
Using Semantics to Bridge the Information and 
Knowledge Sharing Gaps in Virtual Engineering 

Javier Vaquero1, Carlos Toro1, Carlos Palenzuela2, Eneko Azpeitia3  
 

1 Vicomtech Research Centre, Mikeletegi Pasalekua 57, 20009 San Sebastian, Spain 
{jvaquero, ctoro}@vicomtech.org 

2 Inge-Innova, Albert Einstein 44, 01510 Miñano, Spain 
3 Inertek 3D, Laga Bidea 804, 48160 Derio, Spain 

Abstract. In a Product Life Cycle (PLC) scenario, different Virtual Engineering 
Applications (VEA) are used in order to design, calculate and, in general, to 
provide an application scenario for computation engineering. The diverse VEA 
are not necessarily available when information sharing is needed, a fact that 
represents a semantic loss as the knowledge gained by using one VEA can be 
lost if a data translation occurs (e.g. a Finite Element program is normally able 
to export only the geometry). In this paper we present an architecture and a 
system implementation based on semantic technologies which allows a 
seamless information and knowledge sharing between VEA in a PLC scenario. 
Our approach is validated through a Plant Layout Design application which is 
able to collect knowledge provided by different VEA available. This work 
presents our system leaving a statistical analysis for future work, as at the 
moment our system is being tested. 
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1   Introduction  

Virtual Engineering (VE) is defined as the integration of geometric models and their 
related engineering tools such as analysis, simulation, optimization and decision 
making, within a computerized environment that facilitates multidisciplinary and 
collaborative product development [1]. Virtual Engineering Applications (VEA) are 
the software implementations of VE. Each VEA in turn contains a set of Virtual 
Engineering Tools (VET), which is the collection of features that the VEA offers, e.g. 
in a CAD-like VEA tools like: makeLine(), drawCircle(), should exist.  

Nowadays, VEA barely exploit the capabilities of contextual facts, user 
requirements, user experience and in general, of factors that could be easily modelled 
and advantaged from a semantics point of view.  

From a Product Life Cycle perspective, the use of different VEA in each one of the 
stages is a common practice, for example CAD in the Design stage or FEA in 
Analysis stage. Some VEA are even proved valuable in several stages. However in 
this scenario, a semantic loss is reported [2] as in the outmost cases the geometry is 
the only feature that prevails. Information and knowledge sharing between VEA has 



become an important gap for several reasons which include commercial interests of 
the manufacturer, the nature of legacy products and language incompatibilities. To 
approach a solution to this problem, we propose an architecture and a system 
implementation where all the knowledge generated by VEA in a PLC through its 
underlying VET is stored in a central knowledge repository. This repository is 
accessible to the aforementioned Virtual Engineering Applications in a persistent 
manner, providing a semantic support for the PLC and hence dropping redundancy 
whilst reducing important costs associated with typical format healing problems and 
information loss.  

This paper is organized as follows: In section 2, we present briefly the related 
concepts necessary for our approach. In section 3, we present our proposed 
architecture for the semantic approximation to the information loss problem in PLC. 
In section 4, we present a system based in the proposed architecture for a plant design 
layout task. Finally, in section 5 we present our conclusions and future work. 

2   Related Concepts 

In this section we present a short overview of some concepts relevant to this paper. 
An interested reader is invited to review [3], [4], [5] for a wider explanation of the 
concepts presented. 

2.1   Virtual Engineering Applications (VEA)  

As stated in the introduction, VEA as implementations of the VE concept, are 
arguably the main facilitators of a new product development. In Fig. 1, the 
components of a VEA are presented following the sub-division introduced in [3]. 

  

 

Fig. 1. According to [3], VEA are divided into 5 different parts: characteristics, requirements, 
interaction paradigms, underlying VET and extension capabilities.   

 



In general, a VEA is composed by:  
 

(i) A Set of Characteristics, which is the expected benefits of the VEA in terms 
of capabilities, features, accepted formats for input/output interactions.  

(ii) A Set of Requirements, which is the minimum requisites that must hold the 
computer system where the VEA will be used. 

(iii) A Set of Interaction paradigms, which is the different GUIs, input/output 
device characteristics (e.g. mouse, screen), etc. 

(iv) A Set of VET, which is the collection of underlying tools which allow the 
fulfilment of the characteristics of the VEA. 

(v) An Extension Capabilities Mechanism, which is generally provided via an 
API or scripting languages, allowing the programmatic extension of the 
VEA. 

2.2   Classical Approaches in Interoperability between Virtual Engineering 
Applications 

The interoperability between VEA is approached classically through data exchange. 
As each VEA support its own native format for the serialization of its internal data, it 
is necessary to use a translator between native formats. Translators are often specific 
for certain needs and no extrinsic knowledge is arguably translated from VEA to 
VEA, resulting in problems when a new functionality is available (a new VET for 
example) and producing inoperativeness until an updated version is presented [6].  

Translators do not render a complete solution because suppliers provide only 
compatibility for a small set of features and in many cases the translation results will 
make no sense as different perspectives are not taken into account. One example of 
the aforementioned scenario could be the case of a pipe element designed in CAD and 
the same element considered in a cost handling VEA, although involving the same 
object, the translation is meaningless because the perspective changes. In some cases, 
the VEA supplier provides APIs for the development of new translators [7], [8], but 
this is arguably not a common practice due to marketing reasons or legacy systems.  

Another solution reported, is related to the use of open standards for data 
exchange. Examples of these are IGES [9] for graphics or EDI [10] for ERP. These 
open standards provide a way to share information, but such information is far from 
the concept of knowledge as specialised relationships are lost in the translation, 
resulting in semantics loss as described in [2]. 

Semantic interoperability is one of the newest approaches in the state of the art. It 
specifically aims to the development of supporting applications with the ability to 
automatically interpret the information exchanged meaningfully and accurately 
producing useful results. Ontologies allow information exchange approaching this 
kind of interoperability [4]: the cases of e-Learning [11], Electronic Commerce [12] 
or Geographic Information Systems [13] are well documented examples of the 
success of this kind of interoperability.  



2.3   Ontologies 

Ontologies play a fundamental role in the Semantic Web paradigm [14]. In the 
Computer Science domain, the widely accepted definition (given by Gruber) states, 
“an ontology is the explicit specification of a conceptualization” [5]. In other words, it 
is a description of the concepts and their relationships in a domain of study. Fikes [15] 
identifies four top-level application areas where ontologies are applicable: (i) 
collaboration, (ii) interoperation, (iii) education and (iv) modelling.  Within the VE 
domain, Mencke [6] considers three major areas where ontologies can be used: (i) 
Virtual Design, referred to the construction of virtual prototypes and their use with 
applications for controlling, monitoring and management, (ii) Test & Verification, 
referred to the simulation for checking the correctness and applicability of the Virtual 
Prototypes, and (iii) Visualization & Interaction, referred to the presentation of virtual 
objects and the user interaction.  

The use of ontologies is validated in our proposal through the fact that in a PLC, 
each one of the involved VEA comprises a different level of specificity; a fact that 
leads to the need of a strong knowledge base paradigm if no semantic loss is desired. 
In our approach, we propose the use of a supporting knowledge base whose design 
language should be strong enough to contain the particularities of every VEA 
involved.  

The aforementioned Supporting Knowledge base should provide mechanisms to 
reason and be queried about its contents, and at the same time it should be flexible 
enough to accept the inclusion of new relationships on the fly (in order to support the 
addition of new VET).  Ontologies allow the representation of such Knowledge Base, 
including also stability checking after on-the-fly changes.  

3   Proposed Architecture  

A traditional PLC information flow is depicted in Fig. 2.a. We propose a supporting 
Knowledge Base that will store and handle the gathered knowledge following a 
centralized way as shown in Fig. 2.b.  In our proposed Knowledge Base any 
supporting VEA will be able to contribute with its specific knowledge to the 
conceptual representation (for example, CAD provides the geometry, CAM provides 
manufacturing tool paths and FEA provides failure analysis).  



 

Fig. 2. Representation of data flow through PLC. (a) presents the classical approximation, and 
(b) shows the data flow using a support Knowledge Base.  

In order to implement the supporting Knowledge Base, we propose the architecture 
depicted in Fig. 3. 

 

 

Fig. 3. Proposed architecture for the implementation of the supporting KB.  Data from the 
Software layer is translated in order to feed the Knowledge Base.  

In our architecture, the first layer is called the Software layer; it contains the 
collection of VEA available in the different PLC stages. These VEA interact with 
users in a classical way (through their own interfaces). In general VEA in this layer 
possess extension capabilities that allow the possibility to access their embedded 
knowledge.  



The next layer is called Translation layer, in this part of the architecture takes 
place the alignment and matching between VEA generated knowledge and the 
Domain ontology located in the next layer. It can be argued that this translator provide 
the means of matching the VEA knowledge with the supporting Knowledge structure, 
for such reason, the importance of choosing a good model for the Domain is critical 
as problems like information incompleteness and multiple sources leading to 
redundancy should be considered.  

Each one of the VEA in the Software layer is associated to its own translation 
module. Translators allow the bidirectional traffic of the knowledge: they are able to 
convert the knowledge generated in the VEA to the Domain ontology, and vice versa, 
from the ontology to the VEA format. Translator construction can be made in several 
ways, being the most usual using an API, or the parsing of the generated output files. 

The following layer is called the Knowledge Base layer; this part of the 
architecture contains the Domain ontology itself. All the gathered knowledge 
generated by each VEA is stored and managed here. The Semantic layer also contains 
a Reasoner for the exploitation of extrinsic knowledge [16] contained through a 
reasoning API [17] which is commonly a Descriptive Logics (DL) handler [18] who 
processes the Domain ontology. 

At the top of the architecture is the Application layer, where a series of 
applications capable to interact with the KB in a direct way can be produced. Such 
applications take advantage of all the stored knowledge while interact with thought 
their own interfaces. 

4   Case Study 

As case study, we developed within the frame of a research project; an application for 
the design of industrial plant layouts. In such scenario, many teams of engineers 
participate in the design of the plant with different VEA and in the different stages of 
the PLC producing a situation that is arguably prone to present a semantic loss.  

In our scenario, the goal is the consideration of a new product that will be 
manufactured in the aforementioned facility. The Industrial Plant has to be adapted in 
one or several of the production lines already in existence in order to manufacture the 
new product.  

Our visualization tool makes use of the presented architecture in order to provide 
an effective bridge over the gap of knowledge loss between the different VEA 
utilized. Fig. 4 depict a relation of our case of study and the generalized architecture 
presented in section 3. In order to simplify the example, we will consider only three 
VEA in the Software layer: AutoCAD, used for the static geometries design (located 
in the design stage of the PLC mainly), RobCAD, used for the kinematics calculation 
and moving objects simulation(located in the analysis and operation stages of the 
PLC), and a XML serialized file which contains diverse database gathered 
information in the form of stored facts about the actual plant (located in the operation 
and maintenance stages of the PLC).  We make a differentiation between static 
elements (e.g. walls, floor, fixed objects), and non-static elements (e.g. a robotic arm) 
in order to recognize easily the knowledge that must be involved in the re-calculation 



duties during the simulation of the plant layout operation. Each VEA used possesses a 
translator in order to match the generated knowledge to the Domain ontology 
structure (Translation layer). AutoCAD provides an API called ObjectARX [19], 
which allows programmatically the parsing of the different 3D models, contained.  

In the case of RobCAD, the vendor does not provide any public API, but instead a 
plug-in that allows exporting generated animated models into the VRML format. 
Even if such files have some non-standardized labels, we developed a VRML parser 
in order to extract and match the knowledge contained in those files into the ontology 
(for the extraction of the movements themselves).  

In a similar way, we developed an XML parser to recover the information stored in 
the XML Generator output files, matching this information in the ontology.  

In [20] the advantages of using Engineering Standards as a basis of ontology 
Domain modelling are detailed. Being one of these advantages the avoidance of 
semantic loss, the use of engineering standards is not only validated for our solution 
but highly desired.  

Following the procedure to create Domain ontologies based on standards presented 
in [20], we have found in the domain of Plant Design reported success cases with the 
standard ISO-STEP (10303ap227) [21]. Our Domain Model in the Knowledge Based 
layer was hence serialized using the aforementioned approach adding also a second 
ontology for the extension of the STEP protocol to particularities of the problem at 
hands (again following the methodology presented in [20]).  

 

Fig. 4. Case study matched in the proposed architecture. Three different VEA are located in the 
software layer, each one with its own translator for KB feeding. 

 



For the reasoning part, we created a simple interface that uses Pellet [22] via the 
Protégé OWL API [23].  

At this point, we have developed our desired Industrial Plant Layout Design 
application in the Application layer. The developed application allows the user the 
examination of different layouts for the same Industrial Plant in a 3D environment by 
navigating through the plant and modifying the mentioned layout in order to obtain 
the best possible configuration with the aid of the semantic engine that will not permit 
configurations that contradict design principles (using for that purpose the reasoner 
capabilities). The User can also obtain additional information from the elements 
contained in the active layout, for example the security area needed for the robot 
KUKA KR 150-2 or the costs associated to the breakdown of painting process 
manufacture call.  

 

Fig. 5. Industrial Plant Layout Design application screenshot. The interface presents a 3D 
representation of the layout. 

As can be seen in the Fig. 5, the application interface shows the three-dimensional 
representation of the active layout, and the different layouts (with their corresponding 
elements) in a tree mode. When the mouse is over an element in the tree, the system 
asks to the knowledge base for the position, translation and scale of the concrete 
instance of the 3D model and presents the information to user. If the user needs other 
information about any specific element or layout, he/she has possibility to launch a 
query to the knowledge base from query menu. Such query is handled by the reasoner 
over the instances of the ontology. 



5   Conclusions and Future Work 

In this paper, we presented a semantic based architecture that allows a seamless 
information and knowledge sharing between Virtual Engineering Applications in a 
Product Life Cycle scenario. We discussed the main highlights of the VEA 
interoperability problem and validated our presented approach with a test case 
consisting on the implementation of a Plant Layout Design application supported in 
our architecture. Our implementation is effective in collecting knowledge provided by 
different VEA available proving that our approach could be applicable within the 
industry. At this time, the presented system is being tested in order to offer a deep 
statistical analysis in subsequent works.  

As future work, we intend to extend our implementation to more VEA in order to 
do an effective checking on the economical impact that having a centralized 
knowledge structure will provide.  Also we are currently working on the use of the 
centralized Knowledge gathered within a Semantic Web application running as a 
service in a company web page in order to provide means for remote monitoring of an 
industrial plant. 
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