. Better frame rates can
be obtained by switching off the jitter filtering module or re-
ducing the maximum number of identifiable points, but the
accuracy decreases, increasing the object jittering. Regard-
ing robustness and practicality, the tracker can run indefi-
nitely without requiring a new initialization.

5 Conclusions and Future Work

In this work we have presented two approaches to solve the
camera pose estimation problem in uncontrolled environ-
ment. While the recursive approach is computationally light,
it is also very unstable and tends to fail, losing tracking infor-
mation easily. The approach based on tracking by detection
is more robust.It does not accumulate tracking errors over
time and can obtain real-time frame rate.

We selected the Random Forest based classifier, as being
fast, accurate enough and supporting a high number of iden-
tifiable classes, which makes it more robust against partial
object occlusions. As a drawback, this approach requires a
pre-processing to train the classifier with images of the plane
to be tracked.

We think that machine learning techniques such as Ran-
dom Forest is a very promising technique for optical marker-
less tracking. We project to extend our work to support on-
line training classification, like in [15]. The advantage of on-
line training is that it allows the tracking to update the model
with new feature points not present in the original training
set. This increases the robustness of the model and the over-
all accuracy of classification rate. As described in [19] on-
line training can be exploited in several frameworks such as
Simultaneous Localization and Mapping (SLAM), or other
recursive techniques [5, 6] as a tracking initialization mech-
anism.

Acknowledgements This work has been partially funded under the
6th Framework Programme of the European Union (EU) within the
project ”IMPROVE”: IST FP6- 004785.

References

1. Barandiaran, I., Cottez, C., Paloc, C., Graña, M.: Ran-
dom Forest Classifier for Real-Time Optical Markerless
Tracking. In Proc. of VISAPP, Vol:2, 559-564 (2008)
ISBN:978-989-8111-21-0

2. Barandiaran, I., Cottez, C., Paloc, C., Graña, M.: Com-
parative Evaluation of Random Forest and Fern Clas-
sifiers for Real-Time Feature Matching. In Proc. of
WSCG, 159-166 (2008) ISBN 978-80-86943-15-2

3. Boffy, A., Tsin, Y. Genc, Y.: Real-Time Feature Match-
ing using Adaptative and Spatially Distributed Classifi-
cation Trees. In Proc. of BMVC. Vol:2, 529-539 (2006)

4. Breiman, L.: Random Forests. Machine Learning Jour-
nal, Vol:45, 5-32 (2001)

5. Chandaria, J., Graham, T., Stricker, D.: The MATRIS
project: real-time markerless camera tracking for Aug-
mented Reality and broadcast applications. Journal
of Real Time Image Processing, Vol:2 69-79 (2007)
DOI:10.1007/s11554-007-0043-z

6. Davison, A.J., Mayol, W., Murray, D.W.: Real-time lo-
calisation and mapping with wearable active vision. In
Proc. of ISMAR (2003)



9

7. Fischler, M. A., Bolles, R. C.: Random Sample Consen-
sus: A Paradigm for Model Fitting with Applications to
Image Analysis and Automated Cartography. Comm. of
the ACM, Vol:24, 381-395 (1981)

8. Hartley, R., Zisserman, A.: Multiple View Geometry in
Computer Vision. Cambridge University Press, 2nd edi-
tion (2004) ISBN: 0521-54051-8

9. Harris, C. Stephens, M. J.: A combined corner and edge
detector. In Alvey Vision Conference, 147-152 (1988)

10. Lepetit, V., Pilet, J., Fua, P.: Point Matching as a Classi-
fication Problem for Fast and Robust Object Pose Esti-
mation. In Proc. of CVPR, Vol:2, 244-250 (2004) ISSN:
1063-6919

11. Lepetit, V., Fua, P.: Monocular model-based 3D object
tracking of rigid objects: A survey. Foundations and
Trends in Computer Graphics and Vision, Vol:1, 1-89
(2005)

12. Lepetit, V., Fua, P.: Keypoint Recognition Using Ran-
domized Trees. IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol:28(9), 1465-1479 (2006)
ISSN: 0162-8828

13. Lowe, D.: Distinctive Image Features from Scale Invari-
ants Keypoints. International Journal of Computer Vi-
sion, Vol: 20(2) 91-110 (2004)

14. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisser-
man, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool,
L. V.: A Comparison of Affine Region Detectors. Int.
Journal of Computer Vision, Vol: 65(1-2) 43-72 (2005)
ISSN:0920-5691

15. Özuysal, M., Fua, P., Lepetit, V.: Feature Harvesting for
Tracking-By-Detection. In Proc. of European Confer-
ence on Computer Vision, 592-605 (2006) ISBN:3-540-
33836-5

16. Reitmayr, G., Schmalstieg, D.: OpenTracker: A Flex-
ible Software Design for Three-Dimensional Interac-
tion. Virtual Reality Journal, Vol:9, 79-92 (2005) DOI:
10.1007/s10055-005-0006-2

17. Rosten, E., Drummond, T.: Machine Learning for High-
Speed Corner Detection. In Proc. of European Con-
ference on Computer Vision, 430-443 (2006) ISBN
3540338322

18. Vacchetti, L., Lepetit, V., Fua, P.: Combining Edge and
Texture Information for Real-Time Accurate 3D Cam-
era Tracking. In Proc. of IEEE and AM International
Symposium on Mixed and Augmented Reality, Vol:4,
48-57 (2004) ISBN:0-7695-2191-6

19. Williams, B., Klein, G., Reid, I.: Real-time SLAM Re-
localisation. In Proc. of IEEE Interrnational Conference
on Computer Vision, 1-8 (2007)

20. Zhang, Z.: A flexible new technique for camera calibra-
tion. IEEE Trans Pattern Anal. Mach. Intell. Vol:22(11),
13301334 (2000). DOI: 10.1109/34.888718

21. Lepetit, V., ”On Computer Vision for Augmented Real-
ity,” in Pro-ceedings of the International Symposium on
Ubiquitous Virtual Re- ality, pp 13-16, 2008.


