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a b s t r a c t

Abdominal aortic aneurysm (AAA) is a condition where the weakening of the aortic wall leads to its

widening and the generation of a thrombus. To prevent a possible rupture of the aortic wall, AAA can be

treated non-invasively by means of the endovascular aneurysm repair technique (EVAR), consisting of

placing a stent-graft inside the aorta by a cateter to exclude the aneurysm sac from the blood

circulation. A major complication is the presence of liquid blood turbulences, called endoleaks, in the

thrombus formed in the space between the aortic wall and the stent-graft. In this paper we propose an

automatic method for the detection of type II endoleaks in computer tomography angiography (CTA)

images. The lumen and thrombus in the aneurysm area are first segmented using a radial model

approach. Then, these regions are split into Thrombus Connected Components (TCCs) using a

watershed-based segmentation and geometric and image content-based characteristics are obtained

for each TCC. Finally, TCCs are classified into endoleaks and non-endoleaks using a multilayer

Perceptron (MLP) trained on manual labeled sample TCCs provided by experts.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Abdominal aortic aneurysm (AAA) is a cardiovascular disease
that is caused by a degenerative process of the aortic wall, which
leads to its wear and deformation. If not treated, AAAs increase in
size progressively and may result in rupture, and, eventually,
death [15]. There are currently two main repair techniques for
AAAs: open aneurysm repair (OR) and endovascular aneurysm
repair (EVAR). EVAR is a minimally invasive technique consisting
in placing an endograft, typically a cloth graft with a stent
exoskeleton, within the lumen of the AAA, extending distally into
the iliac arteries. This serves as a bypass and decreases the
pressure exerted on the aortic wall, leading to a reduction in
AAA size over time and a decrease in the risk of aortic rupture. An
intraluminal thrombus (ILT) forms in the majority of abdominal
aortic aneurysms. Correctly excluded aneurysms progressively
shrink after EVAR surgery. Nevertheless, there may be leaks into
or from the sac due to incorrect positioning, displacement or
torsion of the graft, that is, liquid blood may appear inside the
thrombus after EVAR. This effect is called an endoleak.

In this paper, we address two computational problems direc-
ted to the semi-automatic detection of endoleaks in CTA images.

First the AAA thrombus segmentation procedure which is done on
a radial representation of the thrombus contours, enhanced with
a priori knowledge and modeling of spatial coherence. This
segmentation is needed in order to localize the endoleaks inside
the thrombus image area. Second we propose a multilayer
perceptron (MLP) [7] classifier for the automatic detection of
(type II) endoleaks applied on the segmented lumen and throm-
bus of the AAA.

The detection of endoleaks is performed classifying thrombus
connected components (TCCs) obtained from segmentation of the
thrombus image area using a morphological grayscale watershed
transform [3]. Classification features are geometric and image
content-based characteristics of the TCCs. Ground truth for training
the MLP are provided by the human experts that classify a large
sample of TCCs into two classes ‘‘ensdoleak’’ and ‘‘no-endoleak’’.

Experimental results over a collection of AAA scans provided
by the show good performance that the MLP is able to character-
ize and correctly classify image regions inside the aneurysm
corresponding to endoleaks after training over the provided
labeled sample. Endoleaks appear seldom in the image data from
treated AAA patients. Therefore, it is extremely difficult to find
data for the validation of the proposed approach. For this reason
our system has to be validated at the level of 2D slices, however a
3D extension is easy and will be done when more data is available
for training and validation.

The contents of the paper are as follows: Section 2 gives the
review the current approaches dealing with the problem of
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thrombus segmentation and endoleak detection. Section 3
describes the thrombus segmentation and image processing
methods and the design of the MLP for endoleak detection.
Section 4 presents the experimental data and the results obtained
with the proposed processing sequence. Finally, Section 4.1 gives
some summary conclusions and directions for further work.

2. State of the art review

Close follow-up is required after endovascular repair, with CTA
scans performed at one, six, and 12 months, and with a year
periodicity after that. In order to assess the evolution of the aortic
wall aneurysm sac, the aneurysm must be delineated in the images.
The aorta lumen usually presents a high contrast in CTA, however,
segmentation of the aneurysm thrombus is not a trivial task, due to
low-contrast in the ILT region compared to adjacent structures (see
Fig. 1). Manual segmentation by trained radiologists is a time-
consuming task, and suffers from intra- and inter-observer varia-
bility. With the advent of last generation CT scanners, the number
of slices per examination has increased, and the manual delineation
of tenths to hundreds of slices becomes impossible on a clinical
routine. Hence, the development of automatic or semi-automatic
methods for the segmentation of AAAs is required. Furthermore,
quantitative assessment of evolution of aneurysms after EVAR is
usually performed by taking the largest diameter or cross-sectional
area on a single slice, but volume measurement has been demon-
strated to show the smallest intra-observer variability [16]. Thus, a
(semi)automatic segmentation method would allow patient follow-
up using volumetric measurements of aneurysm size.

A major risk of EVAR interventions is the presence of liquid
blood inside the aneurysm sac, called endoleak. Although endoleaks
are more likely to occur soon after the intervention, lifelong
surveillance is required [9]. Endoleaks can be classified into several
types, depending on the cause [18,19]. The most common are type
II endoleaks, which arise from persistent retrogade flow in collat-
eral vessel branches. Some type II endoleak thrombose sponta-
neously but some others don’t, causing an increase in aneurysm
size and risk of rupture. In these cases intervention is required,
usually consisting in an embolization of collateral branches.

The characteristic CTA image feature of an endoleak is the
presence of brighter material inside the excluded aneurysm sac
[12,14] (see Fig. 1 right). Type II endoleaks typically appear in the
periphery of the aneurysm sac without touching the stent [12]. The
actual image intensity value of the endoleak varies and depends on
the size of the leak and the distribution of contrast material at the
moment the image was acquired. They can be confused with
calcifications which appear in the outer aortic wall and are brighter,
whereas type II endoleaks appear typically close to the wall perfusing
into the sac and showing an amorphous shape (see Fig. 1). Since
these endoleaks can be approximately characterized, we believe that
an automatic detection and quantification system for type II

endoleaks are possible and would be very helpful, specially in cases
where endoleaks are not very clearly visible but may be made
evident from the analysis of subtle changes in the image content.

Thrombus segmentation of AAAs has been addressed in the
literature using several approaches [13,5,11,21,2,10]. The works
presented in [13,5] need initial manual delineations to initialize
their models; the method by de Bruijne et al. [5] needs posterior
user intervention in case of thrombus boundary overflow. Olabar-
riaga et al. [11] employ a binary thresholding to obtain the lumen,
which is used as an initialization for a deformable model to
segment the thrombus. Simple thresholding takes into account
other tissues not connected to the lumen, so further processing is
usually needed to avoid those structures. Furthermore, the use of
deformable models needs fine parameter tuning to obtain accep-
table results. In this regard, Subasic et al. [13] use a level-set
approach, de Bruijne et al. [5] apply an active shape model (ASM).
Zhuge et al. [21] also present an algorithm based on a level-set

approach whose main advantage is the automatization and para-
meter insensitivity. Nevertheless, the required computing time
(in the order of several minutes) is a main drawback. The work
by Borghi et al. [2] makes use of region growing segmentation
techniques in order to obtain the lumen boundary, but then use
manual delineation of the aneurysm wall to obtain a 3D model of
thoracic aortic aneurysm (TAA). A computational study of the drag
forces that can produce stent displacement is given in [6] for TAA.
The work of Lee et al. [10] performs an initial estimation of the
lumen region by region growing after anisotropic smoothing. Then
both the lumen and the thrombotic surfaces are built up using a 3D
graph search with cost functions specially designed for the lumen
and the thrombus surfaces. Parameter values are empirically set,
and the algorithm requires interactive guidance of the thrombus
segmentation. Regarding endoleak detection, we have not found
any work in the literature that addresses the problem of automatic
detection and quantification of endoleaks in CTA images.

3. Methods

An overview of the processes involved in the automatic
endoleak classification system can be seen in Fig. 2. First the
aneurysm lumen and thrombus are segmented using the pro-
posed segmentation method described in Section 3.1. We start
from a segmentation of the lumen, based on a 3D region growing
algorithm, followed by the calculation of the aorta centerline. The
thrombus contour is modeled as a function of the radial distance
to the computed centerline. The volume of interest is resampled
into polar coordinates centered in the aorta centerline.

The thrombus content is further segmented into thrombus
connected components (TCC) (Section 3.2). Using this polar
coordinate reference system, the watershed segmentation obtains
the TCCs in the thrombus region at both radial and slice level
using heuristics based on a priori knowledge and spatial

Fig. 1. Slice showing abdominal aortic aneurysm with different parts (left). A type II endoleak appears as bright tissue in the thrombus area.
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coherence. The radial distance functions that describe the throm-
bus contour are obtained from the resulting connected compo-
nents and define the target segmented region. The main
advantages of this method are its robustness and speed, com-
pared with the state of the art approaches described above. It
does not employ sophisticated numerical methods nor needs fine
parameter
tuning. The TCC features are extracted to be used for classification
(Section 3.3). Once all the features for the TCCs are obtained, these
are manually labelled by the experts as endoleaks or not endo-
leaks. A feature selection is performed (Section 3.4) to remove
redundant or confusing features. This data is used as input for the
training and validation of the MLP neural network classifier. Our
approach to endoleak detection is based on a priori knowledge of
the possible location and appearance of endoleaks in CTA images
according to what it is described in medical papers, the indica-
tions given by expert interventional radiologists, and their
manual labelling of relevant TCCs corresponding to endoleaks.

3.1. Lumen and thrombus segmentation

A robust segmentation of the lumen and thrombus of the AAA
is required as an input for the automatic endoleak detection
system, in order to isolate the lumen and thrombus area. As seen
in the right hand of Fig. 1, thrombus may be touching with other
structures of similar intensity, so their boundaries are quite
difficult to find, even for a trained radiologist. In this section,
we describe the lumen segmentation, centerline extraction and
thrombus segmentation. Our thrombus segmentation approach is
based on a radial description of the thrombus contours.

3.1.1. Region growing-based lumen segmentation

Segmentation of the lumen is based on a 3D region growing
algorithm [8] computed on the CTA volume. First, a volume of
interest (VOI) is defined in order to reduce the extent of the data
and then preprocessed to reduce noise. A manually given seed
point on the lumen is at least required for the region growing
algorithm. The algorithm includes voxels whose intensity values
lie in a confidence interval defined over the current segmented
region over an iterative process. At each iteration, all neighbor-
hood voxels are visited and the confidence criterion is evaluated.
Then, statistics are recomputed and the next iteration begins. The
resulting identified region is smoothed by morphological closing,
to fill possible small holes.

3.1.2. Centerline extraction

The centerline computed as the approximate centroid of the
lumen region at each slice is a good approximation of the
morphological skeleton of the whole aorta. It serves as the

starting point for the thrombus segmentation. A single point on
the centerline is obtained for every slice using 2D image
moments, since the aorta is almost normal to axial slices. Image
moments provide information on the spatial distribution of a
given image region corresponding to a structure. The moments of
a 2D image are defined as

Mp,q ¼
XY�1

y ¼ 0

XX�1

x ¼ 0

xpyqIðx,yÞ, ð1Þ

where I(x,y) is a discrete image. The centroid is defined as the pair
½M10=M00,M01=M00�.

At each slice, we select the 2D connected components
obtained from the 3D lumen region corresponding. We compute
the centroid of each such 2D lumen connected components. The
centroid which is the nearest to the centerline point detected in
the previous slice is kept as the next centerline point. Algorithm 1
yields a series of points that conform the centerline of the
segmented lumen.

Algorithm 1. Centerline extraction from 3D lumen region.

1: Initialization of region: center line in first processed slice
2: for all slices in 3D image do
3: Identify lumen connected components from the 3D

lumen region
4: for each lumen component in slice do
5: Compute centroid
6: Compute Euclidean distance to centerline point in

previous slice
7: end for
8: Keep nearest centroid as the centerline point
9: end for

3.1.3. Thrombus segmentation

We model the internal and external radius of the thrombus of
the aneurysm as radial distance functions in cylindrical coordi-
nates. We can express the volume of interest around the lumen
centerline as

C¼Cðr,y,zÞ: ð2Þ

At every z value, corresponding to a slice of the CTA volume,
we choose the origin of these functions to be the centerline point
at the corresponding slice. The external and internal radii of the
thrombus and the aneurysm can be defined as two contours given
by functions of the angle in polar coordinates:

Trint ¼Crintðy,zÞ,

Trext ¼Crextðy,zÞ: ð3Þ

This idea is depicted in Fig. 3. The segmentation procedure
consists of calculating the values of the internal and external radii
Trint and Trext at every angle, which define the closed boundaries
enclosing the region corresponding to the thrombus.

Conversion from Cartesian to polar coordinates requires
resampling the input VOI. For every slice, a new image is
obtained, where the X coordinate represents the radius, starting
from the centerline point at the left, and the Y coordinate
represents the angle y, covering 3601 with the origin at the top.
This polar representation is visualized as an image in Fig. 4(b).
The original CTA slice is shown in 4(a).

The polar representation presents several advantages. First,
the VOI is converted to a quasi cylindrical VOI (it is not exactly
cylindrical, because the centerline is not a vertical line), instead of
the typical rectangular prism, but after that it is treated as a
standard volume with a regular grid. Second, computation speed

Fig. 2. Processes of the automatic endoleak classification system.
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is increased, since resampling is only performed once and the
polar slices are processed as conventional 2D images.

Next, polar slices are filtered using a median filter to remove
speckle and additive noise coming both for the original image and
the image resampling needed for the polar transformation visua-
lization. In order to remove the lumen and the stent from the
images without affecting the thrombus voxels, every slice is
thresholded in such a way that those image values higher than
a threshold Thlmn are converted to a value Ibgr, which approx-
imates the background value of the tissue around the thrombus.
In our experiments we chose Thlmn¼150 HU1 and Ibgr¼�100 HU.
The result of these operation is shown in 4(c). After noise filtering
and lumen/stent thresholding, the thrombus appears as the
brightest structure closest to the centerline and we can use this
a priori information for the segmentation.

The internal thrombus radius Trint, which corresponds to the
lumen external contour when no endoprosthesis is present, can be
found moving away from the centerline (which corresponds to
moving along a row in the polar slice image), as the boundary where
values different from Ibgr appear. The median filter removes the
small regions with lower image values that may exist in between.

Localization of the external radius of the thrombus on each
slice in polar coordinates is achieved by a local analysis based on
two concepts: radial connected components (RCC) and slice

connected components (SCC). We define an RCC as a connected
segment over a row of a polar slice and an SCC as a 2D connected
component on a polar slice. First, a row-by-row analysis is
performed in all slices to create an image of RCCs of each slice.
An RCC is created for consecutive pixels of a row that follow a
given membership criterion. We use the absolute difference from
the mean of the currently detected RCC with a threshold value
ThRCC (we use ThRCC¼20 HU in our experiments). Obtaining Trint

and RCC at each row can be done simultaneously. The algorithm 2
illustrates the process for creating the RCCs:

Algorithm 2. Creating the Radial Connected Components (RCC).

1: Move to the origin of the first polar slice (upper left
corner)

2: for all polar slices do
3: for all rows in the current polar slice do
4: create a new RCC and insert first pixel on the current

row
5: for all pixels in the current row do
6: if (intensity(pixel) A intensity confidence interval

of the currentRCC) then

7: insert pixel in the current RCC
8: else
9: calculate and store row internal thrombus radius
10: end for
11: end for
12: end for

Next, we proceed to filter the RCCs. First, RCCs whose average
values are not in the intensity range of Thtlow�Ththigh are removed. In
our experiments we used Thtlow ¼ 0 HU and Ththigh¼200 HU which
are conservative values to characterize the thrombus image inten-
sity, which apply to most AAA CTA datasets. Second, RCCs that do
not start from a distance dmax from the external lumen radius are
removed too. This criterium is based on the fact that, if a thrombus
exists, this must be almost close to the previously thresholded area
for lumen and endoprosthesis. In our experiments we also chose
dmax¼5 mm. Also in a very conservative manner. Results of the RCC
computation procedure are shown in Fig. 5. It can be seen that the
thrombus has been almost completely isolated, but some RCCs that
are not part of the thrombus still remain (see Fig. 5(b)).

SCCs are computed using 2D connectivity and the same
intensity criteria used for the RCCs. Each SCC keeps a list of RCCs
which are included in it. SCCs are used to filter RCCs by using
spatial coherency information on each slice. First, SCCs (and
corresponding RCCs) that contain less than Nmin voxels (we use
Nmin¼10) are discarded since they are not significant at a slice
level. Next, SCCs are filtered by the position of the centroid,
having into account that most of the candidate RCCs at this
moment are part of the thrombus. For each slice, the position of
the centroid for all the RCCs and the corresponding centroid
median value are calculated. The median value is a good indicator
for the real position of the thrombus. Then we compute the
distance from the centroid of every SCC on that slice to the
median centroid value, and if the distance is greater than a
threshold dcentroid¼20 mm, the SCC is completely removed.

Initial values for the thrombus contours Trint and Trext are
obtained by taking, for every row on all slices, the first index of
the first RCC and the last index of the last RCC on that row (it is
assumed that the RCCs remaining after filtering are part of the
thrombus). This results in a good approximation to the real
external thrombus contour, with the exception of some areas
where the thrombus region invades adjacent structures and that
represent a discontinuity in Trext (see Fig. 6 blue contours). In order
to solve this problem and regularize the contours, a continuity
constraint is imposed over Trext and the contour points whose radii
are part of a discontinuity are interpolated. Discontinuities are
identified as significant radius changes from line to line in the
polar image. Then, the radii in these areas are linearly interpolated
in order to obtain the final result (green contours in Fig. 6).

3.2. Thrombus connected component extraction

After the initial thrombus and lumen segmentation, the throm-
bus is further segmented in trombus connected components
(TCCs) which will be later classified as being endoleaks or not.
This segmentation is based on a topological grayscale watershed
transform [3] applied on a slice by slice basis in the area of the
segmented thrombus on each slice (see Fig. 7). First, the image is
smoothed using an edge-preserving smoothing filter based on a
level-set modified curvature diffusion equation (MCDE) [17]. Two
parameters are required for the filter: the conductance parameter,
which controls the strength of the edges to preserve and the
number of smoothing iterations, which controls the degree of
smoothing. After filtering, in order to define the watersheds
basins, we then calculate the image gradient magnitude.

Fig. 3. Radial model for the thrombus segmentation.

1 HU¼Hounsfield Units, a normalized CT image intensity value representing

X-ray absorption.
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The topological grayscale watershed transform is an algorithm
for calculating the well-known watershed transform [1] in which
the image is segmented based on its topology. The gradient
magnitude is interpreted as an elevation map and the image
relief is flooded dividing it into catchment basins. The pixels of
each basin share a local minima and the basin boundaries

corresponds to the image edges. The watershed transform calcu-
lation is controlled by a single parameter, the water level, that
controls the height of the flooding, merging adjacent regions as
the ‘water’ ascends to reduce the effect of oversegmentation.

The parameters for all filters involved in this segmentation are
chosen in order to distinguish the endoleaks from the background

Fig. 4. (a) AAA after EVAR viewed on axial slice, (b) polar representation, and (c) median filtered version with lumen and stent thresholded and removed. The origin for the

polar coordinate representation of (b) is taken as the centerline in (a).

Fig. 5. (a) RCCs computed from Fig. 4(c). Different RCCs found along each row are represented in different colors (from darker to brighter). (b) Filtered RCCs.
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region corresponding to the thrombus, or other adjacent structures.
Endoleaks can correspond to a single or several TCCs (oversegmen-
tation) if the water level is low. If it is high, we would have TCC
corresponding to both endoleak and other tissues (undersegmenta-
tion). Classifying oversegmented endoleaks is not a problem, but
solving the undersegmentation problem is not easy, therefore the
water level parameter is set to avoid undersegmentation.

3.3. Feature extraction from TCC

We calculated the following geometric features for each
labelled TCC that will be used by the MLP-based classification
system to determine if the TCC is part of an endoleak region:

� Area: number of pixels of the TCC.
� Area-region Ratio: ratio of the TCC’s bounding box and the

area.
� Binary Principal Moments: TCC’s principal moments of inertia

(two features).
� Equivalent Radius: radius of a circle of the same area as the TCC

and the following image content-based statistical features
computed from the image intensity of the CTA image region
corresponding to the TCC: Mean, Sigma, Median, Kurtosis,
Skewness and Elongation (ratio of the largest to smallest
principal image moments).

Besides these features, we need to incorporate another feature
that describes the relative position of the TCC with respect to the
lumen and thrombus boundaries. We can profit from the obser-
vation that type II endoleaks typically appear close to the
thrombus boundary and perfusing inwards. We need this feature
to be normalized, since the radius and shape of the thrombus and
lumen, and the eccentricity of the lumen with respect to the
thrombus is not uniform. Moreover, the lumen can show two
branches when the aorta splits into two forming the iliac arteries
(see Fig. 7(a)), so we cannot take the distance to the lumen
centroid. Taking all this considerations into account, we propose a
feature called normalized thrombus distance (NTD). Two distance
maps are first calculated from the thrombus boundary inwards
(dlm), and from the lumen thrombus boundary outwards (dth),
using Danielsson’s algorithm [4] (see distance visualization in
Fig. 8). In the rest of image regions the NTD value is zero. Then, we
calculate the NTD as:

NTD¼

dlm

dth
if dlmrdth,

dth

dlm
if dthrdlm:

8>>><
>>>:

ð4Þ

The NTD takes its maximum value of one at thrombus points
that are equidistant to the lumen and thrombus boundaries. NTD
minimum value is zero and it is taken at the thrombus boundary

Fig. 6. Thrombus segmentation results. Correction (green line) of the initial external thrombus radius (blue line). Examples of appropriate correction (a) and (b) and

underestimation (c). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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and outside the thrombus, and at the lumen boundary and inside
the lumen. NTD takes values in [0,1] inside the thrombus. For the
thrombus and lumen boundaries used as input for the NTD, we can
use the segmentation described in 3.1 or a manual segmentation.

3.4. Reduced feature vector for MLP

Let us call the dependent indicative variable IsLeak. Its value is
0 for negative TCC and 1 for TCC inside endoleaks. In order to
reduce the classifier system’s complexity and increase the speed

of the calculations, a subset of features is selected as input for the
network based on the absolute value of the Pearson correlation
coefficients between the dependent variable IsLeak and the rest of
variables (features) defined as:

r¼
sXY

sXsY
: ð5Þ

In Fig. 9 we can see the results of calculating the absolute
value of the Pearson Coefficients for the CCs of all the slices in the

Fig. 7. Extraction of Thrombus CCs. (a) Source slice with visible endoleaks, (b) result of Watersheds segmentation, and (c) blended result. Endoleaks are indicated by

arrows in (c). Each endoleak corresponds to more than one coloured region (oversegmentation).

Fig. 8. Visualization of the distance maps used to calculate the NTD feature.

(a) Distance to the lumen dlm and (b) distance to the thrombus dth.
Fig. 9. Absolute value of Pearson correlation coefficients of each feature with the

indicative variable IsLeak.
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aneurysm region for a given dataset. As expected, we can see that
the NTD feature is highly correlated with the dependent variable,
since the feature was designed to incorporate the a priori knowl-
edge of the spatial distribution of the endoleaks. We can see that
the standard deviation value is also important, meaning that the
image intensity value, also as expected, should play an important
role in the characterization of endoleaks. The experimental results
show that the reduced feature vector obtain by this straightfor-
ward approach give comparable classification results.

4. Experimental data and results

Our radial-based thrombus segmentation method has been
tested on real human CTA datasets featuring endoleaks confirmed
by radiologists, obtained from a LightSpeed16 CT scanner (GE
Medical Systems, Fairfield, CT, USA) with 512�512�354 voxel
resolution and 0.725�0.725�0.8 mm spatial resolution. Two
points inside the lumen, defining the limits of the thrombus
region in axial direction, were manually selected as seed points
for the 3D region growing segmentation of the lumen. The lumen
centerline is then extracted from it to be used as the origin for the
polar representation in an area of radius 10 mm around the
centerline at each slice. Finally, the described radial function-
based model is used to segment the thrombus. Finally, the
described radial function-based model is used to segment the
thrombus. Some examples of results of the thrombus segmenta-
tion method have been shown in Fig. 6 where the initial estima-
tion (blue) and the corrected external thrombus contours (green)
are shown.

The classification scheme was tested independently on each
single CTA volume from patients with type II endoleak after EVAR
treatment. The whole volumes consisted of 383 slices in a
512�512 matrix, with an in-plane spatial resolution of
0.703 mm and a slice thickness of 0.8 mm. Due to the scarce
availability of volumes from patients affected with endoleaks, we
tested our approach independently on each volume, working on a
2D slice-by-slice basis.

In eachis case, we took as input for the MLP training the results
of a segmentation of the lumen and thrombus regions validated
by expert radiologists. The watershed-based segmentation was
performed on the slices corresponding to the aneurysm region in
each dataset using the implementation provided by the Insight

Toolkit [8] for the topological grayscale watershed transform. We
used the following parameters for the different filters involved in
the watershed segmentation: smoothing conductance¼50.0,
smoothing number of iterations¼10, watersheds water
level2

¼9.0. The NTD distance-map feature was calculated from
the input thrombus and lumen segmentations. The TCCs were
manually labelled as being part of an endoleak. From the group of
negative TCCs, we proceeded to select randomly an equal number
of samples in order to obtain a balanced training/testing set.

Classification experiments were performed using the MLP
implementation provided in [20]. The MLP neural network
consisted feature described in Section 3.3, a hidden layer with
three neurons and two binary outputs, with sigmoid functions.
Network training and validation were performed using 10-fold
cross-validation in all computational experiments. Initially, we
used the full training/test set consisting of the full feature vectors
described in Section 3.3. The results are shown in Table 1. Results
are above 90% accuracy, with a high sensitivity which is very
interesting because the cost of false negatives is much higher than
that of false positives.

Next, we test the improvement in the classification results by
testing reduced sets of features selected according to the correla-
tion results found in Section 3.4 (Fig. 9). The best results were
obtained by selecting the following features: Area, Mean, Sigma

and NTD. We can see in Table 2 that the classification rate
improves, reaching 93.65% accuracy with a sensitivity of 94.37%
and a specificity of 92.94%. The best results give a success rate of
94.73% with a sensitivity of 94.37% and a specificity of 95.09% for
the second dataset.

Fig. 10 shows the influence of several parameters of the MLP in
the classification performance measures. We can see that the best
results are obtained for a training time of 550 epochs, a learning
rate¼0.3 and 3 hidden nodes. These sensitivity experiments were
performed on the training/test dataset that gives best results on
the reduced feature vector (dataset 2).

4.1. Discussion, conclusions and future work

As can be seen in Fig. 6, the method developed for thrombus
segmentation shows good results in defining the external
contour, where thrombus density is very similar to that of
adjacent structures, and very prone to segmentation error in
areas close to them. The obtained contour is very accurate due
to the assumption of a radial model. The method needs the
settings of several thresholds to work. However, our experience
demonstrates that the sensibility of the method to these para-
meters is low as they were chosen very conservatively. A
deeper sensibility analysis is beyond the scope of this paper.
One of the main advantages of the method is its computational
speed. It took less than 20 s to process 80 slices on a Pentium Core
2 Quad at 2.4 GHz. However, the method requires further
improvements, since we have observed an underestimation of
the radius in some places which were identified as leaks (see
Fig. 6(c)). Results of this segmentation are comparable to the state
of the art found in the literature [10] with less human

Table 1
Classification results for the training/test data build from full feature vectors,

10-fold crossvalidation. The table shows the total accuracy, sensitivity and

specificity for each dataset. Last row shows the average across datasets. All

calculations were performed with three hidden nodes, learning rate¼0.3 and

training time¼550 epochs.

Dataset Accuracy Sensitivity Specificity

1 92.39 93.43 91.36

2 93.68 93.66 93.69

3 93.09 93.66 92.52

4 93.21 94.13 92.29

5 92.16 93.43 90.89

Av. 92.90 93.66 92.15

Table 2
Classification results for the training/test data build from reduced feature vector,

10-fold crossvalidation. The table shows the total accuracy, sensitivity and

specificity for each dataset. Last row shows the average across datasets. All

calculations were performed with 3 hidden nodes, learning rate¼0.3 and training

time¼550 epochs.

Dataset Accuracy Sensitivity Specificity

1 93.79 94.84 92.76

2 94.73 94.37 95.09

3 93.68 94.60 92.76

4 93.33 94.13 92.52

5 92.74 93.90 91.59

Av. 93.65 94.37 92.94

2 As a percentage of current image dynamic intensity range.
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intervention. Our algorithm does not depend on any user-defined
contour or initial manual segmentation. User interaction is mini-
mal: it only needs two seed points contained in the lumen and
defining the range of slices of interest. Accurate segmentations
are obtained in areas where it is difficult to distinguish the
thrombus from adjacent structures. Moreover, the speed of the
whole process makes it also suitable for routine clinical use.

We have also demonstrated an automatic system for the
detection of (Type II) endoleaks in CTA images of abdominal
aortic aneurysms. The classification results show that the system
is able to detect endoleaks with high accuracy based on the
analysis of extracted TCCs. The use of neural networks is specially
adequate for this case, since we do not need to explicitly
incorporate the clinical a priori knowledge in terms of precise
parameters and thresholds for image intensities, distances, etc.
This is a common characteristic in many classification problems
in medical imaging, in which the specialist is able to discriminate
at first sight the object of interest, but is not able to explicitly
indicate the rules that guide their mental discourse while diag-
nosing, which is usually the product of accumulated experience
and observations.

Classification results over several real datasets shown in
Tables 1 and 2 show that the system obtains accuracy results
above 90% with high sensitivity, which is specially important
given the high cost of not recognizing endoleaks present in the
image. We have also demonstrated that a careful selection of
features decreases the complexity of the problem and improves
the results. There is no similar work in the literature, therefore the
results can be assumed as a initial reference for future works.

Regarding the parameters used for the MLP model, in the case
of using five features, we have seen that results are very similar
when the number of hidden unist is two or more. Using five, six or

more nodes does not improve the results and so the best balance
is found with three nodes. It can be seen that the influence of the
learning rate is limited when the number of epochs is high
enough (around 500). With respect to the training time, best
results are obtained with 550 epochs and global classification
results do not improve by increasing this number. However, the
plots show that the sensitivity decreases as the specificity
increases, keeping a constant rate of total hits. This is undesider-
able since we want the sensitivity to be high, and thus the
optimum is found at 550 epochs.

Future work to improve the thrombus segmentation algorithm
will be oriented to improve the thrombus model, fine-tune the
parameters of the process for a large number of datasets and
validate the segmentation by comparison with manual segmenta-
tions and other methods. In the near future, we expect to extend
the system to 3D analysis of TCCs, and to the detection of
endoleaks obtained from several datasets. Since the diagnosis of
endoleaks is not totally certain, we also expect to incorporate a
fuzzy or probabilistic description in order to determine which
TCCs are endoleaks. Another possible improvement to the system,
is the classification of other types of endoleaks (I, III, IV and V),
since currently the system was trained only to identify type II
endoleaks. This would probably need the incorporation of other
types of features for the analysis. Finally, the system would need
deeper clinical validation in order to integrate it in clinical
environments for diagnosis support of the evolution of AAAs
treated with EVAR.
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Fig. 10. Influence of neural network parameters. Accuracy, sensitivity and specificity are calculated. Parameters tested are number of hidden nodes (a), learning rate

(b) and training time measured in number of epochs (c).
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