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Abstract— In this paper we propose a new method for the 

automatic detection and tracking of road traffic signs using an 

on-board single camera. This method aims to increase the 

reliability of the detections such that it can boost the 

performance of any traffic sign recognition scheme. The 

proposed approach exploits a combination of different 

features, such as color, appearance, and tracking information. 

This information is introduced into a recursive Bayesian 

decision framework, in which prior probabilities are 

dynamically adapted to tracking results. This decision scheme 

obtains a number of candidate regions in the image, according 

to their HS (Hue-Saturation). Finally, a Kalman filter with an 

adaptive noise tuning provides the required time and spatial 

coherence to the estimates. Results have shown that the 

proposed method achieves high detection rates in challenging 

scenarios, including illumination changes, rapid motion and 

significant perspective distortion. 

I. INTRODUCTION 

UTOMATIC characterization and recognition of road 

traffic signs appears as a very attractive topic of 

research in the field of advanced driver assistance systems. 

The complexity of the environment, which is continuously 

changing, as well as the real-time operation requirement, 

constitute major challenges in this field. Although many 

different approaches have been proposed in the literature to 

address traffic sign recognition [1], [6], [9], [11], their 

performance highly depends on the ability to previously 

detect and characterize them in the images. Traffic sign 

detection needs to be done swiftly as soon as signs are 

visible, while also being robust to illumination changes and 

perspective distortion, so that time consuming recognition 

engines [1], [6] can operate after detection. 

Detection methods in the literature can be divided into 

three main groups: color-based, shape-based and those 

which combine both color and shape information. Color 

analysis has been exploited in many different ways. For 

instance, in [1] the authors propose a technique based on 

static thresholds in RGB space. A similar framework is 

proposed in [2], [12], where thresholds are applied in HSV 

space. Although they are very fast, these techniques are not 

able to cope with significant color variations due to changes 

in illumination. To improve the performance, more 

complex color models have been proposed. In [7] a Mixture 
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of Gaussians (MoG)-based color detection is used, in which 

several Gaussians are employed in order to model different 

illumination conditions in CIELab color space. Similarly, 

in [6] a Bayesian approach is used to detect road signs, 

where likelihood is modeled as a one-dimensional Gaussian 

distribution applied on the H component of HSI space 

irrespective of the illumination conditions. 

On the other hand, proposed shape-based detection 

systems typically work with grayscale rather than color 

images. The most common techniques are based on the 

extraction of edge or corner points. For instance, Hough 

Transform is used in [4] and Canny detector is utilized 

in [11]. In [8] the authors propose a method based on the 

Fast Radial Symmetry Transform, in order to look for signs 

of several shapes (circular, triangular, octagonal, etc.). All 

these techniques show severe limitations when traffic signs 

appear on cluttered backgrounds, which are particularly 

frequent in urban environments. 

Finally, other authors consider the combination of color 

and shape information as the best way to strengthen their 

algorithms. Particularly, in [10], after a color-based 

segmentation in HSI space, a connected component 

labeling process is carried out in order to find objects in the 

image. Once the objects are found, a fuzzy shape descriptor 

is applied to determine whether the road sign is circular or 

triangular. In [9] the authors apply two Look-up-tables 

(LUT) for both H and S components of HSI space. Then, 

the authors classify the shape of the object comparing the 

FFT of the signature of the object with that of several 

reference shapes.   

In contrast to intra-frame detection, other authors 

propose to use previous information to accomplish sign 

detection. Thereby, instantaneous detection failures (due to 

occlusion, for example) can be overcome. This involves the 

design of a temporal tracking stage, which is usually 

addressed by means of Kalman filters [5] or particle 

filters [7]. 

In this paper an innovative approach to traffic sign 

detection is presented based on the fusion of multiple 

features operating at both pixel and region level, and the 

incorporation of an efficient Kalman-based tracking 

scheme. Detection at pixel level is based on H-S color 

analysis through an innovative MoG model in a Bayesian 

decision framework, which also considers different 

illumination conditions and the presence of misleading 

elements (brick-like and sky).  At region level, a simplified 

appearance model is used to decrease false positive rates, 

and a Kalman-based tracking strategy is proposed to ensure 

detection by taking into account features temporal 

coherence and the traffic signs appearance evolution. 

Previous detection results are used to adapt prior 

information in the color classification stage, and a novel 
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approach to model noise in the Kalman filter framework is 

considered that improves detection accuracy by considering 

the sign-to-vehicle distance evolution. Excellent results are 

shown under different illumination conditions, both in 

highways and urban environments, for blue and red traffic 

sign detection. 

II. SYSTEM OVERVIEW 

The block diagram of the system is depicted in Fig. 1. 

Traffic sign detection is divided into two phases: 

hypothesis generation and hypothesis verification. In the 

former, color and appearance information of traffic signs 

(TS) is analyzed in order to provide a set of regions of 

interest (ROI) which may contain road signs. After the pre-

processing stage (that involves noise reduction, image 

resizing and RGB to HSV conversion), a Bayesian 

classifier is used based on a color modeling space in which 

three illumination conditions are considered: excellent, 

regular and poor. As a result, pixels in the image are 

assigned to the class they are more likely to belong to. This 

pixel-wise classification is used to undertake a connected 

components analysis in which characterization at region 

level is carried out. Based on this characterization, a set of 

candidates is generated holding those compact regions that 

match the expected TS appearance model (defined in terms 

of TS area, pictogram area and aspect ratio). In the 

verification stage, each one of these regions is tracked 

independently by means of a Kalman filter which, based on 

an adaptive tuning of the process and measurement noise, 

provides information to the decision module. In this module 

the TS area evolution (sign and pictogram) and the 

trajectory smoothness constraints are taken into account to 

select the final set of regions to be delivered for 

classification. Naturally, regions that do not match the 

expected dynamic patterns (TS size and trajectory 

evolution) are discarded, while the rest of ROIs are refined, 

both in location and dimensions, for further classification. 

III. COLOR ANALYSIS 

In this stage we separate road signs from the background 

through color analysis taking into account the H and S 

components of HSV space [1]. In particular, most TSs 

feature red or blue borders. Thus, the posterior probability 

(       ) of a pixel            to belong to the class 

                                     is computed 

using the Bayes’ rule as: 

        
             

    
                           

where         is the likelihood of a pixel z to belong to a 

class   ,       is the a priori probability of class   , and 

     is the evidence. Initially       are assumed to be 

constant and equal for each class. However, as will be 

explained in Section V, a priori probabilities will change 

dynamically according to the information fed back from the 

tracking stage. As in [1], we assume that   and   involve 

independent distributions for all the three classes: 

 

                                                

Fig. 1. Block diagram of the proposed TS detection and tracking system. 

 

The likelihood functions         , k        and                

i       , are modeled as a mixture of three Gaussians, 

each one modeling a different illumination condition: 

excellent (x), regular (r) and poor (p): 

         
 

 
 

 

     
 
 
 
 
 
    
  

 

  

          

              

where    and    vary depending on k and i (explicit 

references to them have been removed for clarity). The 

initial parameters ( ,    of the mixtures in (3) are obtained 

through an offline training stage where real road sign 

images under different illuminations have been considered. 

The resulting MoGs are presented in Fig. 2. As can be 

observed, with regards to saturation feature, likelihoods for 

red (b) and blue (d) TSs show a similar behavior, whereas 

hue components, (a) and (c), are very discriminative as they 

cover completely different ranges. Specifically, while for 

blue TSs the range of   values (c) is concentrated around 

0.55, for red TSs (a), valid pixel values are either 

concentrated in the lower or upper part of the valid range 

(0,1), thus forcing to model both ranges independently. 

In order to model the likelihood function for the 

background class,          , a uniform distribution can 

naturally be assumed. However, there are some elements 

that are especially frequent in the background of this kind 

of environments. Particularly relevant are the bricks (or 

brick-like elements) and the sky, which have a similar color 

to the objects of interest, i.e. the traffic signs, and can 

therefore lead to errors unless a special treatment is given to 

them. In particular, we propose to model the background as 

a mixture between a uniform distribution and specific 

functions for the bricks and the sky. 
 

  
(a) (b) 

  
(c) (d) 

Fig. 2. Designed MoG for each class, for features    and   : (a) red class, 

feature   , (b) red class, feature   , (c) blue class, feature   , and (d) 

blue class, feature   . 
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On the one hand, regarding the red class, studies have 

shown that the brick distribution in HS plane is mainly 

located in the lower hue values and does not fully overlap 

with that of traffic signs (see Fig. 3, extracted from [3]). 

Saturation values, in contrast, are non-discriminative. This 

was confirmed by tests conducted on our own set of 

images, and thereby a Gaussian function modeling the 

probability of a pixel to be a brick is added to the 

background class likelihood on the hue feature. 

An analogous procedure is used to model the probability 

of a pixel to be part of the sky. Namely, from a set of 

images extracted from our sequence database, the features 

   and    are measured, and Gaussian distributions are 

adjusted to these data. In this case both hue and saturation 

turn out to be meaningful for separation between traffic 

signs and sky.  

 Once distributions for brick and sky are determined, the 

likelihood of the background is defined by a mixture model, 

both for           and          , as follows: 

          
 

 
  

 

     
 
 
 
  
     
  

 
 

       

 

                

                

          
 

 
 

 

        
 
 
 
 
 
        
     

 

 

                       

where        represents a uniform distribution between 0 

and 1 (which is the valid domain for both   and   

components), and         
        

 ,       
      

  and 

              are the parameters of the hue distribution for 

bricks, and of the hue and saturation distributions for the 

sky, respectively. The factors     and     ensure that the 

distributions integrate to one. The mixture model for the 

background likelihood is illustrated in Fig. 3: the hue 

profile comprises the uniform component and two Gaussian 

peaks modeling brick-like elements and sky, whereas the 

saturation is composed of a uniform term and a Gaussian 

function in the low    values corresponding to the sky.  

An example of the result of the proposed color-based 

segmentation is shown in Fig. 5. Pixels classified as 

belonging to red and blue traffic signs are painted in white 

in Fig. 5 (d) and (e), respectively. The figure also illustrates 

the improvements of the proposed method compared to the 

use of a uniform background distribution (Fig. 5 (b) and 

(c)). As can be observed, the influence of disturbing 

background elements is considerably reduced, while the 

traffic signs remain clearly visible as elements of interest. 

Fig. 3. HS distribution for red road signs (under different illumination 

conditions) and bricks. 

  
(a) (b) 

Fig. 4. Likelihood distributions for background class: (a) for fetaure   , 

(b) for feature     

   
(a) (b) (c) 

  
                      (d)                       (e) 

Fig. 5.  Result of color-based segmentation for the example image in (a). 

The result of using a uniform background distribution is shown in (b) and 

(c) for red and blue classes, respectively (the whiter the higher the 
probability of a pixel to be a TS). The corresponding result for the 

proposed framework is shown in (d) and (e). Observe that the amount of 

brick and sky pixels classified as TS is dramatically reduced, while the 
actual TS pixels are preserved.  

 

IV. REGION ANALYSIS 

After color analysis, the probability of the candidates to 

be TSs is further assessed through an additional region-

level modeling. First, color-segmented images are 

binarized, and 8-connected components analysis is applied 

to them for candidate region labeling.  TS characterization 

at region level involves modeling of the following 

parameters: TS area, pictogram area (both in pixels) and 

aspect ratio (width-to-height). We use a cascade of 

classifiers to significantly speed up the analysis. Each 

classifier deals with one of the abovementioned parameters 

and is designed to be simple and fast.  

In the case of the TS area and the TS pictogram area, the 

range of valid values for both parameters is determined 

taking into account that: (i) a TS has to have a minimum 

size to be clearly visible in the image, and (ii) a valid TS 

cannot exceed a certain maximum size. These minimum 

and maximum size values have been experimentally 

determined considering a large set of images acquired with 

different camera settings whose fields of view are able to 

record signals appearing both at the left and right road 

sides.  The profile inferred from experiments for these two 

parameters is similar to that shown in Fig. 6. For the TS 

area,           and thresholds are set to         and 

   
        , whereas for TS pictogram area, 

            ,         and    
         as well. 

 



 

 

 

 
Fig. 6. Profile followed by the valid range of values for Area and 

Pictogram Area. 

 

Concerning the TS aspect ratio, this parameter has been 

found to be very efficient to identify non-TS regions. 

Following the standard design of road signs, the theoretical 

value of the aspect ratio is the unity. However, perspective 

effects and rotations (especially in yaw angle for road signs, 

see Fig. 7 (a)) make this value significantly lower in most 

cases. Therefore, there is an interval of aspect ratio values, 

[    , 1] for which regions should be considered as 

potential TSs with the maximum probability. Beyond these 

thresholds the probability is linearly reduced until it reaches 

zero, meaning that the region is not accepted as a candidate 

TS. Different decreasing slopes are considered for the 

upper and lower end values as it is empirically verified that 

the uncertainty determining the lower threshold,     , is 

higher than that for the upper one. Fig. 7 (b) shows the TS 

probability profile with respect to the aspect ratio with 

         .  

V. TRACKING 

In the previous stage, a set of candidate regions 

(hypotheses) have been generated which are likely to hold 

TSs. These ROIs are defined by their bounding boxes (BB). 

Monitoring their evolution along time can significantly 

enrich the accuracy of the detection results two-fold: (i) 

discarding those hypotheses which do not follow the 

expected TSs evolution patterns; (ii) updating the prior 

probabilities for the color analysis stage in the image areas 

where TSs are expected to be located.   

Therefore, we introduce the regions resulting from the 

hypothesis generation stage –characterized by their 

bounding boxes– into a verification stage controlled by a 

Kalman filter associated to each candidate region in order 

to provide temporal coherence and improve the robustness 

of the decision making module. The designed filter is 

defined by the following parameters: 

 

  
                              (a)                                                    (b)    
Fig. 7.  (a) The three TS possible rotation axes; (b) TS probability profile 

with respect to aspect ratio. 

 

                                                         

 

   

 

 
 
 
 

       
       
       
       
       
       
        

 
 
 
 

              

       
       
       
       

  

 

 
 

where    represents the state vector,    the measurement 

vector, A is the state transition matrix and H is the matrix 

relating    and   . In   ,   and   are the coordinates of the 

upper left corner of the region BB,   represents its width,   , 
   and      their respective velocities, and    its aspect ratio. 

These equations involve a first-order linear model for the 

TS position and width, and a zero-order linear model for its 

aspect ratio  

In Fig. 8 we can see an example of the process which the 

filter aims to model. Several considerations shall be made 

as to the design of the filter. On the one hand, when the 

distance between the vehicle and the TS is high, parameters 

evolution can be assumed approximately linear, thus the 

Kalman filter is well adapted to the problem. In this case, 

the process noise is low (due to the linear behavior of the 

process) and lower than that of the measurements 

(measurements are not very reliable because of the high 

distance between the camera and the TS). 

On the other hand, as the distance between the TS and 

the vehicle decreases, the evolution of the state parameters 

deviates from linearity. Therefore, process noise increases 

(reflecting the lack of linearity of the modeled process), and 

measurement noise decreases (measurements accuracy 

increases as TSs get closer to the vehicle). 

We propose an innovative noise treatment that takes into 

account the abovementioned considerations: process and 

measurement noise covariance matrices, Q and R 

respectively, usually assumed to be constant [6], are 

modified to reflect the loss of linearity and the  increase in 

measurement accuracy as candidate TSs get closer to the 

vehicle. They are modified based on the BB height increase 

rate between frames (time cannot be considered as TS 

evolution depends on the vehicle speed). This rate, denoted 

  , follows a quasi-linear pattern when the TS is far away 

located from the vehicle and diverges from it when it gets 

closer, as shown in Fig. 9 (a). Fig. 9 (b) shows how the 

process noise variance    (         in red, and the 

measurement noise    (         in blue are modified in 

time according to   . 

 
 

 

Fig. 8.  Temporal evolution for an example TS. 
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(a) (b) 

Fig. 9.  (a) Noise evolution, and (b) BB height evolution. 

 

The aspect ratio parameter must be considered 

separately. As a matter of fact, it should be virtually 

constant in time unless the camera suffers abrupt rotation 

(if so its variation would still be small). Aspect ratio is 

therefore modeled to be constant for candidate BBs with a 

very small process noise (which is constant and smaller 

than the measurement noise regardless of time).  

In order to decide whether the candidate is a road sign or 

not, we consider all the previously analyzed information 

(spatial and temporal). For each tracked region the decision 

module evaluates both the object area evolution and its 

trajectory. First, if a tracked object is a road sign, its area 

should not decrease with time (road sign is fixed in 

pavement and the vehicle approaches to it). On the other 

hand, the road sign position within the image should not 

change abruptly from one frame to the next. Thus, the 

trajectory described by a road sign is expected to be 

smooth. In conclusion, a region which is being tracked is 

considered to be a traffic sign if its area evolution is as 

explained and its trajectory is smooth enough.  

Besides, as was mentioned previously, filtered results on 

   provide a prediction of where BBs are likely to be 

located in the next image,     . We propose using this 

information two-fold. First, we will utilize it to project the 

posterior probabilities (       ) of a pixel            to 

belong to the class             at time   as prior 

probabilities at time    . This way, temporal coherence is 

exploited through a feedback loop within the Bayesian 

classification framework, thus improving traffic signs 

delineation. Second, predictions can be used whenever a TS 

is not found in the current image due to instantaneous 

occlusion, so that tracking of the TS is not interrupted.  

VI. RESULTS 

Our experimental data consisted of more than one hour 

of video sequences, acquired from a video camera installed 

in a moving vehicle. The sequences contain 287 road signs 

in both highways and urban environments, involving 

variable illumination conditions and other effects such as 

rotation, occlusions, different vehicle velocities, etc. In 

TABLE I the detection rates achieved for highways and 

urban environments is presented. The only misdetections 

are due to extreme illumination conditions (such as very 

strong shadows or dazzling, see examples in Fig. 10) which 

render unpredictable color components,   and  , and which 

naturally cannot be addressed unless a prior pre-processing 

stage is introduced. 

TABLE I 

 SUMMARY OF RESULTS 

Detection rate 

Highways 
Urban 

environments 
Total 

92.3%                     

(156/169) 

98.3%                     

(116/118) 

94.8%                     

(272/287) 
 

 

 

Fig. 10.  Example of misdetections due to shadows (left) and dazzling 

(right). 

 

On the other hand, using the proposed approach no false 

positive has been observed throughout the sequence.  These 

results prove the effectiveness of the algorithm, and reveals 

that through the combination of a set of simple features 

(color, area, and aspect ratio) the accuracy and robustness 

of the algorithm is significantly improved. 

Results for the image in Fig. 5 (a) are shown in Fig. 11, 

where bounding boxes are drawn for the detected ROIs. As 

can be observed, regions that do not fit the size and aspect 

ratio constraints (e.g. building borders) are rejected. In 

particular, one important consequence of the designed 

region model is that, due to the constraint in aspect ratio, 

we are able to filter out TSs that are not oriented towards 

the vehicle (thus not affecting the driving) and which could 

mislead the driver, as it happens in Fig. 11 (a) for the red 

“no entry” TS. 

In Fig. 12 (b) we can see the result of color and region 

analysis for another sample image (Fig. 12 (a)). As can be 

observed, the only detected ROI corresponds to the road 

sign. Again, we are able to filter out other regions that fit 

the color model thanks to the proposed model. Indeed, none 

of the other blue objects apart from the road sign have an 

inner pictogram and those situated lower in the image, in 

addition, do not fulfill the aspect ratio requirement. 

 

 

 
                              (a)                                                    (b)    

Fig. 11.  Results after color and region analysis for image in Fig. 5 for (a) 
red class, and (b) blue class. 

 



 

 

 

 
                              (a)                                                    (b)    

Fig. 12.  Image in (b) shows the region detected for image in (a) after color 

and region analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 13.  Example of two TS tracking for a test sequence under good 
illumination.  

 

 

Fig. 14.  Example of TS tracking for a test sequence under bad 
illumination. 

In Fig. 13 we can see the results of the complete traffic 

sign detection system for a test sequence, which contains 

several road signs (both red and blue) in different positions 

in a complex urban environment (comprising bricks and 

sky) under good illumination conditions. The road signs 

oriented towards the vehicle are perfectly detected and 

accurately located along the sequence. 

 

 Finally, we show an example (Fig. 14) of detection under 

poor illumination conditions (the road sign is located in a 

shadow region). Since these conditions have been 

considered during the design of the color analysis stage, the 

system is able to accurately handle it and detect the traffic 

sign.  

VII. CONCLUSIONS 

The proposed method has proven to provide excellent 

traffic sign detection and tracking results. Therefore, it can 

be used to enhance the performance of the posterior 

recognition stage, traditionally addressed through machine 

learning techniques. The main contribution of our approach 

is the use of a recursive Bayesian decision framework that 

allows to easily combine information of different nature, 

such as HS color at pixel level, and temporal and spatial 

coherence of image regions. Tests in both highways and 

urban environments yield an average detection rate above 

94% for challenging situations, including illumination 

changes, clutter and rapid vehicle motion. 
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