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Abstract

This paper introduces a new method for the simultaneous computation of sets of lines meeting at multiple vanishing
points through the use of the Expectation-Maximization (EM) algorithm. The proposed method is based on the
formulation of novel error functions in the projective plane between lines and points which involve the use of non-
linear optimisation procedures that allow to treat equally finite and infinite vanishing points. These functions are
included into the EM framework, which handles the multi-modality of the problem naturally with mixture models.
Results show that the proposed method of joint computation of vanishing points and lines converging at such points
enhances the robustness and the accuracy of locating these points.
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1. Introduction

Vanishing points are elements of great interest in the
computer vision field. They are the main source of in-
formation about structured environments in images. A
vanishing point is a point in the image to which parallel
lines of the scenario appear to converge. Their impor-
tance lies in their correspondence to three-dimensional
directions in the space. Hence, they can be used to re-
trieve information about the camera projection parame-
ters or the geometry of the scene. There are a number of
applications that can take advantage of the computation
of these points, such as plane rectification [13], cam-
era calibration [34], single view metrology [7], compass
estimation [6], and others. Besides, some of these ap-
plications require the computation of lines meeting at
vanishing points. For instance, Schaffalitzky and Zis-
serman [26] have shown that the detection of imaged
lines meeting at a common vanishing point, that actually
correspond to equally spaced parallel lines in the scene,
can be used to retrieve the line at the infinity. Other au-
thors, like Trinh and Jo [32], have used lines meeting
at vanishing points to estimate the volume of buildings,
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or to estimate the geometry of road lanes in traffic ap-
plications like Rasmussen [23] or Lai and Yung [12].
The estimation of vanishing points in images has been
studied by the computer vision research community for
decades, yielding a very significant number of notewor-
thy works [1, 3, 11, 14, 15, 17, 21, 27]. Although most
of these works compute vanishing points through opti-
misation procedures, lines are typically obtained with
additional processing steps such as the Hough trans-
form. Therefore these works do not offer a closed solu-
tion for both problems and the combination of different
nature methods does not offer the robustness and reli-
ability of a joint optimisation procedure. In this paper
a new method for calculating multiple vanishing points
is introduced based on the EM algorithm. The major
contribution of this work is the definition of a closed so-
lution in the projective plane for the simultaneous esti-
mation of vanishing points and the most significant lines
that converge in those vanishing points by means of the
introduction of a mixture model into the EM algorithm.
The estimation of these elements in a single optimisa-
tion framework offers excellent estimation results, in
terms of accuracy and robustness, improving the results
of approaches that do not consider lines within their
models. This paper is structured as follows: section 2
summarises the literature related to vanishing point es-
timation to clarify the contribution of our work. Section
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Ref. Year Workspace Contribution Num. Vps. Lines
Barnard [3] 1983 Sphere Hough accumulation on sphere surface 3 No
Magee and Aggarwal [16] 1984 Sphere Search for clusters of intersections. - No
Quan and Mohr [22] 1989 Sphere Hierarchical Hough transform - No
Caprile and Torre [5] 1990 Image plane Vps. matching - No
Lutton et al. [15] 1994 Sphere Semi-regular sphere quantification 3 orth. No
McLean and Koyyuri [17] 1995 Image plane Cluster and estimate approach 1 No
Tuytelaars et al. [33] 1998 Hough Cascaded Hough transform N and Vls. Yes
Antone and Teller [2] 2000 Sphere EM algorithm, angle error model N No
Minagawa et al. [18] 2000 Image plane EM algorithm for lines and Vps. and Vl. N and Vl. Yes
Ribeiro and Hancock [24] 2000 Sphere Spectral voting and search for maxima N No
Rother [25] 2000 Image plane Mid-point error model, unbounded search 3 No
Cantoni et al. [4] 2001 Hough/Image plane Voting and least squares sinusoid 1 No
Liebowitz [14] 2001 Projective plane Optimal MLE solution for LSegs. 1 No
Košecká and Zhang [11] 2003 Unc. Sphere EM algorithm, outliers control and refinement N No
Almansa et al. [1] 2003 Image plane Equiprobable vanishing regions N No
Schindler and Dellaert [27] 2004 Projective plane EM algorithm, Atlanta world N No
Seo et al. [29] 2006 ICIS Inverted Coordinate Image Space N No
Pflugfelder [21] 2008 Projective plane Online scheme with EM algorithm N No

LSegs. : Line segments; Vps. : Vanishing points; Vl. : Vanishing line; - : Unknown or unspecified; Unc. : Uncalibrated

Table 1: Classification of vanishing point estimation methods.

3 defines the proposed likelihood models as well as the
required data calibration and normalisation stages. Sec-
tion 4 describes the proposed steps of the EM algorithm,
and section 5 presents a performance evaluation and the
obtained results.

2. Related work

The following subsections describe and classify the
most relevant vanishing point estimation methods ac-
cording to their workspace, the estimation technique
used and the number of detected vanishing points. Ta-
ble 1 summarises the most relevant properties of these
methods.

2.1. Workspace

Vanishing points can be described mathematically in
different ways. On the one hand, points are 2D image
entities but on the other hand they correspond to 3D
space directions. Therefore, we carry out a first classi-
fication of vanishing point detection techniques accord-
ing to the workspace they use and associated parameter-
isation of vanishing points. Some authors have chosen
the image plane itself as workspace such as Caprile and
Torre [5], McLean and Koyyuri [17], Sekita [28] and
more recently Minagawa et al. [18], Suttorp and Bücher
[30]. For instance, Suttorp and Bücher [30] estimates
the position of the main vanishing point under the as-
sumption that in road scenes it typically lies inside the
limits of the image and, therefore, the image plane can
be then used as the workspace. Not restricted to one sin-
gle vanishing point, other authors such as McLean and

Koyyuri [17], Sekita [28] or Minagawa et al. [18] define
error measurements on the image plane to optimally es-
timate the position of several vanishing points. Specif-
ically, Minagawa et al. [18] propose as error measure-
ment the normal distance between the vanishing points
and the lines that contain the line segments. Barnard [3]
proposed to project the image plane, which is by defi-
nition an unbounded space, on a unit sphere centered at
the optical center of the camera. The target is to work
with a bounded space on which operations are sim-
plified and thus finite and infinite vanishing points are
treated equally. Most of subsequent works [16, 22, 15]
made explicit use of the unit sphere using its surface,
properly tessellated, as the accumulation space where to
search for maxima that determine the presence of dom-
inant vanishing points. As an alternative to the image
plane, and as a mathematical formalisation of the unit
sphere parameterisation, other works emerged that use
the projective plane to analytically handle infinite points
in a natural way [14, 21, 25]. Analogously to the unit
sphere, this search requires to augment the dimension of
vanishing points by adopting the use of homogeneous
coordinates. These works overcome the drawbacks of
accumulation processes on the unit sphere by propos-
ing error functions between vanishing points and image
features that do not depend on the position of the van-
ishing point, and also applying optimisation techniques
such as RANSAC or EM [11, 2]. Other authors pro-
posed alternative transformed spaces to handle vanish-
ing points at infinity [4, 29, 33]. Tuytelaars et al. [33]
defined an intelligent partition of the parametric line
space (computed as the Hough transform) by consid-

2



ering three bounded sub-spaces that were used to detect
vanishing points and also vanishing lines. Similar ap-
proaches were proposed by Almansa et al. [1] and Seo
et al. [29]. The work by Cantoni et al. [4] focused on the
polar space obtained as the polar Hough transform of
the points on the image. In this space, vanishing points
at infinity are represented as sinusoids which are esti-
mated through linear least squares optimisation.

2.2. Type of approach
Vanishing point estimation strategies are typically

composed of two fundamental steps named clustering
and estimation. The former classifies the image features
into groups, or clusters, that share a common vanishing
point; the latter considers the information of the clus-
ter and estimates the position of the vanishing point.
Many authors have converged to the use of iterative joint
strategies, which contain the grouping and estimation
stages as an alternating process. Specifically, the most
used techniques are those based on robust estimation
tools, such as RANSAC or its variants, and optimisa-
tion strategies based on mixture models using the EM
algorithm. The methods based on RANSAC (RANdom
Sampling And Consensus) [21, 25] work iteratively se-
lecting a minimal sample set of image features, which is
used to compute a candidate vanishing point, and then
finding the set of features that are coherent with it. Once
this consensus set has been determined, the vanishing
point can be re-estimated using the information of the
elements of the whole consensus set. To determine more
vanishing points, the features already used to compute
the vanishing point are removed and the RANSAC iter-
ations are restarted to search for a new vanishing point
Pflugfelder [21]. The procedure is repeated until there
are not enough features to determine new vanishing
points. The EM (Expectation-Maximization) algorithm
has been shown to be a very powerful tool for recursive
estimation and clusterisation. As opposed to RANSAC,
EM allows to assign each line segment to different van-
ishing points with particular probabilities. The iterative
process runs until the position of all vanishing points
has been determined [2, 11, 18, 21, 28]. Typically, these
methods are devised and used to refine results obtained
with faster approaches such as RANSAC, thus provid-
ing very accurate results although at the cost of signif-
icantly increasing the computational requirements. The
work by Schindler and Dellaert [27] is noteworthy as
it uses the EM algorithm with on-off mixture models
for edge points on the projective plane. Additionally, as
opposed to many works that search for three vanishing
points that correspond to the three orthogonal directions
of the Euclidean space ([15, 22, 25] (typically known as

Manhattan worlds [6]), this work does not require addi-
tional information from the scenario (known as Atlanta
world).

2.3. Number of vanishing points and lines

The number of vanishing points obtained by each ap-
proach is strongly related to their use. For instance,
methods that compute vanishing points for camera au-
tocalibration need at least three vanishing points, while
those for plane rectification just require two. There are
methods that fit models assuming the existence of a sin-
gle vanishing point [4, 14, 17], although they can be
used to obtain several vanishing points (i.e. the image
features used to compute the first vanishing point are
removed from the feature set to compute the next van-
ishing point). However, other approaches do actually
consider multiple vanishing points in their models so
that they are computed simultaneously [2, 11, 18, 27,
29, 33].

2.4. Comparison with other joint strategies

Nevertheless, only few works do actually assume that
vanishing points are the intersection of dominant lines
meeting at them and compute the parameters of these
lines. For instance, Tuytelaars et al. [33] proposed a
cascade of Hough transforms to identify lines as dom-
inant clusters of edge points, vanishing points as their
intersection, and finally vanishing lines. The use of the
EM algorithm for this purpose was introduced by Mina-
gawa et al. [18], which defined a solution in the image
plane for the simultaneous estimation of clusters of lines
and their vanishing points. Nevertheless, in contrast to
our proposal, it can not treat properly vanishing points
far from the image, and it proposes a limited model to
obtain a linear solution: only the position of the edge
points is modeled within the EM algorithm and no solu-
tion to handle outliers is considered.

3. Projective-plane solution

This section describes in detail the workspace of the
proposed approach, including concepts related to the
projective plane such as data normalisation and like-
lihood models definition. These concepts are further
used in the description of the proposed EM algorithm
described in section 4.

3.1. Image features

The input image information required for vanishing
point estimation can be any feature with orientation,
such as gradient-pixels (pixels with enough gradient
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Figure 1: Relative orientation θ between the orientation of the mea-
sured feature and the line that joins the vanishing point v and the fea-
ture ((a) line segments and (b) edge-points). When the vanishing point
lies on l the error is minimum.

Z

v

v’

C

Y

X
Parallel 3D lines

Unit sphere projection

Image plane

Figure 2: Two parallel 3D lines are projected onto the image plane
meeting at the vanishing point v. Its calibrated and normalised version
v′ can be seen either as the ray joining the optical center C and v or as
the intersection of the two great circles defined by the projected lines.

magnitude) or line segments. These features are equiva-
lent since they can be both expressed as a line in homo-
geneous coordinates (this concept is illustrated in figure
1). Let r = (x, y, 1)⊤ be the homogeneous coordinates of
a point of the image plane with significant gradient mag-
nitude defined by the components of the gradient vector
g = (gx, gy)⊤. Any such gradient-pixel can be expressed
as a line l = r × (r + λm), where m is the normal to the
gradient vector, and λ is any real number. Besides, a line
segment is defined by a pair of end-points {a,b} such
that they define the line l = a × b = (l1, l2, l3)⊤ in ho-
mogeneous coordinates. Its associated reference point
is the mid-point c = a+b

2 . As a generalisation, let us
consider from here on a data sample as the set x = {r, l},
whose elements are derived either from a gradient-pixel
or a line segment (in this latter case, let use a common
notation for the reference point: c = r.

3.2. Data calibration and normalisation
Each data sample on the image plane defines a plane

that passes through the optical center of the camera

model. This plane is denominated “Edge Plane” by An-
tone and Teller [2], although it is more frequently identi-
fied as the “Interpretation plane” as done by Pflugfelder
[21]. This plane intersects a sphere centered as well at
the optical center generating the so-called “great cir-
cles”. The intersections between these circles corre-
spond to the intersection of the corresponding lines on
the image plane. Figure 2 illustrates these concepts. An
interesting property we get from these definitions is that
a vanishing point can be treated as a 3D direction, in-
stead of just as a 2D point on an image. The vanishing
direction is defined by the vector that joins the optical
center and the point on the surface of the sphere which
is the intersection of two or more great circles that cor-
respond to lines meeting at a common vanishing point.
Vanishing points are represented in homogeneous co-
ordinates as v = (v1, v2, v3)⊤ [10]. This representation
allows handling projective relationships with linear ma-
trix operations. For instance, the projection of a point in
the space X = (X,Y,Z, 1)⊤ into the image plane is:

xhom = K [I|0] X (1)

where K is the camera calibration matrix, I is the iden-
tity 3×3 matrix, and 0 is a column 3×1 vector of zeros.
The image coordinates of this projected point are then
obtained by dividing xhom by its third coordinate, ob-
taining the inhomogeneous coordinates of the point in
the image plane xinh =

(
f X

Z , f Y
Z

)⊤
. One dimension is

lost projecting a space point onto the image plane since
any point lying on the ray that joins X with the optical
center C is projected in the same image point [10]. From
a geometric point of view, if the camera calibration ma-
trix is known, the aforementioned ray can be retrieved
from any 2D image point. For the case of a vanishing
point, this ray actually corresponds to the 3D direction
of the parallel lines in the 3D world. Indeed, when par-
allel lines are projected onto the image they converge
at a vanishing point. This idea is illustrated in figure 2.
To explain this concept, let us suppose that there are
two parallel lines in the 3D world whose common di-
rector vector is D = (X,Y,Z)⊤. The intersection of these
lines is at some point in the infinity that we can represent
in homogeneous coordinates as V = (X,Y,Z, 0)⊤. This
point is projected as the vanishing point v = K[I|0]V.
If we left-multiply both members of this expression by
K−1 we obtain K−1v = [I|0]V = (X,Y,Z)⊤, which ren-
ders a new 3D vector v′ = K−1v. We will refer to this
transformation as “data calibration” as other authors do
(Košecká and Zhang [11]). Hence, the calibration of
a vanishing point yields the actual 3D direction of the
parallel lines whose projections onto the image plane
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converge at it. This transformation can also be under-
stood as the transformation of the 2D coordinates of the
image features (points and lines) into the 3D coordi-
nates under the camera coordinate system. Data cali-
bration is carried out in the following way: points are
normalised with K−1 as x′ = K−1x and lines with K⊤

as l′ = K⊤l. Besides, to be able to represent these
elements on the unit sphere, an additional scale normal-
isation must be applied such that the norm of the 3D
vectors is the unity. When the camera calibration is not
available working with the homogeneous vector v en-
tails an implicit distortion in the angular information.
For instance, the cosine of the angle between two un-
calibrated directions is dependent on an unknown dis-
tortion given by ω = K−⊤K−1:

cosα =
v′⊤1 v′2
∥v′1∥∥v′2∥

=
v⊤1ωv2√

v⊤1ωv1

√
v⊤2ωv2

(2)

Nevertheless, the camera calibration matrix can be eas-
ily approximated by a default projective transforma-
tion based on the image dimensions, which reduces the
aforementioned inherent distortion, as done by some au-
thors (Košecká and Zhang [11]):

K̃ =

 W 0 W/2
0 H H/2
0 0 1

 (3)

where W and H are the width and height of the image
in pixels respectively.

3.3. Likelihood models

Given a data set X = {xi}Ni=1, vanishing point estima-
tion techniques typically focus on only the optimisation
of the parameters of the vanishing point v (or the set of
vanishing points). In our approach the dimensionality
of the problem is augmented since the set of parame-
ters to be optimised is now given by a set of vanishing
points {vk}Vk=1 and a set of supporting or main lines that
pass through them {s jk}M,Vj=1,k=1. Let us define the rela-
tionship between data samples and the set of supporting
lines. The likelihood model is governed by two equa-
tions that link each data sample xi = {ri, li} with lines
meeting at a common vanishing point (the subindex k
has been removed for the sake of clarity), {s j}Mj=1, as:

p(xi|s j) = p(ri|s j)p(li|s j) (4)

where the point-line and line-line distances are given by
three-vector dot products:

p(ri|s j) ∝ exp

− 1
2σ2
ρ, j

(
r⊤i s j

)2
 (5)

p(li|s j) ∝ exp

− 1
2σ2
ϕ, j

(
1 −

(
l⊤i s j

)2
) (6)

Figure 3 illustrates these functions. The point-line dis-
tance, r⊤i s j in (5) assumes that vectors are normalised
such that ||ri|| = ||s j|| = 1. Therefore, this distance
corresponds to the cosine of the angle defined by the
vector that joins the optical center C with the point ri

and the normal vector of the plane defined by the great
circle that corresponds to the line s j. This way, if the
point belongs to the line on the image plane, its asso-
ciated 3D vector is orthogonal to the normal vector of
the interpretation plane and (5) is maximum. The line-
line distance, considering also normalised vectors, is re-
lated to the sine of the angle between the interpretation
planes corresponding to li and s j. Particularly, given
that cos(θ) =

(
l⊤i s j

)
and sin2(θ) =

(
1 − cos2(θ)

)
then

sin2(θ) = 1 −
(
l⊤i s j

)2
. Therefore, if the lines are equal,

these normal vectors are coincident and the sine of their
angle is zero so that the likelihood as in (6) is maximum.
The result is a likelihood function defined by a mixture
model of M supporting lines grouped in V sets that cor-
respond to different vanishing points in the scene plus
an additional component that handles outliers:

p(xi|Θ,Ω) =
V∑

k=1

M∑
j=1

ω jk p(xi|θ jk) + ωout pout(xi) (7)

where Θ = {θ jk}M,Vj=1,k=1 and θ jk = {s jk, σϕ, jk, σρ, jk},
and the mixture model components are
Ω = {{ω jk}M,Vj=1,k=1, ωout}. This expression already
includes a component of the mixture devoted to outliers
such that the weights sum to one: V∑

k=1

M∑
j=1

ω jk

 + ωout = 1 (8)

The outlier distribution can be defined as a normal dis-
tribution with fixed large variance which approximately
behaves as a uniform distribution. The use of such
a normal distribution has been already addressed by
other authors like Košecká and Zhang [11]. The rea-
son of choosing this approximation instead of the uni-
form itself is because the EM algorithm for a mix-
ture of Gaussians is much simpler to compute. Note
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Figure 3: Point-line and line-line distances in the projective plane. The unit sphere visualisation helps to understand the proposed distances as
relationships between vectors joining the optical center, C, and points in the surface of the sphere. For clarity, in this figure, calibrated coordinates
are depicted with a tilde.

that, although the standard deviation of the support-
ing lines could be different according to the indexes j
and k, we will consider, for the sake of simplicity, that
there is a common value σϕ, jk = σϕ and σρ, jk = σρ
∀ j = 1 . . .M, k = 1 . . .V . The presence of multiple i.i.d.
data samples yields the incomplete likelihood function
p(X|Θ) =

∏N
i=1 p(xi|Θ,Ω), and the log-likelihood

function which includes the summation on clusters of
lines indexed by k:

logL(Θ|X) =
N∑

i=1

log

 V∑
k=1

M∑
j=1

ω jk p(xi|θ jk) + ωout pout(xi)


(9)

Given the definition of the likelihood model for data
samples and supporting lines let us now consider the re-
lationship between vanishing points and data samples.
For this purpose, we could use any error function, like
the calibrated point-line distance l⊤i v. This distance is
equivalent to the point-line distance s⊤j ri that was illus-
trated in figure 3. Nevertheless, it has been shown [19]
that more accurate results can be found using the orien-
tation deviation between li and a line joining the vanish-
ing point and a reference point, which is the mid-point
of the line segment.

d(x, v) = |sin(θ)| = |−l2s1 + l1s2|√
l21 + l22

√
s2

1 + s2
2

(10)

This distance represents the error between a vanishing
point v in homogeneous coordinates and the orienta-
tion of the data sample x. It is related to the absolute
value of the sine of the angle θ between l and a line
s = (s1, s2, s3)⊤ that joins v and r (as shown in figure 1)
and that can be computed as s = v× r. It is important to
realise that this error function is defined on uncalibrated
coordinates. Hence, in this case, data has not to be cal-
ibrated. The likelihood of a data sample xi to belong to

a vanishing point v is given by

p(xi|v) ∝ exp
(
− 1

2σ2 d2(xi, v)
)

(11)

where d(xi, v) is defined as in equation (10).

4. EM algorithm

The EM procedure can be described once we have de-
fined the likelihood models. The process has to be done
gradually, i.e. with several M-steps and, for this case,
also several E-steps since there is not a single expres-
sion to update at once all the model parameters. The
following paragraphs summarise the proposed way to
proceed, which updates in the first M-step the position
of the vanishing points {vk}Vk=1 and in the second one the
parameters of the supporting lines {s jk}M,Vj=1,k=1. Although
it is possible to proceed the other way round, i.e. up-
dating first the parameters of the supporting lines and
then the position of the vanishing points, empirical tests
have shown that this approach is more prone to errors.
Updating the vanishing point position first allows the E-
step to classify data samples according to the vanishing
point they meet and then update the supporting lines.

4.1. E-step(1)
This step computes the conditional probabilities of

the set of data samples with respect to the set of van-
ishing points and their corresponding supporting lines.
Given the current best estimation of the parameters of
the model Θ∗ and Ω∗ these probabilities are computed
as

p( j, k|xi,Θ
∗) =

ω∗jk p(xi|θ∗jk)

ωout pout(xi) +
∑V,M

k′, j′=1 ω
∗
j′k′ p(xi|θ∗j′k′)

(12)
6



where p(xi|θ∗jk) is computed as defined in (4). For the
sake of simplicity, p( j, k|xi,Θ

∗) will be denoted as γi jk

from here on.

4.2. M-step(1)
Once the conditional probabilities have been com-

puted, the first maximisation step estimates the posi-
tion of the set of vanishing points minimising the se-
lected error function. In case of using the error func-
tion in uncalibrated coordinates, defined in equation
(10), the conditional probabilities γik can be used as
the scale factor so that the error function is redefined
as d′(x, v) = γikd(x, v). Note that the index j has dis-
appeared from γi jk as for the estimation of each vanish-
ing point the dimension corresponding to the supporting
lines is marginalised. The set of data samples is clas-
sified according to γik, i.e. according to the vanishing
point they most likely belong. Then, for each vanishing
point vk and its corresponding subset of samples Xk the
function to be minimised is

logL(vk |Xk) =
∑

xi∈Xk

d2(xi, vk) (13)

which can be solved with the Levenberg-Marquardt al-
gorithm that updates the vanishing point vk. The ini-
tialisation of this procedure can be random, although
we have found better results if the initialisation is car-
ried out using the calibrated point-line minimisation.
This is a linear approach that can be solved in a least
squares sense: as a linear optimisation problem, the
least squares solution for each vk is the eigenvector with
smallest eigenvalue of the problem [11](

L⊤Γ⊤ΓL
)

vk = λvk (14)

where L is a N × 3 matrix, in which each row corre-
sponds to the data sample li in row format, and Γ is a
N × N diagonal matrix of weights that corresponds to
the conditional probabilities γik.

4.3. M-step(2)
After M-step(1), as the position of the vanishing

points have been updated, it is required to re-compute
the parameters of their supporting lines so that they meet
at their new positions. This concept is illustrated in fig-
ure 4. The problem is stated for each supporting line s jk

as

ŝ jk = argmax
s∗jk

(
s⊤jks∗jk

)2
subject to s⊤jkvk = 0 (15)

The solution to this problem can be found using itera-
tive methods for non-linear minimisation with restric-
tions. For instance, a sequential quadratic programming
(SQP) method has been used.

v

v*

s
1
*

s
2
*

s
2

s
1

Figure 4: Given the new position of the vanishing point, v, the lines s∗1
and s∗2 are re-estimated yielding s1 and s2 such that they actually pass
through v and the angular distances s⊤j s∗j are minimised.

4.4. E-step(2)
After the re-estimation of the supporting lines the

conditional probabilities have to be updated according
to the new parameters of the supporting lines. There-
fore, the values of γi jk are re-computed as in (12).

4.5. M-step(3)
Finally, using the updated conditional probabilities

and the likelihood function defined in (9), the param-
eters of the set of supporting lines have to be updated.
The problem to be solved for each line s jk is defined as:

ŝ jk = argmax
s∗jk

logL(Θ|X) (16)

subject to s⊤jkvk = 0 and ||s jk = 1||. This problem can
be again solved using iterative methods for non-linear
minimisation with restrictions as in M-step(2).

5. Testing and discussion

In this section we present several tests that evaluate
different aspects of the proposed method. We use the
York Urban Data Base (YUDB) [8], which contains a
set of 102 images of structured environments includ-
ing ground truth vanishing points and line segments
with available camera calibration information. First, we
analyse the dependency of the proposed EM algorithm
with respect to the initialisation of the vanishing points.
Second, we compare two different approaches for au-
tomatic initialisation: a RANSAC-based method [19]
and a variation of the Hough transform proposed by Al-
mansa et al. [1]. Finally, we present the results of the
execution of the proposed strategy on the set of images
of the YUDB. For the tests, we have used two different
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Figure 5: Line segments obtained with the automatic line segment
detector. The color code indicates the classification of the segments
according to the vanishing point they most likely belong to according
to the RANSAC method.

input data sources: (i) the ground truth line segments
of the YUDB, which contain no outliers (i.e. line seg-
ments that do not meet any vanishing point); and (ii) au-
tomatically computed line segments using the SSWMS
algorithm [20], which renders relevant segments in the
image, regardless if they meet or not at any vanishing
point. This algorithm is fast (can be used in online appli-
cations) and yields accurate line segments while keep-
ing a low false alarm ratio. Figure 5 shows an example
of the line segments computed using this method.

5.1. Initialisation analysis

The described EM method requires initialisation of
the target parameters: the vanishing points and their cor-
responding supporting lines. As described in the litera-
ture [18], EM based strategies are quite sensitive to the
initialisation process: they are able to compensate errors
in the initialised target parameters up to certain devia-
tion from their actual values. Therefore, any initialisa-
tion procedure should take this constraint into account
to reach the desired results. To evaluate the sensitiv-
ity of the proposed strategy we have executed the EM
method for all the images of the YUDB using as ini-
tialisation vanishing points with increasing angular er-
ror in their position (since they can be treated as 3D
vectors, the error between two vanishing points can be
computed as an angle, as described in equation (2)). An-
gular errors between 1◦ and 15◦ have been used for the
analysis, although it should be noticed that errors above
5◦ are in many cases too severe, and they are partic-
ularly relevant for vanishing points close to the image
frame. The results of the test are illustrated in figure 6.
In (a) the results correspond to the execution of the pro-
posed method using ground truth line segments while
(b) shows the results obtained using the SSWMS line
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Figure 6: Sensitivity to initialisation error: (a) using ground truth line
segments (YUDB); (b) using automatically computed line segments
with the SSWMS algorithm.

segments. Each figure shows three curves, each one
corresponding to one of the three vanishing points of
the images according to the YUDB criterion [8] (VP #1
is the most significant horizontal vanishing point, VP #2
is the vertical vanishing point, and VP #3 is the second
most significant vanishing point). These curves depict
the number of images for which the EM method has
found the correct solution, i.e. reaching estimates of the
vanishing points close to the ground truth. Using ground
truth line segments, the proposed method shows excel-
lent results (above 90%) for deviations up to 6◦, with
slightly better results for VP #2 as it is the vertical van-
ishing point and it is typically supported by more line
segments than the other vanishing points (an example is
shown in figure 7). As expected, the performance de-
creases when the SSWMS segments are used: the main
reason is the presence of clutter or outliers, i.e. line seg-
ments not meeting at any of the ground truth vanishing
points. When the initialisation error increases, the clut-
ter can more easily drive the estimation to local minima
and thus make the system fail to find the correct vanish-
ing points. The figures show that the best performance
corresponds to the estimation of the VP #2, while VP
#3 is more sensitive to the clutter, as it is the vanishing
point located typically near or inside the limits of the
image frame.
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(a) (b) (c)

Figure 7: Example initialisation of vanishing points with 5◦ angular error with respect to ground truth: (a) initialisation of lines (solid lines) and
estimated lines after the application of the proposed EM method (dashed lines); (b)-(c) visualisation of the initialisation and estimation on the unit
sphere. Solid axes represent ground truth vanishing points. Thin arcs on the sphere surface represent the projection of the supporting lines. Dashed
axes represent the initialised position of the vanishing points.

5.2. Automatic initialisation of vanishing points
As noted in the previous subsection, the EM method

needs initializations with relatively low error (up to 5◦

approximately). There are several methods in the lit-
erature that can generate these estimates. We have se-
lected two, and we have compared their performance:
the method by Almansa et al. [1], which is a Hough-
based algorithm with an intelligent partition of the im-
age plane, and a method based on a variation of the
RANSAC algorithm, the MSAC (M-estimator Sample
And Consensus), which has been shown to provide ex-
cellent classification results [19]. As mentioned by Al-
mansa et al. [1], their method worked on input data with
a very reduced false alarm rate, which we have con-
firmed by using the available ground truth line segments
of the YUDB. In figure 8 we illustrate how this method
tessellates the image plane, then selects line segments
according to their orientation and finds their vanish-
ing point. In (a) we show the result using the ground
truth line segments, achieving angular errors below 0.1◦

(with dθ = π
1024 as defined by the authors). However,

in a more realistic situation, with non quasi-error free
line segments and outliers, the error increases signifi-
cantly for the detected vanishing points and some miss-
detections occur. In (b) we see how outliers affect the
estimation, rising the error to 2.2◦ and 3.5◦ for VP #1
and VP #2, while VP #3 is not detected. This sensitivity
to outliers and noise is what motivates our proposal of
using the RANSAC-based approach. The MSAC algo-
rithm proceeds iteratively in two main steps: (i) a min-
imal subset of data samples is randomly selected in or-
der to generate a hypothesis of the vanishing point. In
this case, the minimal set is composed of two data sam-
ples whose associated estimate is v∗ = li × l j; and (ii)
the consensus set, s(v∗), i.e. the subset of data samples
that are coherent with the hypothesis, is computed as
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Figure 8: The Hough-based method is significantly sensitive to the
presence of outliers and noise in the input data set (segments): (a) re-
sults (for VP #1) of the method using the ground truth line segment
set for an example image of the YUDB (the lines are colored since the
association between line segments and vanishing points is also avail-
able as ground truth); (b) using an automatic line segment detector
makes the method fail to find vanishing points (mainly affected by the
presence of outliers).
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(a) (b)

Figure 9: Unit sphere visualisation of the classification of line seg-
ments according to the MSAC procedure and the obtained vanishing
points (as thick axes): (a) using the ground truth line segments, the
obtained vanishing points visually coincide with the ground truth van-
ishing points; (b) using the automatically extracted line segments, the
obtained vanishing points are shown as dashed axes, which slightly
differ from the ground truth vanishing points (solid axes).

s(v∗) , {li ∈ L : d2(li, v∗) ≤ δ}; where δ is a certain
threshold governed by the statistics of the data. These
two steps are repeated until the probability of finding a
better consensus set is below a certain threshold. Here
resides the difference between MSAC and RANSAC:
while basic RANSAC ranks the consensus sets accord-
ing to their cardinality, i.e. the number of elements
of the set, the MSAC version ranks them according to
a global cost function that gathers individual contribu-
tions of inliers and outliers. The total cost of a hypoth-
esis in MSAC is given by C(L, s(v∗)) =

∑N
i=1 ρ(li, v∗),

where ρ(li, v∗) is defined as:

ρ(li, v∗) =

d2(li, v∗) , d2(li, v∗) ≤ δ
δ , otherwise

(17)

Figure 9 shows the results of this method applied on the
example image shown in figure 5 using, as in the case
of the Hough-based method, the ground truth line seg-
ments and the automatically computed line segments.
As can be observed in figure 9 (a), analogously to the
Hough-based method, MSAC achieves very accurate re-
sults for almost noise and outliers free input data: the es-
timation error ranges between 0.2◦ and 1◦. However, in
(b), we can see that MSAC is also able to compute van-
ishing points using the SSWMS line segments, achiev-
ing errors below 4◦. In summary, the MSAC method
shows to be robust in the presence of outliers and ob-
tains average estimation errors of 3◦. Therefore, MSAC
can be safely used as initialisation for the EM method.

5.3. Initialisation of supporting lines
As the supporting lines must also be initialised, a line

segment clustering strategy is carried out. For this pur-

pose, the Hough transform can be used on the set of
data samples X = {ri, li}Ni=1 so that each point ri is trans-
formed into a sinusoid ρ = xi sin θ + yi cos θ. Then,
the votes of data samples are accumulated on the quan-
tised cells defined by the sinusoid. Each cell value is
increased by the length of the line segment. Therefore,
the votes of longer line segments are more important
than those of shorter ones. Typically it is enough to
search for two separated maxima that correspond to the
two most significant clusters of line segments.

5.4. Algorithm complexity

The use of an EM scheme, whose nature is recursive,
makes the amount of required operations proportional
to the size of the input data and the number of iterations
of the algorithm. The complexity of the algorithm is
O(kN), where k is the number of iterations of the EM
algorithm, and N is the size of the input data set (in the
case of line segments computed with SSWMS, N ranges
between 100 and 500 depending on the image contents
and size). At each iteration the most consuming stages
of the algorithm are the E-steps, where the conditional
probabilities γi jk have to be computed (two times since
there are two E-steps). In comparison, the cost of the M-
steps is negligible. In average, we have found that the
proposed method tends to converge in 5 to 10 iterations.

5.5. Performance analysis

The images of the YUDB are used to test the per-
formance of the proposed projective-plane EM algo-
rithm. Some examples of the results are presented in
figure 10. These examples show, in dashed lines, the
initialisation of the supporting lines according to the
Hough transform, colored according to the vanishing
point they meet at (which has been computed using the
MSAC initialisation approach). In solid lines, the es-
timate of the lines after running the proposed EM al-
gorithm is presented. Regarding the initialisation, the
upper row shows examples for which the initialised sup-
porting lines are close to actual significant lines of the
image; the projective-plane EM algorithm applied on
these cases provides a refinement of the initial support-
ing lines parameters and accurately fit them to the ob-
served ones in the image. The second row addresses the
ability of the EM algorithm to correct inaccurate initial-
isations. As shown, some of the initialised supporting
lines have incorrect orientation mainly due to a low ac-
curacy in the vanishing point initialisation. These inac-
curacies can be due to two main factors: (i) the set of
detected features is not dense enough to provide enough
line segments for each vanishing points (such as for the
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(a) (b) (c)

Figure 10: Examples of the application of the proposed projective-plane EM algorithm for the estimation of multiple vanishing points. The upper
row show cases in which the initialised vanishing points (the intersection of the dashed lines) is quite correct and thus the EM algorithm just works
as a refinement step. The bottom row shows more difficult cases, in which the initialisation of some vanishing points is significantly incorrect, like
the blue vanishing point in (a), or the green one in (b). In these cases, the proposed strategy corrects these errors and provides highly accurate
estimates of the vanishing points.

bottom image in (a)); or (ii) there is a large propor-
tion of inliers that are not clustered into main lines and
that have higher orientation error than samples actually
clustered into main lines. The MSAC processes all the
inliers and thus the estimation can be affected by the
presence of such false-inliers (examples shown in the
second row, (b) and (c)). In fact, some of these inliers
are actually noisy line segments accidentally meeting at
the vanishing point under consideration, such as those
in the trees or the floor. Their presence heavily dis-
turbs the correct estimation of vanishing points as they
show high error values (although within the bounds of
acceptance for the MSAC procedure). The application
of the proposed EM-based method corrects these initial-
isations and rectifies the position of the vanishing points
and the corresponding supporting lines. The result, as
shown in the examples of figure 10 is that the proposed
method accurately determines the three main directions
of the scene as well as the main supporting lines pass-
ing through them, including vanishing points inside and
outside the limits of the image, and those in the infinity
(for instance, case (b) of upper row shows, respectively,
in green and red, two parallel supporting lines meeting
at the infinity). The computation of the supporting lines
during the optimisation process is the reason for such a
good performance. The supporting lines act as a sub-
selection process that filters which line segments will
contribute to the estimation of the vanishing point. This
way, line segments are selected only if they are clustered

around significant lines, discarding other line segments
(that could also meet at the vanishing point) if they do
not belong to significant clusters. The advantage comes
from the hypothesis that line segments that are clustered
into lines have less error with respect to vanishing points
than isolated or sparse line segments, which could be in
fact outliers accidentally meeting at the vanishing point,
and thus having higher error than true inliers. The pro-
posed method, by using this line clustering approach,
discards these false inliers enhancing the accuracy of
the estimation. This is precisely what makes the MSAC
to fail (and actually any estimation method that does not
sub-select inliers according to this criterion) in the cases
shown in figure 10 second row, (b) and (c). This prop-
erty of the proposed projective-plane EM algorithm is
exemplified in figure 11. Column (a) shows the classi-
fication of line segments obtained applying the MSAC
algorithm for two example images of the YUDB. In (b),
an example pair of supporting lines for one vanishing
point is shown in solid black lines. The correspond-
ing line segments associated to these supporting lines
(whose conditional probabilities γi jk are higher than that
of any other component of the mixture model) are high-
lighted in thick green and blue lines, while the rest of
line segments associated to the same vanishing point are
shown in red. The plots of column (c) show the nor-
malised histogram of the orientation error weighted ac-
cording to the length of the line segments. A normal fit
is also provided for the two datasets: one correspond-
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Figure 11: Error distribution with and without using the supporting lines: (a) classification of line segments given by the MSAC algorithm; (b)
line segments corresponding to two supporting lines computed by the projective-plane EM algorithm; (c) comparison of the normalised histograms
(weighted according to the length of the segments) of the orientation error.

ing to the complete set of inliers provided by MSAC,
and the other corresponding to the subset of line seg-
ments selected according to the supporting lines com-
puted by the EM algorithm. As shown, the use of sup-
porting lines provides narrower error distributions for
the two cases. The upper row shows a case in which the
supporting lines actually correspond to two very long,
well defined lines in the scene, and thus the orientation
error histogram is much narrower than that computed
with the complete set of line segments, which contain
a large number of what we call false inliers. The bot-
tom row shows an example in which line segments are
all of similar length, and the supporting lines can not
be fitted to a well defined set of long line segments in
the image. Although here supporting lines are fitted to
a slightly sparse set of aligned line segments, there is
still a significant gain in the reduction of the error. Fi-
nally, we have analyzed the accuracy improvement that
the proposed projective-plane EM algorithm provides to
the initial estimates which are obtained using the pro-
posed MSAC strategy for the whole set of images of
the YUDB. Provided that there are 102 images in the
database and a total number of 301 vanishing points,
the MSAC algorithm obtains correct detections (below
10◦ with respect the ground truth vanishing points) for
284/301 = 94.35% vanishing points. The average error
achieved by this method is 3.5◦. For the rest of vanish-
ing points 17/301, the MSAC algorithm generate esti-
mates with errors above 10◦. In these cases, the method
fails due to the low number of line segments meet-
ing at the vanishing point which, sometimes, is even

lower than the remaining outliers or clutter line seg-
ments of the scene. Considering these 284 correct ini-
tialisations, the projective-plane EM algorithm refines
the obtained vanishing points and reduces the error to
1◦ for 247/284 = 86.97% cases. For only 28/284 the
EM method does not improve the MSAC results. Fi-
nally, the projective-plane EM algorithm also commits
some errors, and for 9/284 = 3.17% of the cases, the
MSAC estimation is better than that provided by the EM
strategy. All these estimation errors refers to the cases
in which either there are not enough line segments sup-
porting the vanishing point or they are not clustered in
dominant lines but actually sparsely distributed along
the whole image.

6. Conclusions

The proposed method, defined on the projective
plane, provides excellent vanishing point detection re-
sults for general problems, since it treats equally all van-
ishing points even if they are at the infinity or within the
image bounds. Up to our knowledge, no other work
in the literature solves the simultaneous estimation of
multiple vanishing points with their converging lines in
the projective plane. The use of these lines in the EM
framework has been shown to enhance the accuracy of
estimates, since it allows taking advantage of the clus-
tering of line segments into dominant lines in structured
scenarios, which are less noisy than sparse sets of line
segments. This way, the EM algorithm automatically
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selects only the line segments that belong to these sup-
porting lines and discard the rest of information, thus
leading to significantly more accurate results.

7. Acknowledgments

This work has been partially supported by the Min-
isterio de Ciencia e Innovación of the Spanish Govern-
ment under project TEC2007-67764 (SmartVision), and
by the Basque Government under the ETORGAI project
berriTRANS.

References

[1] Almansa, A., Desolneux, A., Vamech, S., 2003. Vanishing Point
Detection without Any A Priori Information, IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 25, no. 4, pp.
502-507.

[2] Antone, M.E., Teller, S., 2000. Automatic recovery of relative
camera rotations for urban scenes, in Proc. Conf. Computer Vi-
sion and Pattern Recognition, vol. 2, pp. 282-289.

[3] Barnard, S.T., 1983. Interpreting perspective images, Artificial
Intelligence Journal, vol. 21, no. 4, pp. 435-462.

[4] Cantoni, V., Lombardi, L., Porta, M., Sicard, N., 2001. Vanish-
ing point detection: representation analysis and new approaches,
in Proc. International Conference on Image Analysis and Pro-
cessing, pp. 26-28.

[5] Caprile, B., Torre, V., 1990. Using vanishing points for camera
calibration, International Journal of Computer Vision, no. 3, pp.
127-140.

[6] Coughlan, J., Yuille, A., 1999. Manhattan world: Compass di-
rection from a single image by bayesian inference, in Proc. In-
ternational Conference on Computer Vision, pp. 941-947.

[7] Criminisi, A., Reid, I., Zisserman, A., 2000. Single View
Metrology, International Journal on Computer Vision, vol. 40,
no. 2, pp. 123-148.

[8] Denis, P., Elder, J.H., Estrada, F.J., 2008. Efficient Edge-Based
Methods for Estimating Manhattan Frames in Urban Imagery,
in Proc. European Conference on Computer Vision, vol. 2, pp.
197-210.

[9] Guru, D.S., Shekar, B.H., Nagabhushan, P., 2004. A simple and
robust line detection algorithm based on small eigenvalue anal-
ysis, Pattern Recognition Letters, vol. 25, no. 1, pp. 1-13.

[10] Hartley, R.I., Zisserman, A., 2004. Multiple view geometry in
computer vision, Cambridge University Press.
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