
Interactive visualization of volumetric data with WebGL in real-time

John Congote∗

EAFIT University
CAD-CAM-CAE Laboratory

Medellı́n, Colombia

Luis Kabongo†

Vicomtech Research Center
Donostia - San Sebastian, Spain

Aitor Moreno‡

Vicomtech Research Center
Donostia - San Sebastian, Spain

Alvaro Segura§

Vicomtech Research Cente
Donostia - San Sebastian, Spain

Jorge Posada¶

Vicomtech Research Center
Donostia - San Sebastian, Spain

Oscar Ruiz‖

EAFIT University
CAD-CAM-CAE Laboratory

Medellı́n, Colombia

Abstract

This article presents and discusses the implementation of a direct
volume rendering system for the Web, which articulates a large
portion of the rendering task in the client machine. By placing the
rendering emphasis in the local client, our system takes advantage
of its power, while at the same time eliminates processing from
unreliable bottlenecks (e.g. network). The system developed artic-
ulates in efficient manner the capabilities of the recently released
WebGL standard, which makes available the accelerated graphic
pipeline (formerly unusable). The dependency on specially cus-
tomized hardware is eliminated, and yet efficient rendering rates
are achieved. The Web increasingly competes against desktop ap-
plications in many scenarios, but the graphical demands of some
of the applications (e.g. interactive scientific visualization by vol-
ume rendering), have impeded their successful settlement in Web
scenarios. Performance, scalability, accuracy, security are some of
the many challenges that must be solved before visual Web applica-
tions popularize. In this publication we discuss both performance
and scalability of the volume rendering by WebGL ray-casting in
two different but challenging application domains: medical imag-
ing and radar meteorology.

CR Categories: I.4.10 [Image Processing and computer vision]:
Image Representation—Volumetric;

Keywords: Direct Volume Rendering, Ray Casting, Real-Time
visualization, WebGL, Weather Radar Volume, Medical Imaging

∗e-mail:jcongote@eafit.edu.co
†e-mail:lkabongo@vicomtech.org
‡e-mail:amoreno@vicomtech.org
§e-mail:asegura@vicomtech.org
¶e-mail:jposada@vicomtech.org
‖e-mail:oruiz@eafit.edu.co

1 Introduction

Real-time 3D computer graphics systems usually handle surface de-
scription models (i.e. B-Rep representations) and use surface ren-
dering techniques for visualization. Common 3D model formats
such as VRML, X3D, COLLADA, U3D (some intended for the
Web) are based entirely on polygonal meshes or higher order sur-
faces. Real-time rendering of polygon models is straightforward
and raster render algorithms are implemented in most graphics ac-
celerating hardware. For many years, several rendering engines,
often via installable browser plug-ins, have been available to sup-
port 3D mesh visualization in Web applications.

However, some scientific fields (e.g. medicine, geo-sciences, me-
teorology, engineering) work with 3D volumetric datasets. Volu-
metric datasets are irregular or irregular samples of either scalar
(f : R3 → R) or vector (f : R3 → R3) fields. For the pur-
pose of this article, we will use the term volumetric data sets to
refer to scalar fields and will ignore for the time being vector fields.
Surface-based raster rendering techniques are obviously not suit-
able for visualizing such datasets and specific Direct Volume Ren-
dering algorithms are needed, which are not available for the Web.
Therefore, our work uses Volume ray-casting, which is a common
technique in Computer Graphics for volume visualization originally
presented in [Levoy 1988] and further studied in [Hadwiger et al.
2009]. The rendering is not photo-realistic but shows the important
characteristics of the set.

Figure 1: Medical data rendered with volume ray-casting

In medical imaging, diagnostic techniques such as computer to-
mography (CT), magnetic resonance imaging (MRI) and positron
emission tomography (PET) produce sets of parallel slices that
form a volumetric dataset. Volume rendering is a common tech-
nique for visualizing volumetric datasets along with multi-planar

reconstructions (MPR). Storage and distribution of these 3D im-
ages usually requires a Picture Archiving and Communication Sys-
tems (PACS), which normally uses specialized workstation soft-
ware ([Meyer-Spradow et al. 2009], [Fogal and Kruger 2010]) for
interactive visualization ([Mahmoudi et al. 2009]). Few solutions
exist for regular desktop computers ([Kabongo et al. 2009]) among
others. Weather radar data is also a volumetric dataset. A weather
radar scans a volume around it by collecting values in families of
circular, elliptical or conical scan surfaces.

Doppler radars sample several physical variables (reflectivity, dif-
ferential reflectivity, radial velocity and spectral width) for each lo-
cation of the sky. Radar data is usually visualized for a single slice
of the volume, either conical, as in plan position indicator (PPI),
or planar, as in constant altitude plan position indicators (CAPPI).
Initial approaches for Web-based Volume Rendering of radar data
rely on pre-computed in-server rendering ([Sundaram et al. 2008]),
which normally hinders interaction in the visualization.

WebGL is a new standard for accelerated 3D graphics rendering in
the Web that complements other technologies in the future HTML5
standard ([Marrin 2011]). Some of the major Web browsers, includ-
ing Google Chrome, Mozilla Firefox, WebKit, Safari and Opera
have already implemented it in their latest releases or release candi-
dates. WebGL is basically a Javascript binding of the OpenGL ES
API and enables low level imperative graphics rendering based on
programmable shaders.

1.1 Contribution of this Article.

Our contribution is a practical implementation of a volume render-
ing system for the Web, based on the Volume Ray-casting algorithm
and implemented on WebGL. Our system is capable of obtaining
interactive visualization with diverse volume datasets (Figure 1).
The original Volume Ray-casting algorithm was slightly modified
to work with the input structures needed for the Web environment.
Special care was taken to avoid the use of dynamic server content.
This avoidance allows for the algorithm to be used without increas-
ing the demands on the server and shifts, as much as possible, the
processing to the client.

Our work is tested in two scenarios with volumetric datasets: medi-
cal imaging and radar meteorology. Their main practical difference
is the pattern in which the volume is sampled: for medical data
a uniform cartesian grid is used. For weather data a non-uniform
spherical coordinate grid is used. A side-effect of our work is
the proof-of-concept that interactive platform-independent visual-
ization of 3D data on the Web is feasible by means of the WebGL
standard.

The paper is organized as follows. Section 2 presents a brief sta-
tus of the different technologies present in this publication: Volume
Rendering, Web rendering, medical and radar visualization. Sec-
tion 3 presents our methodology for volume rendering with special
attention to the modifications of the algorithm for the Web environ-
ment. Section 4 presents the output obtained by the implemented
algorithm and the performance values in different conditions. Sec-
tion 6 presents the conclusions of our work and future directions.

2 Related Work

2.1 Direct volume rendering techniques

In 3D scalar field interactive visualization, two solutions prevail:
Surface Rendering and Direct Volume Rendering. Surface Render-
ing has the advantage of being easy to compute due to its low geo-
metric complexity. Its main disadvantages are: (1) A surface must

be synthesized first, which is not a trivial task as it depends on the
quality of the sample. (2) Since it must be precomputed, the result
is static and cannot be easily adjusted in real time.

Recent advances in Direct Volume Rendering and graphic card ca-
pabilities allow the representation of volumes with good quality by
projecting volumetric data into a 2D image, depending on the po-
sition of a virtual camera. The main advantage of this technique is
the visualization of all inner characteristics at once.

Preprocessing does not intervene since most of the computations
are performed when the camera is displaced. In order to project the
volumetric data, several methods exist ([Meißner et al. 2000]). Ref-
erence [Westover 1991] discusses Volume Splatting and represents
each scalar value by a simple geometrical shape that will face the
camera, allowing fast rendering. Its main disadvantage is the loss
of quality. A technique called Shear Warping ([Lacroute and Levoy
1994]), consists of applying shear warp transformations to the vol-
ume slices to imitate the real orientation of the camera. Since the
technique is based on simple transformations this method is quite
fast but its main drawback is a low sampling power. With the con-
stant improvement in graphic card capabilities, the Texture Map-
ping method has been popularized in video-games. It consists in
re-slicing the volume depending on the orientation ot the camera
viewpoint and representing all the slices at once taking advantage
of eventual occlusion optimizations ([Hibbard and Santek 1989]).

Volume Ray-casting was initially presented in [Levoy 1988] and has
become one of the most common methods for volume rendering.
The set of rays from the camera reach the 3D scene and hit the ob-
jects, generating parametric (scalar) landmark values. By defining a
blending function it is possible to give priorities to the different val-
ues encountered along the ray, allowing the visualization of differ-
ent internal structures. Additional modifications to the algorithm,
such as transfer functions, and Phong illumination ([Phong 1975])
were developed in order to improve the perception and make the
volume look realistic. Compared to the other techniques, this one
is older and more accurate in sampling. However, the computa-
tional power required made initially difficult its usage in real-time
interactive representations, allowing other approximations to settle.
Nowadays, the increasing computational power of graphic cards al-
lows fast calculations ([Kruger and Westermann 2003]) which give
new interest to Volume Ray-casting. Reference [Hadwiger et al.
2009] presents a tutorial with all the basic explanation on volume
ray-casting. We used this tutorial as starting point for the theoretical
foundations in our implementation and for technical details. Open
Source implementations such as [Meyer-Spradow et al. 2009] and
[Fogal and Kruger 2010] were also used.

2.2 Web 3D rendering

The fact that the Web and 3D graphics are currently ubiquitous in
desktop and palm devices makes their integration urgent and im-
portant. Several standards and proprietary solutions for embedding
3D in the Web have been devised, such as VRML, X3D or vendor-
specific Web browser plug-ins, implementations on general purpose
plug-ins, etc. A review of these techniques could be found in [Behr
et al. 2009].

In the case of Medical Imaging and other computing-intensive visu-
alization scenarios, a partial solution has been the use of in-server
rendering ([Blazona and Mihajlovic 2007]). In this approach, the
rendering process is remotely performed in the server and its re-
sulting image is sent to the client. This solution increases the load
on the server when many clients are present. In addition, the high
latency times make the system non-responsive and unsuitable for
smooth interactive visualization.

Outstanding issues among solutions for Web 3D graphics are: ded-
icated languages, plug-in requirements for interpretation, portabil-
ity across browsers, devices and operating systems and advanced
rendering support. While writing this article, the Khronos Group
released the WebGL 1.0 specification, which has been under de-
velopment and testing. In practice, the WebGL 1.0 is a Javascript
binding of the OpenGL ES 2.0 API. Calls to the API are relatively
simple and serve to set up vertex and index buffers, to change ren-
dering engine state such as active texture units or transform ma-
trices, and to invoke drawing primitives. Most of the computation
is performed in vertex and fragment shaders written in GLSL lan-
guage, which are run natively on the GPU hardware. Unlike pre-
vious Web 3D standards which define declarative scene description
languages, WebGL is a low-level imperative graphic programming
API. Its imperative character enables a great flexibility and exploits
the advanced features of modern graphics hardware.

The WebGL 1.0 standard takes advantage of already existing
OpenGL-based graphics applications, such as accurate iso-surface
computation ([Congote et al. 2010]) or optimized shader program-
ming ([Marques et al. 2009]). The usage of an interpreted language
to manage the behavior of scene elements and animations might be
considered as a drawback. However, the performance of Javascript
interpreters is constantly improving. Current optimized just-in-time
compilation in the latest engines provides performance not far from
that of natively compiled languages.

2.3 Medical visualization

From the different scientific fields, Medical Visualization is one
of the most challenging since the user interpretation directly trans-
lates into clinical intervention. Quality is one of the most important
factors, but fast interactive response is also central in this domain.
Medical Visualization has already produced some implementations
of volumetric visualization in Web, mainly for educational purposes
([John et al. 2008][John 2007]). These approximations require third
party systems for the correct visualization, or the presence of a ren-
dering server ([Poliakov et al. 2005], [Yoo et al. 2005]), which lim-
its the scalability of the application. Using standards such as VRML
and Texture Mapping ([Behr and Alexa 2001]) visualization of vol-
umes in the Web has been achieved.

2.4 Radar visualization

Radar data visualization also poses new challenges as the data are
acquired in a spherical coordinate system ([Riley et al. 2006]). This
particularity makes difficult the optimization of ray-casting, which
usually traverses cubic-shaped volumes. Nevertheless, this problem
has already been addressed in [Goenetxea et al. 2010].

3 Methodology

Direct Volume Rendering is a set of Computer Graphics algorithms
to generate representations of a 3D volumetric dataset. The pro-
duced image is a 2-dimensional matrix I : [1, h] × [1, w] → R4

(w: width and h: height in pixels). A pixel has a color represen-
tation expressed by four-tuple (R,G,B,A) of red, green, blue and
alpha real-valued components, (R,G,B,A ∈ [0, 1]).

The volume is a 3-dimensional array of real values V : [1, H] ×
[1,W] × [1, D] → [0, 1] (H: Height, W: Width, D: Depth of the
represented volume, in positive integer coordinates). Therefore,
V (x, y, z) ∈ [0, 1]. The volume-rendering algorithm is a projec-
tion of a 3D model into a 2D image. The projection model used in
this work is known as a pin-hole camera ([Hartley and Zisserman
2003]). The pin-hole camera model uses an intrinsic K ∈ M3×4

and an extrinsic R ∈ M4×4 real-valued matrices. These matrices
project a 3D point p ∈ P3 onto a 2D point p′ ∈ P2.

(a) Front Faces (b) Back Faces

Figure 2: Color cube map coordinates

A volume is normally represented as a set of images. Each im-
age represents a slice of the volume. Usually slices are parallel and
evenly-spaced but this is not always the case. For example, volumes
can also be sampled in spherical coordinates with the angular inter-
val being variable. Both cases (cartesian and spherical samples) are
handled by our algorithm.

Volume ray-casting is an algorithm which defines the color for each
pixel (i, j) in the image or projection screen I , calculated in func-
tion of the values of a scale field V (x, y, z) associated with the
points (x, y, z) visited by a ray originated in such a pixel. The ray
is casted into the cuboid that contains the data to display (i.e the
scalar field V). The ray is equi - parametrically sampled. For each
sampled point ps on the ray one computes an approximation of the
scalar field V (ps), by usually calculating a tri-linear interpolation.
In addition, a shade might be associated to ps, according to the illu-
mination conditions prevailing in the cuboid. The color associated
to ps might be determined by axis distances as shown in figure 2.
As last step, the pixel in the image which originated the ray is given
the color determined by the sampled point ps nearest to the screen,
in such a ray.

Alternatively, the samples on the ray may also cast a vote regarding
the color that their originating pixel will assume by using a compo-
sition function (Eq:1-4), where the accumulated color Argb is the
color of the pixel (i, j), and Aa is the alpha component of the pixel
which is set to 1 at the end of the render process. Given an (x, y, z)
coordinate in the volume and a step k of the ray, Va is the scalar
value of the volume V , Vrgb is the color defined by the transfer
function given Va, S are the sampled values of the ray and Of , Lf

are the general Opacity and Light factors.

Sa = Va ∗Of ∗
(
1

s

)
(1)

Srgb = Vrgb ∗ Sa ∗ Lf (2)

Ak
rgb = Ak−1

rgb +
(
1−Ak−1

a

)
∗ Srgb (3)

Ak
a = Ak−1

a + Sa (4)

3.1 Data Processing and volume interpolation

3.2 Contribution

The images for one volume are composed into a single image con-
taining all slices that will be stored in a texture as shown in Figure
3. This texture is generated by tilling each slice one besides other in

Figure 3: Aorta dataset in mosaic form to be read by the shader

a matrix configuration, this step was implemented as a preprocess-
ing step in our algorithm. The size of the texture in GPU memory
could change from 4096×4096 in PC to 1024×1024 for handheld
devices. The reduction in quality in the image is explained in Fig-
ure 7. The number of images per row and the number of rows as
well as the total number of slices must be given to the shader.

In medical images the sample bit depth is commonly bigger than 8
bits. This is hard to handle in Web applications where commonly
supported formats are limited to 8 bits per sample. In this work,
medical data sets were reduced to 8 bits.

Higher depths could be supported using more than one color com-
ponent to store the lower and higher bits of each pixel but this rep-
resentation is not currently implemented in our shader.

s1 = floor(z ∗ S) (5)
s2 = s1 + 1 (6)

dx1 = fract(
s1
Mx

) (7)

dy1 =
fract

(
s1
My

)
My

(8)

dx2 = floor(
s2
Mx

) (9)

dy2 =
fract

(
s2
My

)
My

(10)

tx1 = dx1 +
x

Mx
(11)

ty1 = dy1 +
y

My
(12)

tx2 = dx2 +
x

Mx
(13)

ty2 = dy2 +
y

My
(14)

v1 = tex2D (tx1, ty1) (15)
v2 = tex2D (tx2, ty2) (16)

Va(x, y, z) = mix (v1, v2, (x× S)− s1) (17)

For the correct extraction of the value of the volume two equations
were implemented. The equations 5-17 show how to get the value

of a pixel in coordinates x, y, z from images presented in an carte-
sian grid. s is the total number of images in the mosaic and Mx,
My are the number of images in the mosaic in each row and column
as the medical dataset show in Figure 3.

The functions presented in the equations are defined by the GLSL
specification. This allow us to manipulate the images as continu-
ous values because the functions of data extraction from the texture
utilize interpolation.

3.2.1 Identification of Ray coordinates

The geometry of a cube is generated with coordinates from (0, 0, 0)
to (1, 1, 1). This cube represents the boundary of the volumet-
ric dataset and is painted with colors representing the coordinates
at each point x, y, z coordinates (Figure 2)are stored in the r, g, b
color component of each pixel. The cube is then rendered in the
scene from the desired view point. The rendering process has sev-
eral steps. The first two steps are the rendering of the color cube
with the depth function change. Then one of the passes presents
the closest region of the cube to the camera (Figure 2(a)), and the
second pass presents the far region (Figure 2(b)).

With these two renders a ray is calculated from each point in the
cube for the render with the faces closest to the eye and the end of
the ray with the point of the back region. The colors in the cube rep-
resent the exact coordinates of the ray for each pixel in the image.
We store the color information of the cube as 24 bit RGB values.
This range of values seems to be small and not precise enough for
big images, but color interpolation gives enough precision for the
ray coordinates.

Cartesian coordinates Most voxel-based volume datasets are ar-
ranged in a cartesian uniform grid. A medical CT or MRI scanner,
computes parallel slices of the specimen at different positions with
a normally constant spacing. Each image contains a matrix of sam-
ples of relative to the specific signal measured by the equipment.
By stacking all slices aligned together, a discretely sampled vol-
ume is defined. Each sample can be addressed by cartesian x, y, z
coordinates, one being a slice selector and the other two coordinates
of a point in that slice image.

Spherical coordinates A weather radar scans the surrounding sky
in successive sweeps. Beginning at a low angular elevation, the
radar performs a 360◦ azimuth scan (Figure 4, fig:radar). At each
one-degree space direction a ray is emitted and a number of sam-
ples along the ray are measured back from its echoes (400 samples
or buckets in our case). The radar then proceeds step by step in-
creasing elevation at each successive swept scan. Elevation angles
are not normally uniformly incremented because most interesting
data is at the lower levels. Our datasets use 14 such elevations.

Figure 4: Simplified geometry of a radar scan. Each scan can be
approximated as a cone. Therefore, a radar volume dataset is ap-
proximated as a set of co-axial cones with the radar in the common
apex.

Such a process results in a discrete sampling of the sky volume in

which each sample has elevation, azimuth and range coordinates.
Thus, samples can then be addressed by spherical coordinates. In
the conversion of raw radar data into input images suitable for the
WebGL implementation the sample values become pixel values.
Each swept scan for a fixed elevation angle forms one image in
which pixel columns correspond to each azimuth direction (there
are 360 columns), and rows correspond to distances along each ray
(400 rows). Each image maps to a conical surface in space as shown
in figure 4. The images from consecutive elevations are joined to
form a single image for the whole volume, presented in figure 5 (the
figure is rotated 90◦).

r =
√
x2 + y2 + z2 (18)

ϕ = arctan(y, x) + π (19)
θ = arccos(z/ϕ) (20)

For the spherical coordinates volume dataset from a radar the fol-
lowing Equations 18-20. Where used. The interpolation process
used for the identification of the volume value in an arbitrary point
is presented in Equations 5-17. We use a simple interpolation
method because the data is expected to be normalized from the cap-
ture source. The problems presented in this topic were explained by
[Segura et al. 2009].

Figure 5: Original Doppler radar image. Each vertical band rep-
resents data along the cones described in Figure 4

3.2.2 Ray generation

The ray is generated for each pixel in the image I , geometrically the
start and end positions of the ray are extracted from the previous
render passes with the information of the color cube. The ray is
divided by S steps, which indicates the number of samples of the
volume. For each sample the x, y, z inside the volume is calculated
and the value of that position is interpolated from the texture.

3.2.3 Transfer function

This value of the texture tx,y,z , is then used to identify the color
to be used in the composition function (Eq:1). When the compo-
sition function reaches the end of the ray in the cube or the accu-
mulated alpha Aa reaches its maximum, the ray is interrupted and
the resulting colorArgb for the ray in the corresponding pixel is the
cumulated value.

4 Results

The proposed GPU implementation of the Volume Rendering tech-
nique presented in the previous sections has been tested with differ-
ent settings and with different datasets. As the interactive and real-
time results depend on both hardware and software, it is very im-
portant to begin with the platform specification used for the testing.
In the following sections, medical volumetric datasets and weather
radar volume samples are used to validate that WebGL is a valid and
promising technology for real time and interactive applications.

Terminology Meaning
Chrome Chrome 9.0.597.98
Opera Opera 11.50 Labs b24661
FirefoxDX Firefox Minefield 4.0b13pre

with Angle and shader validation
FirefoxGL Firefox Minefield version

without Angle nor shader validation

Table 1: Terminology specification.

4.1 Hardware and Software configuration

The tests for this article have been conducted using an Intel Quad
Core Q8300 processor, 4GB of RAM and a GeForce GTX 460,
Windows 7 PRO 64 bits (Service Pack 1) with the latest stable
graphics drivers. Among all the Web browsers with full implemen-
tation of WebGL standard, we have selected the following ones:
FireFox Minefield 4.0b12Pre (2011/02/16)1, Chrome 9.0.597.982

and Opera 11.50 labs (build 246613.

It is worth to point out that both Chrome and Firefox in its default
configuration use Google’s Angle library 4 to translate WebGL’s na-
tive GLSL shaders to Microsoft’s HLSL language and compile and
run them through the DirectX subsystem. This procedure improves
compatibility with lower-end hardware or older graphics drivers.
Firefox Minefield has been configured with two different settings
by modifying some keys in the configuration page about:config: (1)
the default value of webgl.prefer-native-gl was set to TRUE. (2) The
default value of webgl.shader validator was set to FALSE. These
changes basically disable Angle as the rendering back-end end val-
idator of shaders, thus directly using the underlying native OpenGL
support. See Table 1 for terminology precisions.

A LightTPD Web server5 was installed and configured in the
same computer, to serve the dataset images, the sample webpages
(HTML and Javascript files) and the vertex and fragment shaders.

4.2 Medical Dataset

Figure 6 shows some graphical output for the medical dataset intro-
duced in the previous section. The 6 different axial views have been
generated using 80 steps in the shaders implementation (800×800
canvas rendered in the FirefoxDX configuration). Table 2 displays
the recorded statistics: Column 1: Browser configuration. Column
2: Number of steps selected in the shaders. Column 3: Loading
times (milisec). Column 4: Qualitative frame rate (fps). Column 5:
Memory usage (MB). The dataset parameters and volume rendering
shaders proved to be very influential in the experiment with WebGL
rendered volume datasets. In order to realize the tests under compa-
rable conditions, the web-browsers were stopped and their caches
emptied after each test execution. For numbers of steps larger than
80 Chrome and FirefoxDX failed to compile the shader. Therefore,
only Opera and FirefoxGL statistics are shown. For numbers of
steps smaller than 80, the measured FPS was truncated to 128 in all
configurations due to the selected measurement method.

1http://ftp.mozilla.org/pub/mozilla.org/firefox/nightly/2011-02-16-03-
mozilla-central

2http://www.google.com/chrome
3http://snapshot.opera.com/labs/webgl/Opera 1150 24661 WebGL en.exe
4http://code.google.com/p/angleproject
5http://www.lighttpd.net

(a) Front View (b) Back View (c) Top View (d) Bottom View

(e) Left Side View (f) Right Side View (g) Used Transfer Function (h) Applying Other TF

Figure 6: Subfigures (a), (b), (c), (d), (e) and (f) illustrate renderings of the axial views of the sample volume dataset. The output was
generated in 800×800 with 80 steps using FirefoxDX. Subfigure (g) depicts the applied transfer function, where the left side represents the
color and the right side the transparency (black=opaque, white=transparent). With different transfer functions other outputs are obtained, as
subfigure (h) shows.

Browser N. Steps Load Time frame rate Memory
(msec) (frame/sec) (MB)

FirefoxDX 80 16677 69 204
FirefoxGL 80 308 94 102
Chrome 80 18062 77 153
Opera 80 82 108 74
FF-nA 140 302 60 95
Opera 140 118 66 73
FirefoxGL 170 281 51 95
Opera 170 102 54 77
FirefoxGL 200 312 44 96
Opera 200 111 48 81

Table 2: Results table for the medical dataset.

4.2.1 Memory Usage

Regarding memory usage, Opera showed to be the least demand-
ing browser, being FirefoxDX the most consuming one. FirefoxGL
dropped the memory usage resembling the one of Opera. This fact
leads us to infer that the current Angle implementation is the key
factor in the memory management since Chrome has consumption
similar to FirefoxDX. For Opera, FirefoxDX and FirefoxGL, a sim-
ple subtraction between the final and initial memory allocation suf-
fices to estimate the memory consumption. On the other hand, since
Chrome implements the Out of Process technology, we have in-
cluded all running processes of Chrome (2 processes at the starting
time and 3 processes after WebGL was loaded).

4.2.2 Loading Times

The loading time includes the (1) downloading of all the required
files (assuming a locally installed Web server), (2) compilation of

the shaders and (3) first rendering of the webpage, including the vol-
ume rendering. The results follow a similar schema in which Opera
and FirefoxGL are significantly faster than Chrome and FirefoxDX,
due to the longer compiling time and shader validation of Angle.

4.2.3 Frame Rate

Since the frame rate cannot be precisely determined, we have de-
vised an empirical measuring method. We forced the GL canvas
to be redrawn continuously and then we have counted how many
times the scene was rendered in a 5-seconds interval. We have re-
peated this procedure 5 times, choosing the median value (i.e. after
removing the two highest and the two smallest values) as the effec-
tive frame rate. The results show that the frame rate is truncated
to 128 fps at maximum (not shown in Table 2). This is considered
to be a side effect of the chosen measurement method, based on
the Javascript setTimeout() function. Even with a parameter
of 0 ms the browsers take a minimum time to call the correspond-
ing function, being it 10 ms in average for desktop Web browsers.
Therefore, it is preferable to increase the number of steps in order
to get smaller frame rates and reduce this side effect. With higher
values of steps (only usable with Opera or FirefoxGL) Opera is
slightly faster, consuming less memory and requiring smaller load-
ing times.

4.2.4 Dataset Resolution

This qualitative test was intented to show how the input dataset res-
olution affects the final rendering quality. Using the same dataset,
a modified version was created by reducing the input resolution per
slice from 5120×5120 to 1280×1280 (a reduction to 25% per di-
mension or to 6.25% globally). The number of steps in the shaders
were also varied, using 20, 50 and 80 steps with FirefoxDX setup
and a selection of the results can be shown in Figure 7. If the
number of steps is small the banding artifacts of the algorithm are

noticiable, some aproximations could be implemented to solve this
problem as show by [Marques et al. 2009].

(a) 100% - 80 steps (b) 25% - 80 steps

(c) 100% - 20 steps (d) 25% - 20 steps

Figure 7: Resolution qualitative test. Cases (a) and (b) use 80
steps in the rendering. Cases (c) and (d) use 20 steps. Cases (a)
and (c) correspond to the full resolution dataset. Cases (b) and (d)
correspond to the reduced dataset. Even with the dramatic reduc-
tion of the resolution, the volume render allows to identify the main
structures.

4.3 Medical Dataset in Portable Devices

The Mozilla Firefox Development Group has released a mobile ver-
sion of the browser for ARM devices called Fennec6. We have
tested it on 2 Android-based devices: Samsung Galaxy Tab7 and
Samsung Galaxy S smartphone8. Taking into account the hardware
limitations of such devices, we have scaled down the Aorta dataset
to half resolution, reduced the HTML canvas size and chosen a suit-
able number of steps to get quality results with the highest possible
interactivity. The test under this browser was quite straight-forward.
No further modification in the implementation of the shaders, Glue
Javascript code or HTML Web page were required. Although we
achieved a low frame rate (about 2 or 3 frames per second), it was
proved as possible the rendering of volume datasets in such mobile
devices. Further optimizations in the data or the implementation
of the shaders, specifically oriented to such devices, might result in
better overall performance. We left such issues for future efforts.

4.4 Weather Radar Volumetric Dataset

Weather radars are devices used to scan the surrounding atmosphere
and determine its structure and composition, typically using the
Doppler effect ([Segura et al. 2009]). Radar scans are represented
as 2D images in the form of either PPI (plan position indicator)
or CAPPI (constant altitude PPI) formats. The volumetric radar-
scanned data may be approximated by a set of concentric cones

6http://www.mozilla.com/en-US/mobile
7http://galaxytab.samsungmobile.com/2010/index.html
8http://galaxys.samsungmobile.com

Figure 8: A Samsung Galaxy Tab (left) and a Galaxy S Smartphone
(right) volume - rendering medical datasets.

Figure 9: Application to define the transfer function for radar re-
flectivity visualization.

(figure 4), with each cone containing a sample set of the volume
(figure 5). The volume-rendering algorithms, therefore, must work
with spherical coordinates for this purpose. This implementation
of the volume rendering can only be tested under Opera and Fire-
foxGL. Otherwise the shader compilation fails.

In the case studies we have created a simple HTML user interface
using jQuery (Figure 9) to interact with the shader. It allows the tun-
ning of parameters such as the window (zoom and offset), quality
(number of steps) and the transfer function (adapted specifically for
this weather radar information). The zoom and pan allow the users
to conveniently interact with the radar data, which is not as regular
as the medical images. For instance, the useful information is found
in the bottom of the volume (i.e. near the terrain). In addition, the
resolution in outer zones is lower than near the radar source. Due to
their geometrical configuration, the large area over radars is rarely
scanned. Therefore, additional navigation controls for zoom and
pan have been implemented in the sample Web page, allowing in-
and out- zooming in the volume and panning the view. The radar
captures periodic scans every 10 minutes. Therefore, some navi-
gational functionality has been added to help users to access the
next or previous data in the sequence. As the loading time is rather
short, the possibility to create fully interactive 4D animations is to-
tally open.

A very simple HTML-based editor for transfer functions was im-
plemented, which allows the proper analytic inspection of the radar
data by changing the values and colors with the provided sliders.
Figure 10 shows different visualization of the same radar sample,
obtained by changing the transfer function (affecting colors and
opacity). The figure also shows the effect of variations in camera
parameters (zoom, pan and view orientation). The chosen number

of steps was high enough to display a 800×800 canvas with high
quality images and yet to keep the visualization frame rate above
26 frames/second.

5 Contribution and Complexity Analysis

Our contribution is an implementation of a volume rendering sys-
tem for the Web. The system is based on the Volume Ray-Casting
algorithm with a complexity of O(M ∗S), where M is the number
of pixels to be drawn and S is the number of steps of the ray that tra-
verses the volume. Since the algorithm is implemented in WebGL,
its visualization speed is similar to native applications because it
uses the same accelerated graphic pipeline. The original algorithm
has been slightly modified to work with the input structures because
of the lack of Volume Textures in WebGL. Therefore, our algorithm
simulates the 3D data by using a 2D tiling map of the slices of the
volume maintaining the tri-linear interpolation, so there is not a real
loss in quality because the interpolation is the same as the used in
the GPU. Even thought a slight impact in performance could be
generated for this interpolation, this is minimal and very difficult to
perceive because the browsers are not capable of handle such fast
events. This is so because the browsers are heavily dependent on
several layers such as the shader compilers, hardware architecture,
graphic drivers, etc. Our algorithm was designed to run entirely in
the client (which is the novelty of our proposal). Some delays are
obviously expected because of the network performance, and the
interpreted nature of Javascript. Our implementation9 does not ev-
idence a real overhead for the server to present the data in 3D as
occurs in [Mahmoudi et al. 2009], therefore allowing more clients
to be connected simultaneously. At the same time, more powerful
clients are required to handle this approximation.

The limitations in our method, even been WebGL compilant, stem
from the fact that some browsers do not adequately provide power-
ful enough shader language implementations to even allow compi-
lation of larger shader programs.

6 Conclusions and future work

Two different case studies (medical- and weather radar-imaging)
presented here illustrate the capabilities of complex volume render-
ing visualization in Web browsers. Although many performance
improvements and optimizations are still needed, the material dis-
cussed indicates that rendering volumetric data with Web standard
technology is applicable to many other technical fields. Such an
initiative also re-ignites interest for visualization functions imple-
mented in the past for high-end desktop visualization applications.
The integration of our implemented software in the Web follows the
upcoming HTML5 standard, namely a Javascript API and the new
WebGL context for the HTML5 canvas element (which gives the
application a professional look). The implementation of the algo-
rithm in declarative languages as X3DOM is planned.

The scope of the present article did not include the integration of
different rendering styles. However, interactive and complex light-
ing integration are promising ways to improve render quality. The
use of multi-dimensional interactive transfer functions is also an
promising direction to explore. The minor optimizations that we
already applied in this work allow us to expect that mathematically-
planned negotiation between speed performance and quality is a
promising research field. An additional goal for minimization is the
optimized handling of time-varying datasets using videos instead of
images as render input. since video formats already minimize trans-
mitted data by reducing temporal redundancy, it would be possible

9http://demos.vicomtech.org/volren

to diminish the bandwidth currently required, for example, for ani-
mated render of radar-scanned weather phenomena.

Another important evolution will be the integration of surface ren-
dering within volume-rendered scenes in order to visualize, for
example, segmented areas in medical images or terrain surfaces.
Some tests have already been performed on desktop prototypes.
This article lays the technical ground that would make the integra-
tion of surface render in volume-render (via WebGL) possible and
reasonable.

Acknowledgments

This work was partially supported by the Basque Government’s
ETORTEK Project (ISD4) research programme and CAD/CAM/-
CAE Laboratory at EAFIT University and the Colombian Coun-
cil for Science and Technology –COLCIENCIAS–. Radar datasets
were provided by the Basque Meteorology and Climatology De-
partment.

References

BEHR, J., AND ALEXA, M. 2001. Volume visualization in vrml.
In Proceedings of the sixth international conference on 3D Web
technology, ACM New York, NY, USA, 23–27.

BEHR, J., ESCHLER, P., JUNG, Y., AND ZÖLLNER, M. 2009.
X3dom: a dom-based html5/x3d integration model. In Proceed-
ings of the 14th International Conference on 3D Web Technol-
ogy, ACM, 127–135.

BLAZONA, B., AND MIHAJLOVIC, Z. 2007. Visualization service
based on web services. Journal of Computing and Information
Technology 15, 4, 339.

CONGOTE, J., MORENO, A., BARANDIARAN, I., BARANDI-
ARAN, J., AND RUIZ, O. 2010. Extending marching cubes
with adaptative methods to obtain more accurate iso-surfaces. In
Computer Vision, Imaging and Computer Graphics. Theory and
Applications International Joint Conference, VISIGRAPP 2009,
Lisboa, Portugal, February 5-8, 2009. Revised Selected Papers.
Springer Berlin / Heidelberg, January, 35–44.

FOGAL, T., AND KRUGER, J. 2010. Tuvok, an Architecture for
Large Scale Volume Rendering. In Proceedings of the 15th In-
ternational Workshop on Vision, Modeling, and Visualization,
M. Dogget, S. Laine, and W. Hunt, Eds., 57–66.

GOENETXEA, J., MORENO, A., UNZUETA, L., GALDÓS, A.,
AND SEGURA, A. 2010. Interactive and stereoscopic hybrid
3d viewer of radar data with gesture recognition. In Romay et al.
[Romay et al. 2010], 213–220.

HADWIGER, M., LJUNG, P., SALAMA, C. R., AND ROPINSKI, T.
2009. Advanced illumination techniques for gpu-based volume
raycasting. In ACM SIGGRAPH 2009 Courses, ACM, 1–166.

HARTLEY, R., AND ZISSERMAN, A. 2003. Multiple View Geome-
try in Computer Vision, second ed. Cambridge University Press,
Cambridge, UK.

HIBBARD, W., AND SANTEK, D. 1989. Interactivity is the key.
In Proceedings of the 1989 Chapel Hill workshop on Volume
visualization, ACM, New York, NY, USA, VVS ’89, 39–43.

JOHN, N., ARATOW, M., COUCH, J., EVESTEDT, D., HUDSON,
A., POLYS, N., PUK, R., RAY, A., VICTOR, K., AND WANG,
Q. 2008. MedX3D: standards enabled desktop medical 3D.
Studies in health technology and informatics 132, 189.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10: Different weather radar volume renderings. Images (a) and (b) use the traditional color mapping for reflectivity scans (measured
in decibels, dBZ). Images (c), (d), (e), (f), (g) and (h) have been generated by varying the transfer function (color and transparency) and the
window zoom and pan.

JOHN, N. W. 2007. The impact of web3d technologies on medical
education and training. Computers and Education 49, 1, 19 – 31.
Web3D Technologies in Learning, Education and Training.

KABONGO, L., MACA, I., AND PALOC, C. 2009. Development of
a commercial cross-platform dicom viewer based on open source
software. In International Journal of Computer Assisted Radiol-
ogy and Surgery; CARS 2009 Computer Assisted Radiology and
Surgery Proceedings of the 23rd International Congress and Ex-
hibition, Springer, Berlin, Germany, P. H. U. Lemke, P. P. K.
Inamura, P. P. K. Doi, P. P. M. W. Vannier, P. P. A. G. Farman,
and D. PhD, Eds., vol. 4, International Foundation of Computer
Assisted Radiology and Surgery, S29–S30.

KRUGER, J., AND WESTERMANN, R. 2003. Acceleration tech-
niques for gpu-based volume rendering. In VIS ’03: Proceedings
of the 14th IEEE Visualization 2003 (VIS’03), IEEE Computer
Society, Washington, DC, USA, 38.

LACROUTE, P., AND LEVOY, M. 1994. Fast volume rendering us-
ing a shear-warp factorization of the viewing transformation. In
Proceedings of the 21st annual conference on Computer graph-
ics and interactive techniques, ACM, New York, NY, USA, SIG-
GRAPH ’94, 451–458.

LEVOY, M. 1988. Display of surfaces from volume data. IEEE
Comput. Graph. Appl. 8, 3, 29–37.

MAHMOUDI, S. E., AKHONDI-ASL, A., RAHMANI, R., FAGHIH-
ROOHI, S., TAIMOURI, V., SABOURI, A., AND SOLTANIAN-
ZADEH, H. 2009. Web-based interactive 2d/3d medical image
processing and visualization software. Computer Methods and
Programs in Biomedicine In Press, Corrected Proof , –.

MARQUES, R., SANTOS, L. P., LEŠKOVSKY̌, P., AND PALOC,
C. 2009. Gpu ray casting. In 17 Encontro Português de
Computaçao Gráfica, En Anexo, Covilha, Portugal, A. Coelho,
A. P. Cláudio, F. Silva, and A. Gomes, Eds., 83–91.

MARRIN, C. 2011. WebGL Specification. Khronos WebGL Work-
ing Group.

MEISSNER, M., HUANG, J., BARTZ, D., MUELLER, K., AND
CRAWFIS, R. 2000. A practical evaluation of popular volume
rendering algorithms. In Proceedings of the 2000 IEEE sympo-
sium on Volume visualization, Citeseer, 81–90.

MEYER-SPRADOW, J., ROPINSKI, T., MENSMANN, J., AND
HINRICHS, K. H. 2009. Voreen: A rapid-prototyping environ-
ment for ray-casting-based volume visualizations. IEEE Com-
puter Graphics and Applications (Applications Department) 29,
6 (Nov./Dec.), 6–13.

PHONG, B. T. 1975. Illumination for computer generated pictures.
Commun. ACM 18, 6, 311–317.

POLIAKOV, A. V., ALBRIGHT, E., HINSHAW, K. P., CORINA,
D. P., OJEMANN, G., MARTIN, R. F., AND BRINKLEY, J. F.
2005. Server-based approach to web visualization of integrated
three-dimensional brain imaging data. Journal of the American
Medical Informatics Association 12, 2, 140 – 151.

RILEY, K., SONG, Y., KRAUS, M., EBERT, D. S., AND LEVIT,
J. J. 2006. Visualization of structured nonuniform grids. IEEE
Computer Graphics and Applications 26, 46–55.

ROMAY, M. G., CORCHADO, E., AND GARCÍA-SEBASTIÁN,
M. T., Eds. 2010. Hybrid Artificial Intelligence Systems, 5th In-
ternational Conference, HAIS 2010, San Sebastián, Spain, June
23-25, 2010. Proceedings, Part I, vol. 6076 of Lecture Notes in
Computer Science, Springer.

SEGURA, Á., MORENO, A., GARCÍA, I., AGINAKO, N.,
LABAYEN, M., POSADA, J., ARANDA, J. A., AND ANDOIN,
R. G. D. 2009. Visual processing of geographic and environ-
mental information in the basque country: Two basque case stud-
ies. In GeoSpatial Visual Analytics, R. D. Amicis, R. Stojanovic,
and G. Conti, Eds., NATO Science for Peace and Security Series
C: Environmental Security. Springer Netherlands, October, 199–
208.

SUNDARAM, V., ZHAO, L., SONG, C., BENES, B., VEERA-
MACHENENI, R., AND KRISTOF, P. 2008. Real-time Data De-
livery and Remote Visualization through Multi-layer Interfaces.
In Grid Computing Environments Workshop, 2008. GCE’08, 1–
10.

WESTOVER, L. A. 1991. Splatting: a parallel, feed-forward vol-
ume rendering algorithm. PhD thesis, Chapel Hill, NC, USA.
UMI Order No. GAX92-08005.

YOO, S., KEY, J., CHOI, K., AND JO, J. 2005. Web-Based Hy-
brid Visualization of Medical Images. Lecture notes in computer
science 3568, 376.

