
Introduc)on	

The introduction of WebGL1 has made exploration of complex 3D datasets possible in
the browser, enabling visualizations across a wide range of devices without any client-
side software requirements other than a WebGL-enabled browser. This poster
introduces several WebGL-based modules that were developed for exploration of
connectome data all of which are available as open source software. The viewer we
developed includes modules for visualization of FreeSurfer2 surfaces, cortical surface
curvature measures, tractography generated with the Diffusion Toolkit3, MRI volume
data, and connectivity data generated with the Connectome Mapping Toolkit4. The
viewer allows interactive exploration of the datasets all within the browser (Fig. 1).

References	

1WebGL Specification, http://www.khronos.org/webgl/
2Ruopeng Wang, Van J. Wedeen, TrackVis.org, Martinos Center for Biomedical Imaging,

Massachusetts General Hospital
3Dale, A.M., Fischl, B., Sereno, M.I., 1999. Cortical surface-based analysis. I. Segmentation and

surface reconstruction. Neuroimage 9, 179-19
4Connectome Mapping Toolkit, http://www.cmtk.org/
5OpenGL ES Shading Language Version 1.00,

http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf
6Congote, J., Alvaro, S., Kabongo, L., Aitor, M., Posada, J., Ruiz, O. Interactive visualization of

volumetric data with WebGL in real-time. In Proceedings of the 16th International
Conference on 3D Web Technology (Web 3D ‘11). ACM, New York, NY, USA, 137-146.

For	
 further	
 informa)on	

The full source code to the viewer can be downloaded from github
at https://github.com/danginsburg/webgl-brain-viewer

Fig.	
 1.	
 Screenshot	
 of	
 the	
 WebGL-­‐based	
 visualiza8on.	
 The	
 visualiza8on	
 is	
 composed	
 of	

the	
 pial	
 surface	
 colored	
 with	
 the	
 per-­‐vertex	
 mean	
 curvature,	
 fiber	
 tracts	
 colored	
 by	

direc8on,	
 regions-­‐of-­‐interest	
 rendered	
 with	
 cubes,	
 and	
 lines	
 between	
 regions	
 deno8ng	

connec8vity.	
 The	
 connec8vity	
 lines	
 are	
 colored	
 based	
 on	
 the	
 mean	
 fiber	
 tract	
 length	

connec8ng	
 the	
 two	
 regions-­‐of-­‐interest.	

Methods	

The publicly available Connectome Mapper provides a pipeline to automatically generate
structural networks from raw diffusion MRI data for the human brain. In the segmentation
stage, T1 MPRAGE MRI is processed by Freesurfer producing gray/white matter
segmentations. The Diffusion Toolkit is used for reconstruction, and a deterministic
streamline algorithm is used for tractography, generating fiber tracts of the same subject. A
parcellation is generated for cortical and subcortical regions-of-interest. These datasets are
then coregistered, and a network is generated weighting the connectivity between regions
based on the fiber tracts.

In our project, the results of the Connectome Mapper are directly loaded in the browser
using WebGL and JavaScript. The FreeSurfer cortical surface reconstruction binary files are
loaded and processed in JavaScript and converted to WebGL vertex buffer objects for
rendering. The surfaces are overlaid with per-vertex curvature values computed during the
FreeSurfer processing stream. The tractography data is likewise parsed in the JavaScript
code and rendered as line primitives colored based on direction. Finally, the structural
network itself is converted to JSON (JavaScript Object Notation) as an offline preprocess
and loaded into the browser using JavaScript. The networks are visualized in 3D along with
the fiber tracts and surfaces enabling exploration of connectivity information in realtime.

Rendering	

The FreeSurfer surfaces are rendered with curvature overlays that can be dynamically
colored based on a histogram of curvature values (Fig. 2). The histogram widget is rendered
using WebGL triangle primitives that are generated in the JavaScript code. All of the
rendering is performed using GPU shaders written in the OpenGL ES Shading Language5.
The surface vertex shader computes per-vertex colors based on the min/max histogram
range and the per-vertex curvature values. The surface fragment shader computes per-pixel
diffuse and specular lighting that attenuate the curvature-based color value.

Fig.	
 2.	
 Gray/white	
 surface	
 rendered	
 with	
 mean	
 (H)	
 curvature	
 colored	
 and	
 thresholded	

based	
 on	
 curvature	
 value	
 histogram.	

The tractography is rendered using WebGL line primitives (Fig. 3). Each fiber tract is
defined by a set of points. After loading the tractography file, each fiber tract is assigned a
color based on the absolute value of the unit vector pointing in the direction from the start
point to the end point of the tract. The length of the tract (in mm) is stored in a per-vertex
attribute along with the position and color. The minimum tract length is dynamically tuned
at runtime (adjustable by a slider) and this minimum value is placed in a uniform variable in
the vertex shader. The vertex shader determines whether the length of the tract is greater
than the minimum length to render, and if not it throws the tract away by transforming it to a
degenerate primitive. The entire tractrography set for the brain is rendered using a single
draw call with one vertex buffer object and since the length threshold is taken care of in the
vertex shader there is no dynamic geometry generation done in the JavaScript. This was
done for efficiency, otherwise the tracts would have to be broken up into multiple draw calls
which would negatively impact performance.

Fig.3.	
 Tractography	
 rendered	
 using	
 WebGL	
 line	
 primi8ves.	

Conclusions	

Our viewer has demonstrated the potential of using WebGL as a basis for interactive
visualization of neuroimaging data including FreeSurfer surfaces, curvature measures,
tractography, and connectome data. We have made our implementation available as open
source BSD-licensed software so that others can extend and refine our work. Due to the
increasing ubiquity of WebGL, we expect to see more visualization tools developed with it.
The strength of WebGL is in its ability to provide efficient access to GPU rendering
hardware whilst requiring no special client-side software. This makes it a platform with
great potential for neuroimaging tools, particularly those providing web-based interfaces for
automatic pipelining of neuroimage data processing.

An additional rendering technique that was developed is the direct volume rendering of MRI
data simultaneously with the tractography (Fig. 4). The volume renderer loads the MRI data
from the server into a tiled 2D texture and then renders it by performing ray-tracing in the
shader. 6

Fig.4.	
 Direct	
 volume	
 rendering	
 of	
 T1	
 MPRAGE	
 MRI	
 drawn	
 simultaneously	
 with	

tractography	
 visualiza8on.	

