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Abstract. In depth map generation, the settings of the algorithm pa-
rameters to yield an accurate disparity estimation are usually chosen
empirically or based on unplanned experiments. A structured statistical
approach including classical and exploratory data analyses on over 14000
images to measure the relative influence of the parameters allows their
tuning based on the number of bad pixels. The implemented methodol-
ogy improves the performance of dense depth map algorithms. As a result
of the statistical based tuning, the algorithm improves from 16.78% to
14.48% bad pixels in the Middlebury Stereo Evaluation Ranking Table.
The performance is measured based on the distance of the algorithm re-
sults vs. the Ground Truth by Middlebury. Future work aims to achieve
the tuning by using significantly smaller data sets on fractional factorial
and response surface design of experiments.

1 Introduction

Depth map calculation deals with the estimation of multiple object depths on a
scene. It is useful for applications like vehicle navigation, automatic surveillance,
aerial cartography, passive 3D scanning, automatic industrial inspection, or 3D
videoconferencing [1]. These maps are constructed by generating, at each pixel,
an estimation of the distance between the screen and the object surface (depth).

Disparity is commonly used to describe inverse depth in computer vision, and
also to measure the perceived spatial shift of a feature observed from close camera
viewpoints. Stereo correspondence techniques often calculate a disparity function
d (x, y) relating target and reference images, so that the (x, y) coordinates of
the disparity space match the pixel coordinates of the reference image. Stereo
methods commonly use a pair of images taken with known camera geometry to
generate a dense disparity map with estimates at each pixel. This dense output
is useful for applications requiring depth values even in difficult regions like
occlusions and textureless areas. The ambiguity of matching pixels in heavy
textured or textureless zones tends to require complex and expensive global
image reasoning or statistical correlations using color and proximity measures
in local support windows.



Most implementations of vision algorithms make assumptions about the vi-
sual appearance of objects in the scene to ease the matching problem. The steps
generally taken to compute the depth maps may include: (i) matching cost com-
putation, (ii) cost or support aggregation, (iii) disparity computation or opti-
mization, and (iv) disparity refinement.

This article is based on work done in [1] where the principles of the stereo
correspondence techniques and the quantitative evaluator are discussed. The lit-
erature review is presented in section 2, followed by section 3 describing the
algorithm, filters, statistical analysis and experimental set up. Results and dis-
cussions are covered in section 4, and the article is concluded in section 5.

2 Literature Review

The algorithm and filters useseveral user-specified parameters to generate the
depth map of an image pair, and their settings are heavily influenced by the
evaluated data sets [3]. Published works usually report the settings used for their
specific case studies without describing the procedure followed to fine-une them
[2, 4, 5], and some explicitly state the empirical nature of these values [6]. The
variation of the output as a function of several settings on selected parameters is
briefly discussed while not taking into account the effect of modifying them all
simultaneously [2, 3, 7]. Multiple stereo methods are compared choosing values
based on experiments, but only some algorithm parameters are changed not
detailing the complete rationale behind the value setting [1].
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Fig. 1. Depth Map Comparison. Top: best initial, bottom: new settings. (a) Cones, (b)
Teddy, (c) Tsukuba, and (d) Venus data set.

Conclussions of the Literature Review. Commonly used approaches in
determining the settings of depth map algorithm parameters show all or some of
the following shortcomings: (i) undocumented procedures for parameter setting,
(ii) lack of planning when testing for the best settings, and (iii) failure to consider
interactions of changing all the parameters simultaneously.



As a response to these shortcomings, this article presents a procedure to fine-
tune user-specified parameters on a depth map algorithm using a set of images
from the adaptive weight implementation in [4]. Multiple settings are used and
evaluated on all parameters to measure the contribution of each parameter to
the output variance. A quantitative accuracy evaluation allows using main effects
plots and analyses of variance on multi-variate linear regression models, to select
the best combination of settings for each data set. The initial results are improved
by setting new values of the user-specified parameters, allowing the algorithm to
give much more accurate results on any rectified image pair shown in Figure 1.

3 Methodology

Image Processing. In the adaptive weight algorithm, a window is moved over
each pixel on every image row, calculating a measurement based on the geomet-
ric proximity and color similarity of each pixel in the moving window to the pixel
on its center. Pixels are matched on each row based on their support measure-
ment with larger weights coming from similar pixel colors and closer pixels. The
horizontal shift, or disparity, is recorded as the depth value, with higher values
reflecting greater shifts and closer proximity to the camera.

The strength of grouping by color (fs (cp, cq)) for pixels p and q is defined
as the Euclidean distance between colors (∆cpq) by Equation (1). Similarly,
grouping strength by distance (fp (gp, gq)) is defined as the Euclidean distance
between pixel image coordinates (∆gpq) by Equation (2). Where γc and γp is an
adjustable setting used to scale the measured color delta and window size.

(1)fs (cp, cq) = exp

(
−∆cpq

γc

)

(2)fp (gp, gq) = exp

(
−∆gpq

γp

)
The matching cost between pixels shown in Equation (3) is measured by

aggregating raw matching costs, using the support weights defined by Equa-
tions (1) and (2), in support windows based on both the reference and target
images.

(3)E (p, p̄d) =

∑
q∈Np,q̄d∈Np̄d

w (p, q)w (p̄d, q̄d)
∑

c∈{r,g,b} |Ic (q)− Ic (q̄d)|∑
q∈Np,q̄d∈Np̄d

w (p, q)w (p̄d, q̄d)

where w (p, q) = fs (cp, cq) · fp (gp, gq), p̄d and q̄d are the target image pixels
at disparity d corresponding to pixels p and q in the reference image, Ic is the
intensity on channels red (r), green (g), and blue (b), and Np is the window
centered at p and containing all q pixels. The size of this movable window N is
another user-specified parameter. Increasing the window size reduces the chance
of bad matches at the expense of missing relevant scene features.



Local methods perform most of their work on matching cost computation
and aggregation, estimating the final disparity of each pixel by selecting the
minimum cost value with a winner takes all optimization without any global
reasoning after the dissimilarity computation.

Algorithms based on correlations depend heavily on finding similar textures
at corresponding points in both reference and target images. Bad matches hap-
pen more frequently in textureless regions, occluded zones, and areas with high
variation in disparity. The winner takes all approach enforces uniqueness of
matches only for the reference image in such a way that points on the target
image may be matched more than once, creating the need to check the dispar-
ity estimates and fill any gaps with information from neighboring pixels using
post-processing filters like the ones shown in Table 1.

Filter Function User-specified parameter

Adaptive
Weight [2]

Disparity estimation and
pixel matching

γaws: similarity factor, γawg: proximity factor
related to the WAW pixel size of the support
window

Median Smoothing and incorrect
match removal

WM : pixel size of the median window

Cross-
check[8]

Validation of disparity
measurement per pixel

∆d: allowed disparity difference

Bilateral[9] Intensity and proximity
weighted smoothing with
edge preservation

γbs: similarity factor, γbg: proximity factor re-
lated to the WB pixel size of the bilateral win-
dow

Table 1. User-specified parameters of the adaptive weight algorithm and filters.

Statistical analysis. The user-specified input parameters and output accu-
racy measurements data is statistically analyzed measuring the relations amongst
inputs and outputs with correlation analyses, while box plots give insight on the
influence of groups of settings on a given factor. A multi-variate linear regression
model shown in Equation (4) relates the output variable as a function of all the
parameters to find the equation coefficients, correlation of determination, and
allows the analysis of variance to measure the influence of each parameter on
the output variance. Residual analyses are checked to validate the assumptions
of the regression model like constant error variance, and mean of errors equal to
zero If neccesary, the model is transformed. The parameters had been scaled to
fit the range (−1, 1) as show in Table 2.

(4)ŷ = β0 +

n∑
i=1

βixi + ε

where ŷ is the predicted variable, xi are the factors, and βi are the coefficients.
Experimental set up. The depth maps are calculated with an implementa-

tion developed for real time videoconferencing in [4]. using well-known rectified



image sets: Cones from [1], Teddy and Venus from [10], and Tsukuba head and
lamp from the University of Tsukuba. Other commonly used sets are also freely
available [11, 12]. The sample used consists of 14688 depth maps, 3672 for each
data set.

Parameter Name Levels Values Coding

Adaptive Weights Window Size aw win 4 [1 3 5 7] [-1 -0.3 0.3 1]
Adaptive Weights Color Factor aw col 6 [4 7 10 13 16 19] [-1 -0.6 -0.2 0.2 0.6 1]
Median Window Size m win 3 [N/A 3 5] [N/A -1 0.2 1]
Cross-Check Disparity Delta cc disp 4 [N/A 0 1 2] [N/A -1 0 1]
Cross-Bilateral Window Size cb win 5 [N/A 1 3 5 7] [N/A -1 -0.3 0.3 1]
Cross-Bilateral Color Factor cb col 7 [N/A 4 7 10 13 16 19] [N/A -1 -0.6 -0.2 0.2 0.6 1]

Table 2. User-specified parameters of the adaptive weight algorithm.

Many recent stereo correspondence performance studies use the Middle-
bury Stereomatcher for their quantitative comparisons [3, 7, 13]. The evalua-
tor code, sample scripts, and image data sets are available from the Middle-
bury stereo vision site4, providing a flexible and standard platform for easy
evaluation. The online Middlebury Stereo Evaluation Table gives a visual in-
dication of how well the methods perform with the proportion of bad pixels
(bad pixels) metric defined as the average of the proportion of bad pixels in the
whole image (bad pixels all), the proportion of bad pixels in non-occluded re-
gions (bad pixels nonocc), and the proportion of bad pixels in areas near depth
discontinuities (bad pixels discont) in all data sets.

4 Results and Discussion

Variable selection. Pearson correlation of the factors show that they are in-
dependent and that each one must be included in the evaluation. On the other
hand, a strong correlation amongst bad pixels and the other outputs is detected
and shown in Figure 2(b)(Left). This allows the selection of bad pixels as the
sole output because the other responses are expected to follow a similar trend.

Exploratory Data Analysis. Box plots analysis of bad pixels show lower
output values from using filters, relaxed cross-check disparity delta values, large
adaptive weight window sizes, and large adaptive weight color factor values. The
median window size, bilateral window size, and bilateral window color values do
not show a significant influence on the output at the studied levels.

The influence of the parameters is also shown on the slopes of the main
effects plots of Figure 3 and confirms the behavior found with the ANOVA of
the multi-variate linear regression model. The settings to lower bad pixels from
this analysis yields a result of 14.48%.

Multi-variate linear regression model. The analysis of variance on a
multi-variate linear regression (MVLR) over all data sets using the most parsi-

4 http://vision.middlebury.edu/stereo/



monious model quantifies the parameters with the most influence as shown in
Figure 2(b)(Right). cc disp is the most significant factor accounting for a third
to a half of the variance on every case.
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(b) Correlation and ANOVA

Fig. 2. Correlation and ANOVA Left: bad pixels Pearson correlation coefficient. Right:
Contribution to the output variance by parameter.

Interactions and higher order terms are included on the multi-variate linear
regression models to improve the goodness of fit, and reducing the number of
input images per dataset from 3456 to 1526 by excluding the worst performing
cases corresponding to cc disp = 0 and aw col = [4, 7], allows using a cubic
model with interactions and an R2 of 99.05%.

The residuals of the selected model fail to follow a normal distribution. Trans-
forming the output variable or removing large residuals does not improve the
residuals distribution, and there are no reasons to exclude any outliers from the
database as outliers. Nonetheless, improved algorithm performance settings are
found using the model to obtain lower bad pixels values comparable to the ones
obtained throught the exploratory data analysis (14.66% vs. 14.48%).

In summary, the most noticeable influence on the output variable comes from
having a relaxed cross-check filter, accounting for nearly half the response vari-
ance in all the study data sets. Larger window sizes comes as the next most
influential factor, followed by larger color factor, and finally bigger window sizes
on the bilateral filter. Increasing the window sizes on the main algorithm yield
better overall results at the expense of longer running times and some foreground
loss of sharpness, the support weights on each pixel have the chance of becoming
more distinct and potentially reduce disparity mismatches. Increasing the color
factor on the main algorithm allows better results by reducing the color dif-
ferences, and slightly compensating minor variations in intensity from different
viewpoints.

A small median smoothing filter window size is faster than a larger one, while
still having a similar accuracy. Low settings on both the window size and the
color factor on the bilateral filter seem to work best for a good balance between
performance and accuracy.

The optimal settings in the original data set are presented in Table 3 along
with the proposed combinations:
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Fig. 3. Main Effects Plots of each factor level for all data sets. Steeper slopes relate to
bigger influence on the variance of the bad pixels output measurement.

Low settings comprise the depth maps with all their parameter settings at
each of their minimum tested values yielding 67.62% bad pixels.

High settings relates to depth maps with all their parameter settings at each
of their maximum tested values yielding 19.84% bad pixels.

Best initial are the most accurate depth maps from the study data set yielding
16.78% bad pixels.

Exploratory analysis corresponds to the settings determined using the ex-
ploratory data analysis based on box plots and main effects plots yielding
14.48% bad pixels.

MVLR optimization is the extrapolation optimization of the classical data
analysis based on multi-variate linear regression model, nested models, and
ANOVA yielding 14.66% bad pixels.

The exploratory analysis estimantion and the MVLR optimization tend to con-
verge at similar lower bad pixels values using the same image data set. The best
initial and improved depth map outputs are shown in Figure 1.

Run Type bad pixels aw win aw col m win cc disp cb win cb col

Low Settings 67.62% 1 4 3 0 1 4
High Settings 19.84% 7 19 5 2 7 19
Best Initial 16.78% 7 19 5 1 3 4
Exploratory analysis 14.48% 9 22 5 1 3 4
MVLR optimization 14.66% 11 22 5 3 3 18

Table 3. Model comparison. Average bad pixels values over all data sets and their
parameter settings.

5 Conclusions and Future Work

This work is presented as a structured methodology to measure the relative
influence of the inputs of a depthmap algorithm on the output variance and
the identification of new settings to improve the results from 16.78% to 14.48%
bad pixels. The methodology is applicable on any group of depth map image sets



generated with an algorithm where the relative influence of the user-specified
parameters merits to be assessed.

Using design of experiments reduces the number of depth maps needed to
carry out the study when a large image database is not available. Further analysis
on the input factors should be started with exploratory experimental fractional
factorial designs comprising the full range on each factor, followed by a response
surface experimental design and analysis. In selecting the factor levels, analyzing
the influence of each filter independently would be an interesting criterion.
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