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Abstract This paper presents a probabilistic method for vehicle detec-

tion and tracking through the analysis of monocular images obtained from

a vehicle-mounted camera. The method is designed to address the main

shortcomings of traditional particle filtering approaches for use in traffic

environments. Namely, Bayesian methods based on importance sampling

do not scale well as the dimensionality of the feature space grows, which in-

volves important limitations when it comes to tracking of multiple objects.

Alternatively, the proposed method is based on a Markov chain Monte Carlo

(MCMC) approach, which allows efficient sampling of the feature space.

The method involves important contributions as regards both the motion
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and the observation models of the tracker. Indeed, as opposed to particle

filter-based tacking methods in the literature, which typically resort to ob-

servation models based on appearance or template matching, in this work a

likelihood model that combines appearance analysis with information from

motion parallax is introduced. Regarding the motion model, a new inter-

action treatment is defined based on Markov Random Fields (MRF) that

allows to handle possible inter-dependencies in vehicle trajectories. As for

vehicle detection, the method relies on a supervised classification stage using

Support Vector Machines (SVM). The contribution in this field is two-fold.

First, the mostly rectilinear structure of vehicles is capitalized on to define

a new descriptor based on the analysis of gradient orientations in concentric

rectangles. This descriptor involves a much smaller feature space compared

to traditional descriptors, which are too costly for real-time applications.

Second, a new vehicle image database is generated to train the SVM and

made public. The proposed vehicle detection and tracking method is proven

to outperform existing methods and to successfully cope with the challeng-

ing situations contained in the test sequences.

Key words Image processing, object tracking, Monte Carlo methods,

intelligent vehicles



Title Suppressed Due to Excessive Length 3

1 Introduction

Signal processing techniques have been widely used in sensing applications

to automatically characterize the environment and for understanding of

the scene. Typical problems include ego-motion estimation, obstacle detec-

tion, or object localization, monitoring and tracking, which are usually ad-

dressed by processing of the information coming from sensors such as Radar,

LIDAR, GPS or video-cameras. Specifically, methods based on video anal-

ysis play an outstanding role due to their low cost, the striking increase on

processing capabilities, and the significant advances in the field of computer

vision.

Naturally object localization and monitoring are crucial to a good under-

standing of the scene. However, they are especially critical in safety appli-

cations where the objects may constitute a threat to the observer or to any

other individual. In particular, tracking of vehicles in traffic scenarios from

an on-board camera constitutes a major focus of scientific and commercial

interest, as vehicles originate the majority of accidents.

Video-based vehicle detection and tracking have been addressed in many

different ways in the literature. The former aims at localizing vehicles by

exhaustive search in the images, whereas the latter pursues to keep track

of already detected vehicles. As regards vehicle detection, since exhaustive

search throughout the image is costly, most of the methods in the literature

proceed in a two-stage fashion: hypothesis generation, and hypothesis verifi-

cation. The former usually involves a rapid search so that the image regions



4 Jon Arróspide et al.

that do not match some expected feature of the vehicle are disregarded and

only a small number regions potentially containing vehicles are further ana-

lyzed. Typical features include edges [1], color [2,3], and shadows [4]. Many

works based on stereovision have also been proposed (e.g. [5,6]), although

they involve a number of drawbacks with respect to monocular methods,

especially in terms of cost and flexibility.

Verification of hypotheses is usually addressed through model-based or

appearance-based techniques. Model-based techniques exploit the a priori

known structure of the vehicles to generate a description (i.e., the model)

that can be matched with the hypotheses to decide whether it is a vehicle or

not. Both rigid (e.g. [7]) and deformable (e.g. [8]) vehicle models have been

proposed. Appearance-based techniques, in contrast, involve a training stage

in which features are extracted from a set of positive and negative samples to

design a classifier. Neural Networks [9] and Support Vector Machines [10,

11] are extensively used for classification, while many different possibili-

ties have been proposed for feature extraction. Among others, Histograms

of Oriented Gradients (HOG) [12,13], Principal Component Analysis [14],

Gabor filters [11] and Haar-like features [15,16] have been applied to derive

the feature set for classification.

Direct use of many of these techniques is very time-consuming and thus

unrealistic in real-time applications. Therefore, in this paper we propose a

vehicle detection method that exploits the intrinsic structure of the vehicles

in order to achieve good detection results while involving a small feature
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space (and hence low computational overhead). The method combines prior

knowledge on the structure of the vehicle, based on the analysis of vertical

symmetry of its rear, with appearance-based feature training using a new

HOG-based descriptor and SVM. Additionally, a new database containing

vehicle and non-vehicle images has been generated and made public, which is

used to train the classifier. The database separates between vehicle instances

depending on their relative position with respect to the camera and hence

allows to adapt the feature selection and the classifier in the training phase

according to the vehicle pose.

As regards object tracking, feature-based and model-based approaches

have been traditionally utilized. The former aim at characterizing the ob-

jects by a set of features (e.g., corners [17] and edges [18] have been used to

represent vehicle) and to subsequently track the object through inter-frame

feature matching. In contrast, model-based tracking uses a template that

represents a typical instance of the object, which is often dynamically up-

dated [19,20]. Unfortunately, both approaches are prone to errors in traffic

environments due to the difficulty to extract reliable features or to provide

a canonical pattern of the vehicle.

To confront these problems, many recent approaches to object tracking

entail a probabilistic framework. In particular, the Bayesian approach [21,

22], especially in the form of particle filtering, has been used in many re-

cent works (e.g. [23–25]), to model the inherent degree of uncertainty in the

information obtained from image analysis. Bayesian tracking of multiple ob-
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jects can be found in the literature both using individual Kalman or Particle

Filters (PF) for each object [26,24], and a joint filter for all the objects [27,

28]. The latter is better suited for applications in which there is some degree

of interaction between objects, as it allows to control the relations between

objects in a common dynamic model (those are much more complicated to

handle through individual particle filters [29]). Notwithstanding, the compu-

tational complexity of joint-state traditional importance sampling strategies

grows exponentially with the number of objects, which results in a degraded

performance with respect to independent PF-based tracking when there are

several participants (as occurs in the traffic scenario).

On the other hand, PF-based object tracking methods found in the liter-

ature resort to appearance information for the definition of the observation

model. For instance, in [23], a likelihood model comprising edge and sil-

houette observation is employed to track the motion of humans. In turn,

the appearance-based model used in [27] for ant tracking consists of simple

intensity templates. However, methods using appearance-only models are

only bound to be successful under controlled scenarios, such as those in

which the background is static. In contrast, the considered on-board traffic

monitoring scenarios entail a dynamically changing background and varying

illumination conditions, which affect the appearance of the vehicles. Hence,

observation models based only on appearance are prone to errors.

In this work we present a new framework for vehicle tracking which com-

bines efficient sampling, handling of vehicle interaction, and reliable obser-
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vation modeling. The proposed method is based on the use of Markov chain

Monte Carlo approach to sampling (instead of the traditional importance

sampling) which renders joint state modeling of the objects affordable, while

also allowing to easily accommodate interaction modeling. In effect, driver

decisions are affected by neighboring vehicle trajectories (vehicle tends to

occupy free space), therefore an interaction model based on Markov Ran-

dom Fields [30] is introduced to manage inter-vehicle relations. In addition,

an enriched observation model is proposed, which fuses appearance infor-

mation with motion information. Indeed, motion is an inherent feature of

vehicles and is exploited here through the geometric analysis of the scene.

Specifically, the projective transformation relating the road plane between

consecutive time points is instantaneously derived and filtered temporally

based on a data estimation framework using a Kalman filter. The difference

between the current image and the previous image warped with this pro-

jectivity allows to detect regions likely featuring motion. Most importantly,

the combination of appearance and motion based information provides ro-

bust tracking even if one of the sources is temporarily unreliable or not

available. The proposed system has proven to successfully track vehicles in

a wide variety of challenging driving situations and to outperform existing

methods.

This paper is organized as follows. In Section 2 the reader is introduced

to the problem of Bayesian tracking, and the general framework of the

method proposed to address it is presented. While in Section 2 the con-
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tributions on each of the constituent parts of the framework are hinted,

in-depth descriptions of those are provided in the following sections. In par-

ticular, Section 3 describes the details of the vehicle tracking algorithm

based on MCMC sampling. In turn, Section 4 presents the designed motion

model including interaction treatment, whereas Section 5 and 6 address the

definition of the the observation model regarding appearance-based analy-

sis and motion-based analysis, respectively. The description of the method

proposed for vehicle detection as well as details regarding the database used

to train it are enclosed in Section 7. Section 8 comprises the experiments

conducted on the vehicle detection and tracking method and a discussion

on the observed results, followed by the conclusions at the end of the paper.

2 Overview of the proposed framework

As explained in the introduction, the proposed tracking method is grounded

on a Bayesian inference framework. Object tracking is addressed as a recur-

sive state estimation problem in which the state consists of the positions of

the objects. The Bayesian approach allows to recursively update the state

of the system upon receipt of new measurements. If we denote sk the state

of the system at time k and zk the measurement at the same instant, then

Bayesian theory provides an optimal solution for the posterior distribution

of the state given by

p(sk|z1:k) =
p(zk|sk)

∫
p(sk|sk−1)p(sk−1|z1:k−1)dsk−1

p(zk|z1:k−1)
(1)
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where z1:k integrates all the measurements up to time k [21]. Unfortunately,

the analytical solution is intractable except for a set of restrictive cases. Par-

ticularly, when the state sequence evolution is a known linear process with

Gaussian noise and the measurement is a known linear function of the state

(also with Gaussian noise) then the Kalman filter constitutes the optimal

algorithm to solve the Bayesian tracking problem. However, these condi-

tions are highly restrictive and do not hold for many practical applications.

Hence, a number of suboptimal algorithms have been developed to approx-

imate the analytical solution. Among them, particles filters (also known as

bootstrap filtering or condensation algorithm) play an outstanding role and

have been used extensively to solve problems of very different nature. The

key idea of particles filters is to represent the posterior probability density

function by a set of random discrete samples (called particles). In the most

common approach to particles filtering, known as importance sampling, the

samples are drawn independently from a proposal distribution q(·), called

importance density. In addition, each sample is assigned a weight which

depends on its likelihood p(zk|sk).

However, importance sampling is not the only approach to particle fil-

tering. In particular, Markov chain Monte Carlo methods provide an al-

ternative framework in which the particles are generated sequentially in a

Markov chain using at each step the approximation to the posterior distri-

bution. In this case, all the samples are equally weighted and the solution

in (1) can therefore be approximated as
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p(sk|z1:k) ≈ c · p(zk|sk)
N∑
r=1

p(sk|s(r)k−1) (2)

where the state of the r-th particle at time k is denoted s
(r)
k , N is the number

of particles, and c is the inverse of the evidence factor in the denominator

of (1). The advantage of MCMC methods is that the complexity increases

only linearly with the number of objects, in contrast to importance sam-

pling, in which the complexity grows exponentially [27]. This implies that

using the same computational resources, MCMC will be able to generate a

larger number of particles and hence to better approximate the posterior

distribution than importance sampling. Therefore, in this work an MCMC

framework is adopted for vehicle tracking. The general scheme of the method

is summarized in Fig. 1.

This framework requires definition of the observation model, p(zk|sk),

and the dynamic or motion model, p(sk|sk−1). The motion model is de-

signed under the assumption that vehicles velocity can be approximated to

be locally constant, which is valid in highway environments. As a result, the

evolution of a vehicle’s position can be traced by a first-order linear model.

However, linearity is lost due to the perspective effect in the acquired image

sequence. To preserve linearity we resort to a plane rectification technique,

usually known as Inverse Perspective Mapping (IPM) [31]. This computes

the projective transformation, T, that produces an aerial or bird’s-eye view

of the scene from the original image. The image resulting of plane rectifica-

tion will be referred to as the rectified domain or the transformed domain.
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In the rectified domain, the motion of vehicles can be safely described as a

first-order linear equation with an added random noise.

One important issue regarding the dynamic model is the interaction

treatment. Most approaches to multiple vehicle tracking involve an indepen-

dent motion model for each vehicle. However, this requires some external

method for handling of interaction, and often this is simply disregarded.

In contrast, we have designed an MRF-based interaction model that can

be easily integrated with the above-mentioned individual vehicle dynamic

model.

On the other hand, the observation model is critical to the performance

of the method, hence much effort is devoted to its design. Likelihood models

are typically built according to the observation of the appearance of the ob-

jects. Here, we extend the likelihood model so that it not only includes a set

of appearance-based features but also considers a feature that is inherent to

the vehicles, i.e., their motion. In particular, the model for the observation

of motion is based on the temporal alignment of the images in the sequence

through the analysis of multiple-view geometry. As for the appearance-based

observation model, rather than usual template matching methods, a proba-

bilistic approach is defined using a Expectation Maximization approach for

likelihood function optimization.

Finally, a method is necessary to detect new vehicles in the scene so

that these can be integrated in the tracking framework. This is addressed

in the current work by using a two-step procedure composed of an initial
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hypothesis generation and a subsequent hypothesis verification. In partic-

ular, candidates are verified using a supervised classification strategy over

a new descriptor based on HOG features. The proposed feature descriptor

and the classification strategy are explained in Section 7.

3 Vehicle tracking algorithm

The designed vehicle tracking algorithm aims at estimating the position

of the vehicles existing at each time of the image sequence. Hence, the

state vector is defined to comprise the position of all the vehicles sk =

{si,k}Mi=1, where si,k denotes the position of vehicle i, and M is the number

of vehicles existing in the image at time k. As stated, the position of a

vehicle is defined in the rectified domain given by the transformation T,

although back-projection to the original domain is naturally possible via

the inverse projective transformation T−1.

An example of the bird’s-eye view obtained through IPM is illustrated

in Fig. 2. Observe that the upper part of the vehicles is distorted in the

rectified domain. This is due to the fact that IPM calculates the appropriate

transformation for a given reference plane (in this case the road plane),

which is not valid for all the elements outside this plane. Therefore, analysis

is focused on the road plane and the position of a vehicle will be defined as

the middle point of its lower edge, i.e., the contact point between the road

and the vehicle.
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In order to estimate the joint state of all the vehicles, the MCMCmethod

is exploited. As mentioned, in MCMC the approximation to the posterior

distribution of the state is given by (2), which assuming that the likelihood

of the different objects is independent can be rewritten as follows:

p(sk|z1:k) ≈ c ·
M∏
i=1

p(zi,k|si,k)
N∑
r=1

p(sk|s(r)k−1) (3)

where zi,k is the observation at time k for object i. The Markov chain of

samples at time k is generated as follows. First, the initial state is obtained

as the mean of the samples in k − 1, s0k =
∑

r s
(r)
k−1/N . New samples for

the chain are generated from a proposal distribution Q(·). In particular,

we follow a Gibbs-like approach, in which only one target is changed at

each step of the chain. At step τ the proposed position s′i,k of the randomly

picked target i is thus sampled from the proposal distribution, which in our

case is a Gaussian centered at the value of the last sample for that target,

Q(s′i,k|s
(τ−1)
i,k ) = N (s′i,k|s

(τ−1)
i,k , σq). The candidate sample is therefore s′i,k =

(s
(τ−1)
\i,k , s′i,k), where s\i,k denotes sk but with si,k omitted. This sample is

accepted or not according to the Metropolis algorithm, which evaluates the

posterior probability of the candidate sample in comparison to that of the

previous sample and defines the following probability of acceptance [30]:

A(s′k, s
(τ−1)
k ) = min

(
1,

p(s′k|z1:k)
p(s

(τ−1)
k |z1:k)

)
(4)

This implies that if the posterior probability of the candidate sample

is larger than that of s
(τ−1)
k the candidate sample is accepted, and if it is
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smaller, it is accepted with probability equal to the ratio between them.

In the case of acceptance, s
(τ)
k = s′k. Otherwise the previous sample is

replicated s
(τ)
k = s

(τ−1)
k .

Observe that the samples obtained with the explained procedure are

highly correlated. It is a common practice to retain only every L-th sample

and leave out the rest, which is called thin-out. In addition, the first B

samples are discarded to prevent the estimation from being degraded by

bad initialization. Finally, at each time step the vehicle position estimates,

s̄k = {s̄i,k}Mi=1, are inferred as the mean of the valid particles s
(r)
k :

s̄k =
1

N

N∑
r=1

s
(r)
k (5)

4 Motion and interaction model

The motion model is defined in two steps: the first layer copes with the

individual movement of a vehicle in the absence of other participants, and

the second layer addresses the movement of vehicles in a common space.

As stated in Section 2, the motion of vehicles in the rectified domain is

modeled to be linear with constant velocity. Hence, the dynamic model for

an individual vehicle can be synthesized by the following equation:

si,k = si,k−1 + v∆t+mk (6)
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where v is the velocity of the vehicle, which is estimated from previous time

points, ∆t is the elapsed time between frames, and mk is an i.i.d. Gaussian

noise sequence. The individual dynamic model can be reformulated as

p(si,k|si,k−1) = N (si,k|si,k−1 + v∆t, σm) (7)

where σm is the variance vector of mk.

Once the expected evolution of each individual target has been de-

fined, their interaction must also be accounted for in the model. A com-

monly used way to address interaction is through MRFs (Markov Random

Fields), which graphically represent a set of conditional independent rela-

tions. An MRF (also known as undirected graph) is composed of a set of

nodes V , which represent the variables, and a set of links representing the

relations between them. The joint distribution of the variables can be fac-

torized as a product of functions defined over subsets of connected nodes

(called cliques, xC). These functions are known as potential functions and

denoted ϕC(xC). In the proposed MRF the nodes Vi (representing the vehi-

cle positions si,k = {xi,k, yi,k}) are connected according to a distance-based

criterion. Specifically, if two vehicles, i and j, are at a distance smaller than

a predefined threshold, then the nodes representing the vehicles are con-

nected and form a clique. The potential function of the clique is defined

as

ϕC(xC) = 1− exp

(
−αxδx

2

w2
l

)
exp

(
−αyδy

2

d2s

)
(8)
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where δx = |xi,k − xj,k| and δy = |yi,k − yj,k|. The functions ϕC(xC) can

be regarded as penalization factors that decrease the joint probability of

a hypothesized state if it involves unexpected relations between targets.

Potential functions consider the expected width of the lane, wl, and the

longitudinal safety distance, ds. In addition, the design parameters αx and

αy are selected so that αx = 0.5 and αy = 0.5 whenever a vehicle is at

a distance δx = wl/4 or δy = ds of another vehicle. Finally, the joint

probability is given by the product of the individual probabilities associated

to each node and the product of potential functions in existing cliques:

p(sk|sk−1) =
M∏
i=1

p(si,k|si,k−1)
∏
C

ϕC(xC) (9)

where C is the set of the two-node cliques. Let us now introduce this motion

model in the expression of the posterior distribution in (2):

p(sk|z1:k) ≈ c · p(zk|sk)
N∑
r=1

M∏
i=1

p(si,k|s(r)i,k−1)
∏
C

ϕC(xC) (10)

It is important to note that the potential factor does not depend on the

previous state, therefore (10) can be rewritten as

p(sk|z1:k) ≈ c · p(zk|sk)
∏
C

ϕC(xC)
N∑
r=1

M∏
i=1

p(si,k|s(r)i,k−1) (11)

Modeling of vehicle interaction thus requires only the evaluation of an ad-

ditional factor in the posterior approximation, while producing significant

gain in the tracking performance.
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5 Appearance-based analysis

The first part of the observation model deals with the appearance of the

objects. The aim is to obtain the probability pa(zi,k|si,k) of the current

appearance observation given the object state si,k (note the subscript a

that denotes ”appearance”). In other words we would like to know if the

current appearance-related measurements support the hypothesized object

state. In order to derive the probability pa(zi,k|si,k) we will proceed in two

levels. First, the probability that a pixel belongs to a vehicle will be defined

according to the observation for that pixel. Second, by analyzing the pixel-

wise information around the position given by si,k, the final observation

model will be defined at region level.

The pixel-wise model aims at providing the probability that a pixel

belongs to a vehicle. This will be addressed as a classification problem, and

it is therefore necessary to define the different categories expected in the

image. In particular, the rectified image (see example in Fig. 2) contains

mainly three types of elements: vehicles, road pavement and lane markings.

A fourth class will also be included in the model to account for any other

kind of elements (such as median stripes or guard rails).

The Bayesian approach is adopted to address this classification problem.

Specifically, the four classes are denoted by S = {P,L, V, U}, which corre-

spond to the pavement, lane markings, vehicles and unidentified elements.

Let us also denote Xi the event that a pixel x is classified as belonging to

the class i ∈ S. Then, if the current measurement for pixel x is represented
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by zx, the posterior probability that the pixel x corresponds to Xi is given

by the Bayes rule

P (Xi|zx) =
p(zx|Xi)P (Xi)

P (zx)
(12)

where p(zx|Xi) is the likelihood function, P (Xi) is the prior probability of

classXi, and P (zx) is the evidence, computed as P (zx) =
∑

i∈S p(zx|Xi)P (Xi),

which is a scale factor that ensures that the posterior probabilities sum to

one. The likelihoods and prior probabilities are defined in the following sec-

tion.

5.1 Likelihood functions

In order to construct the likelihood functions, a set of features have to be

defined that constitute the current observation regarding appearance. These

features should achieve a good degree of separation between classes, while

at the same time being significant for a broad set of scenarios. In general

terms the following considerations hold when analyzing the appearance of

the bird’s-eye view images. First, the road pavement is usually homogeneous

with slight intensity variations among pixels. In turn, lane markings consti-

tute near-vertical stripes of high-intensity, surrounded by regions of lower

intensity. As for vehicles, they typically feature very low intensity regions

in their lower part, due to vehicle’s shadow and wheels. Hence, two features

are used for the definition of the appearance-based likelihood model, namely

the intensity value, Ix, and the response to a lane-marking detector, Ix. For
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the latter, any of the methods available in the literature can be utilized [31,

32]. For this work, a lane marking detector similar to that presented in [33]

is used, whose response is defined in every row of the image as

Rx = 2Ix − (Ix−τ + Ix+τ ) (13)

where τ is the expected width of a lane marking in the rectified domain. The

likelihood models are defined as parametric functions of these two features.

In particular, they are modeled as Gaussian probability density functions:

p(Ix|Xi) =
1√

2πσI,i

exp

(
− 1

2σ2
I,i

(Ix − µI,i)
2

)
(14)

p(Rx|Xi) =
1√

2πσR,i

exp

(
− 1

2σ2
R,i

(Rx − µR,i)
2

)
(15)

where the parameters for the intensity and the lane marking detector are de-

noted respectively by the subscripts ‘I’ and ‘R’. Specifically, the distribution

corresponding to the unknown class, which would intuitively be uniformly

distributed for both features, is instead also modeled to be a Gaussian of

very high fixed variance to ease further processing (the gain will be clear

in Section 5.1.1). All these parameters will be estimated by means of an

optimization process based on the Expectation-Maximization (EM) algo-

rithm, explained below. Additionally, likelihood functions are assumed to

be conditionally independent on these features for all the classes Xi, thus

it is
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p(zx|Xi) = p(Ix|Xi)p(Rx|Xi) (16)

5.1.1 Parameter estimation: As mentioned, the parameters of the likeli-

hood models in (14) and (15) are estimated via EM. This technique enables

us to obtain the maximum likelihood estimate of the parameters of a dis-

tribution from a set of observed data. The data distribution is given in this

case by

p(Ix) =
∑
i∈S

p(Xi)p(Ix|Xi) (17)

p(Rx) =
∑
i∈S

p(Xi)p(Rx|Xi) (18)

Since the densities of the features Ix and Rx are independent, the opti-

mization is carried out separately for these features. Let us first rewrite the

expression (17) so that the dependence on the parameters is explicit:

p(Ix|ΘI) =
∑
i∈S

ωI,ip(Ix|ΘI,i) (19)

where ΘI,i = {µI,i, σI,i} and ΘI = {ΘI,i}i∈P,L,V . Observe that the prior

probabilities have been substituted by factors ωI,i to adopt the notation

typical of mixture models. In effect, EM provides an analytical solution

to Gaussian mixture-density parameter estimation problems, such as the

one posed here. This has been extensively exploited in many problems, as

explained in [34], where the analytical solutions can also be found. In this
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kind of problems, the set of unknown parameters is composed of the param-

eters of the densities and of the mixing coefficients, Θ = {ΘI,i, ωI,i}i∈P,L,V .

Thereby, the parameters resulting from the final EM iteration are fed into

the Bayesian model defined in equations (12)-(15). The process is completely

analogous for the feature Rx.

The EM algorithm is proven to converge to a local maximum, hence it is

necessary to provide a good starting point. In this case, since EM is applied

in every frame of the incoming image sequence, the results from the previ-

ous image can recursively be used as starting point in the current frame.

However, initialization is still necessary for the triggering of the process.

This is addressed through the analysis of histograms of each of the features

in the bird’s-eye view image. As regards the intensity feature, first the pixels

that are likely to correspond to the pavement class are selected by filter-

ing out the regions of the image that feature high gradient. This is done

through the application of the Sobel operator, followed by thresholding and

morphological dilation. An example of resulting binary mask is illustrated

in Fig. 3 (b) for the image in (a). The image obtained after high-gradient

pixel removal is shown in Fig. 3 (c), in which we see that only the pavement

pixels are retained. A histogram is then generated from the remaining pixels

(see Fig. 4 (a)), and the initial parameters for µI,P and σI,P are extracted

from it.

The corresponding histograms for the lane marking and the vehicle class

are generated in turn by taking the values above µI,P + σI,P and below
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µI,P − σI,P , respectively. This satisfies the preliminary assumption that

µI,O < µI,P < µI,L. The corresponding map of pixels are shown in Fig. 3 (d)

and (e) for the example image in Fig. 3 (a). We proceed in an analogous

way to that explained for the pavement class to extract the initial values of

{µI,L, σI,L} and {µI,V , σI,V }. The corresponding histograms are shown in

Fig. 4 (b)-(c). A Gaussian distribution with the inferred parameters is also

printed on the histograms.

As for the second feature, i.e. the response to the lane marking filter, the

histogram typically comprises two modes. The first mode, located in the low

R values, corresponds to the homogeneous road and to the regions occupied

by vehicles. The second mode covers a broad range of values corresponding

to the lane markings (which are imaged with varying intensity depending

on the illumination and the distance). By finding the appropriate threshold,

histograms can be derived for the two modes, and the corresponding param-

eters are used for initialization. Note that this feature does not discriminate

between vehicles and pavement, thus it is {µR,P , σR,P } = {µR,V , σR,V }.

5.2 Appearance-based likelihood model

The result of the proposed appearance-based likelihood model is a set of

pixel-wise probabilities of each of the classes. Naturally, in order to know

the likelihood of the current object state candidate, we must evaluate the

region around the vehicle position given by si,k = (xi,k, yi,k). The vehicle

position has been defined as the midpoint of its lower edge (i.e., the seg-
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ment delimiting the transition from road to vehicle). Hence, we expect that

in the neighborhood above si,k, pixels display high probability to belong

to the vehicle class, p(XV |x), while the neighborhood below si,k should in-

volve low vehicle probabilities if the candidate state is good. Therefore, the

appearance-based likelihood of the object state si,k is defined as

pa(zi,k|si,k) =
1

(w + 1)h

(∑
x∈Ra

p(XV |zx) +
∑
x∈Rb

(1− p(XV |zx))

)
(20)

where Ra is the region of size (w+1)× h/2 above si,k, Ra = {xi,k −w/2 ≤

x < xi,k + w/2; yi,k − h/2 ≤ y < yi,k}, and Rb is the region below si,k,

Rb = {xi,k − w/2 ≤ x < xi,k + w/2; yi,k < y ≤ yi,k + h/2}.

6 Motion-based analysis

As mentioned above, the second source of information for the definition of

the likelihood model is motion analysis. Two-view geometry fundamentals

are used to relate the previous and current views of the scene. In partic-

ular, the homography (i.e. projective transformation) of the road plane is

estimated between these two points in time. This allows us to generate a

prediction of the road plane appearance in future instants. However, vehi-

cles (which are generally the only objects moving on the road plane) feature

inherent motion in time, hence their projected position in the plane differs

from that observed. The regions involving motion are identified through im-

age alignment of the current image and the previous image warped with the

homography. These regions will correspond to vehicles with high probability.
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6.1 Homography calculation

The first step towards image alignment is the calculation of the road plane

homography between consecutive frames. As shown in [35] this can be ob-

tained from a minimum of four feature correspondences by means of the

Direct Linear Transformation (DLT). In this work features are extracted

through the Harris detector [36] and matched using KLT [37], although any

other standard technique, such as SIFT [38], can be used for this purpose.

Although a homography estimate H is now available from the DLT ap-

plied over the correspondences, straightforward image alignment is not pos-

sible. Indeed, it must be taken into account that this homography might

be highly unreliable due to the following reasons. First, the road is usually

homogeneous and thus the number of features resulting from standard fea-

ture extraction techniques is small. In addition, the inclusion of inaccurate

or wrong correspondences for the computation of DLT is especially harmful

when the number of points is small.

Therefore, intermediate processing of the computed homography is nec-

essary. This is achieved in the present work by means of a linear estimation

process based on Kalman filtering. Let us first inspect the analytical expres-

sion of the homography between two consecutive instants. Fig. 5 illustrates

the situation of a vehicle with an on-board camera moving on a flat road

plane, π0 = (n⊤, d)⊤, where n = (0, 1, 0)⊤ and d is the distance between

the camera and the ground plane. The coordinate system of the camera at

time k1 is adopted as the world coordinate system. At time k2 the camera
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has moved to position C2, and rotation Rx(α) might have occurred around

X-axis due to camera shaking. Additional rotation Ry(β) in the Y-axis must

be considered in the case the vehicle changes lane or takes a curve. From

the previous discussion, and assuming a pinhole camera model, the camera

projection matrices at times k1 and k2 are respectively

P1 = K[I|0]

P2 = KRx(α)Ry(β)[I| −C2]

(21)

The homography H relates the projections, x1 and x2, of a 3D point,X ∈

π0, in two different images. Its expression can be derived from the equations

in (21). In effect, for the first view it is x1 = P1X = K[I|0] and hence any

point in the ray X = (x⊤
1 (K

−1)
⊤
, ρ)⊤ projects to x1. The intersection of

this ray and the plane π0 determines the value of the parameter ρ: it is

π0
⊤X = n⊤K−1x+ dρ = 0, and thus ρ = −n⊤K−1x1/d. The projection of

the point X into the second view is given by

x2 = P2X = KRx(α)Ry(β)[I| −C2]X =

= KRx(α)[Ry(β)| − Ry(β)C2](x
⊤
1 (K

−1)
⊤
, ρ)⊤ =

= KRx(α)[Ry(β)K
−1x1 + tρ] =

= KRx(α)[Ry(β)− tn⊤/d]K−1x1

where t = −Ry(β)C2. This vector constitutes the translation in the direc-

tion of heading of the vehicle and is thus given by t = (0, 0, 1)
⊤
v/fr, where
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v is the velocity of the vehicle and fr is the frame rate. From the above

equations the expression of the homography of the plane π0 between k1 and

k2 is derived:

H = KRx(α)[Ry(β)− tn⊤/d]K−1 (22)

6.1.1 Time-filtering framework: At each time k we have a noisy approxi-

mation of the homography H of the road plane between the previous and

the current instant. However, the evolution of H in time is assumed to be

smooth due to the intrinsic constraints in the vehicle dynamics, therefore

better estimates can be obtained by filtering noisy measurements in time.

Temporally filtered estimates of the homography are obtained by modeling

H with a zero-order Kalman filter whose state vector is composed of the ele-

ments Hij of the homography matrix. The design of the filter is summarized

as follows:

x⊤
k = {Hij , 1 ≤ i, j ≤ 3}

xk = xk−1 +wk

z⊤k = {Hk
ij , 1 ≤ i, j ≤ 3}

zk = xk + vk

The process and measurement noise, wk and vk, are assumed to be given by

independent Gaussian distributions, p(w) ∼ N(0,Q) and p(v) ∼ N(0,R).

Observe that the measurement vector is composed of the elements of the
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instantaneous homography matrix, Hk, computed from image correspon-

dences. As stated above, measurements are expected to be prone to error

due to the usually small set of correspondences available, hence the mea-

surement error should be tuned to be larger than the process noise (in the

proposed configuration it is Q = 10−6, R = 10−3).

The designed filter provides corrected estimates for the homography at

time k, Ĥk, built from the posterior estimate of the filter state, x̂k. Most

importantly, this measure can be used as a prediction for the homography in

the next time point. This prediction provides an effective reference to eval-

uate whether the computed instantaneous measurement may be erroneous

or not. Indeed, at the current time k, we can compare the instantaneous

homography Hk to the prediction made in the previous time instant Ĥk−1:

if Hk is close to the expected value Ĥk−1 then the filter equations will be

conveniently updated; in contrast, if the matrices are significantly different,

then it is natural to think that noisy correspondences were involved in the

calculation of Hk.

The distance between matrices is measured according to the norm of

the matrix of differences. Specifically, the norm induced by the 2–norm of a

Euclidean space is used. This is obtained by performing Singular Value De-

composition (SVD) of the matrix and retaining its largest singular value [39].

The incoming matrices are accepted and introduced into the Kalman filter-

ing framework only if ∥Hk − Ĥk−1∥ < ta. Otherwise, the measured homog-

raphy is deemed to be unreliable and the predicted homography is used.
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The threshold ta modulates the maximum acceptable distance to the pre-

dicted matrix, which depends on the kinematic restrictions of the platform

in which the camera is mounted.

In the case of highways, vehicle dynamics are bounded by the maximum

speed, the maximum turning angle (i.e., yaw angle, β) and the maximum

variation in the pitch angle, α, for a given frame rate. The maximum veloc-

ity is considered to be v = 120 km/h (33.3 m/s), as enforced by most nation

governments. Besides, a maximum pitch angle variation of α = ±5◦ is con-

sidered, and an upper bound of β = ±3◦ is inferred for the turning angle

according to the standard road geometry design rules. Taking into account

these bounds, and assuming an image processing rate of at least 1 fps, the

threshold is experimentally found to be ta = 60.

6.2 Motion-based likelihood model

Once a time-filtered estimate of the homography Ĥk is available, reliable

image alignment can be performed. Image alignment allows to locate the

regions of the image likely featuring motion (and therefore likely containing

vehicles). The previous image is aligned with the current image by warping

it with Ĥk. Image alignment is exemplified in Fig. 6. In the upper row the

snapshots of a sequence at times k − 1 are k and displayed. In Fig. 6 (c),

the image in (a) warped with Ĥk is shown. Observe that this is very similar

in the road region to the actual image at time k (Fig. 6 (b)).
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As suggested in the overview of Section 6, the reason for image alignment

is that all elements in the road plane (except for the points of the vehicle that

belong to this plane) are static, and thus their actual position matches that

projected by the homography. In contrast, vehicles are moving, hence their

positions in the road plane at time k significantly differs from that projected

by the homography, which assumes they are static. Therefore, the differences

between the image at time k and the image at time k − 1 warped with Ĥk

shall be null for all the elements of the road plane except for the contact

zones of the vehicles with the road. The differences in these regions will be

more significant the larger the velocity of the vehicles. Fig. 6 (d) illustrates

the difference between the current image -Fig. 6 (b)- and the previous image

warped -Fig. 6 (c)- for the example referred below. As can be observed,

whiter pixels -indicating significant difference- appear in the areas of motion

of the vehicles in the road. The transformation of the elements outside the

road is naturally not well-represented by Ĥk (this is the homography of

the road plane) and thus random regions of high differences arise in the

background, which will be considered as clutter.

The pixel-wise difference between the current image and the previous

image warped provides information on the likelihood of the current ob-

ject state candidate, si,k. Analogously to the appearance-based likelihood

modeling, the region around the vehicle position indicated by si,k will be

evaluated in order to derive its likelihood. Also, to preserve the duality

with the appearance-based analysis, the processing is shifted to the recti-
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fied domain using the transformation T defined in Section 2. The resulting

image, denoted Dr, is illustrated in Fig. 6 (e) for the previous example. In

particular, the likelihood of belonging to a region of motion is maximum

in xmax = argmax(Dr(x)), hence a map of probabilities that the pixel x

belongs to a moving region, denoted p(m|x), can be inferred for the whole

image as p(m|x) = Dr(x)/Dr(xmax).

As follows from the above discussion, observe that the regions of high

difference are between the current vehicle position and the position that

it would occupy if it were static (which is always closer to the camera).

Therefore, as opposed to the appearance-based modeling (Section 5.2), we

expect that in the neighborhood below the current vehicle position, si,k,

pixels have high likelihood values p(m|x), whereas the neighborhood above

x should involve small or null probabilities of motion. Hence, the likelihood

of the current vehicle state si,k regarding the motion analysis is defined as

pm(zi,k|si,k) =
1

(w + 1)h

(∑
x∈Ra

(1− p(m|x)) +
∑
x∈Rb

p(m|x)

)
(23)

where the regions Ra and Rb are those defined in Section 5.2, and the

subscript m in the probability denotes that it refers to motion observation.

The likelihood result obtained from the motion-based analysis is finally

combined with that achieved after appearance-based analysis. The joint

likelihood of a candidate state si,k is simply defined as the arithmetic mean

of likelihoods:
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p(zi,k|si,k) =
1

2
(pa(zi,k|si,k) + pm(zi,k|si,k)) (24)

Note that, although the product of likelihoods could have been used

instead, the mean is preferred in order to avoid that the calculation is biased

by too small likelihood values.

7 Vehicle detection

Up to this point the method for vehicle tracking has been explained. How-

ever, in normal driving situations it is natural that vehicles come in and out

of the field of view of the camera throughout the sequence of images. While

management of outgoing vehicles is fairly straightforward (the track simply

exceeds the limits of the image), a method for incoming vehicles must be

designed. The method proposed in this work follows a two-step approach. In

the first stage, hypotheses for vehicle positions are made using the results of

appearance-based classification explained in Section 5. In the second, those

are verified according to the analysis of a set of features in their associated

regions in the original domain.

7.1 Hypothesis generation

Exhaustive search of a certain pattern in the whole image is too time-

consuming for applications requiring real-time operation. Hence, it is usual

to perform some kind of fast pre-processing that restricts the search areas.

In this case, we exploit the information extracted from the construction
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of likelihood models for tracking and use it to generate a set of candidate

regions that will be further analyzed. In particular, two types of inputs could

be used corresponding to the appearance-based analysis in Section 5 and

the motion-based analysis in Section 6. As referred in the corresponding

section, the latter usually involves noise due to background structures, thus

appearance-based information is more suitable for hypothesis generation.

Specifically, based on the appearance analysis, for each pixel the prob-

ability that it belongs to a vehicle, p(XV |zx) is available. We expect that

if there is a new vehicle appearing in the image a compact zone of high

probabilities must be observed in the surrounding of its position. Therefore,

in order to localize new vehicles, a binary map Bm is created containing the

pixels in which the probability of the vehicle class is larger than that of the

other classes, p(XV |zx) > p(Xi|zx), i ∈ P,L, U . As an example, the binary

map obtained for the image in Fig. 7 (b) is shown in Fig. 7 (c). Connected

component analysis is performed over Bm to extract the regions with high

probability to belong to vehicles. Resulting regions are filtered according to

a minimum area criterion in order to remove noise.

Naturally, regions corresponding to the tracked vehicles should exist

in Bm. Besides, if there is some additional region in Bm this is regarded

as a potential new vehicle in the image and it is further analyzed in the

hypothesis verification stage. In particular, in the example in Fig. 7 (c)

three regions are obtained: the upper two regions correspond to existing

vehicles, labeled 1 and 2, while the small region in the lower left corner
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constitutes a potential new vehicle (in this case it is actually a vehicle, as

can be observed in Fig. 7 (a)). Since only the lower part of the vehicles

is reliable in the rectified domain, candidates are characterized by their

position and width. As potential vehicles are verified according to their

appearance in the original image, their position and width in this domain

are computed by means of the inverse transformation T−1. Finally, a 1:1

aspect ratio is initially assumed for the vehicle so that a bounding box Rh

can be hypothesized for vehicle verification.

7.2 Hypothesis verification

Vehicle verification is based on a supervised classification stage based on

Support Vector Machines (SVM). A database of vehicle rear images is gen-

erated for the training of the classifier as will be explained in Section 7.2.2.

Most importantly the database separates images according to the region

in which the vehicle is found (close/middle range in the front, close/middle

range in the left, close/middle range in the right, and far range). Indeed, the

view of the vehicle rear changes in these areas and thus affects its intrinsic

features. This is taken into account in the design of the feature description,

which adapts to the particularities of the different areas. Besides, a differ-

ent classifier is trained for each of them using the corresponding subsets of

images images in the database.

As for the feature description, a new descriptor is proposed based on

two of characteristics that are inherent to the vehicles: high edge content



34 Jon Arróspide et al.

and symmetry. Indeed, the method automatically adapts the area for feature

extraction according to a vertical symmetry-based local window refinement.

This allows to correct position offsets in the hypothesis generation stage and

to adapt to the vehicle rear contour. Regarding the feature extraction within

the refined region, a new descriptor that exploits the inherently rectangular

structures of the vehicle rear is designed. The descriptor, called CR-HOG,

is based on the analysis of Histograms of Oriented Gradients (HOGs) in

concentric rectangles around the center of symmetry, called CR-HOG.

7.2.1 CR-HOG feature extraction: HOGs evaluate local histograms of im-

age gradient orientations in a dense grid. The underlying idea is that the

local appearance and shape of the objects can often be well characterized

by the distribution of the local edge directions, even if the corresponding

edge positions ar not accurately known.

This idea is implemented by dividing the image into small regions called

cells. Then, for each cell, a histogram of the gradient orientations over the

pixels is extracted. The original HOG technique, proposed by Dalal and

Triggs [12], presents two different kinds of configurations, called Radial HOG

(R-HOG) and circular HOG (C-HOG), depending on the geometry of the

used cells. Specifically, the former involves a grid of rectangular spatial cells

and the latter uses cells partitioned in a log-polar fashion.

As stated, in this work we present a new configuration for the cells

that better adapts the characteristics of the vehicles. Indeed, the rear of

the vehicles presents an inherently rectangular structure: not only is the
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outer contour of the vehicle rear quasi-rectangular, but the inner structures

such as the license plate and the rear window are also rectangular. Hence,

we naturally define a new configuration of HOG composed of concentric

rectangular cells as shown in Fig. 8 (a). This structure will be referred to as

CR-HOG (for concentric rectangle-based HOG). The layout of the CR-HOG

has five parameters: the number of concentric rectangles n, the number of

orientation bins b, the center cs of the window, its height hs, and its width

ws.

In practice, the hypothesized region for vehicle verification, Rh, may

not perfectly fit the actual bounding box of the vehicle in terms of size

and alignment. In particular, it is often the case that the vehicle is not

perfectly centered in Rh, especially in the horizontal axis. Therefore, direct

application of CR-HOG (or of standard HOG) over Rh will possibly result

in degraded performance. Instead, we refine the region likely containing the

vehicle through the analysis of vertical symmetry in the intensity of the

region. In particular, the subregion within Hs giving the maximum degree

of vertical symmetry is kept for HOG computing. Vertical symmetry is

calculated using the method in [40]. As a result, we obtain the axis of vertical

symmetry, xs and the width of the region that maximizes the symmetry

measure, ws. The height hs of the window for HOG application is taken as

that of Rh and its center is thus given by cs = (xs, hs/2).

Fig. 8 (b) illustrates the window adaptation approach based on symme-

try analysis. Observe that the refined vertical side limits (painted in red)
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fit much better the bounding edges of the vehicle rear. In practice, the area

for calculation of CR-HOG is extended by a 10% so that the outer edges of

the vehicle are also accounted for in the descriptor.

The steps for the calculation of CR-HOG on the refined window are

the following. First, the gradient magnitude and orientation is computed at

each point of the window using some standard operator (Sobel 3× 3 masks

are used in our implementation). Then, in order to create a histogram of

orientations, a number of orientation bins is defined and each pixel votes

for the bin that contains its corresponding angle. The votes are weighted by

the magnitude of the gradient at that point. Three possible configurations

have been considered involving n = 8, 12 and 18 bins evenly spaced over

[0,180), as illustrated in Fig. 9.

The bins have been shifted so that the vertical and horizontal orienta-

tions, which are very frequent in the rear of vehicles, are in the middle of

their respective bins. This way, small fluctuations around 0◦ and 90◦ will

not affect the descriptor. The histogram of each cell is finally normalized

by the area of the cell so that histograms of different cells are in the same

order of magnitude. The CR-HOG descriptor is composed of the normalized

histogram of orientations of all the cells. The optimal configuration of the

number of orientation bins, n, and the number of cells, b, is discussed in

Section 8 for each region of the image.

7.2.2 Classification stage: The CR-HOG descriptors are introduced in a

Support Vector Machine-based classifier. A new database containing 4000
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positive vehicle images and 4000 negative vehicle images is used to train and

test the classifier (this is accessible at http://www.gti.ssr.upm.es/∼jal). The

core of the database is composed of images of our own collection; besides,

images have also been extracted from the Caltech [41,42] and the TU Graz-

02 [43,44] databases and included in the data set. The joint database consists

of images of resolution 64 × 64 acquired from a vehicle-mounted forward-

looking camera. Each image provides a view of the rear of a single vehicle.

Some images contain the vehicle completely while others have been drawn

to contain it only partially (all images contain at least 50% of the vehicle

rear) in order to simulate putative results of the hypothesis generator.

Images involve many different viewpoints of the vehicle rear correspond-

ing to vehicles in different locations relative to the vehicle in which the

camera is mounted. Specifically, the space is divided in four main regions:

close/middle range in the front, close/middle range in the front, close/middle

range in the right, and far range. The database contains 1000 images of

each of these views. A set of 4000 images not containing vehicles have also

been used to train and test the classifier. The images are selected in such a

way that the variability in terms of vehicle appearance, pose, and acquisi-

tion conditions (e.g., weather conditions, lighting) is maximized. A classifier

based on SVM using linear basis functions is used for each of the four image

regions.
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8 Experiments and discussion

Experiments regarding the proposed method have been performed two-fold.

On the one hand, the performance of the novel CR-HOG based approach

for vehicle detection is tested on the database referred to in Section 7.2.2.

On the other hand, experiments have been carried out in the complete

system integrating vehicle detection and tracking over a wide variety of

video sequences.

The SVM-based classifier for vehicle detection explained in Section 7 has

been trained and tested in Matlab using the Bioinformatics Toolbox. The

method involves two design parameters, namely the number of orientation

bins in the histogram, n, and the number of cells, b. Experiments have been

performed on the database for values n = 8, 12, 18 and b = 2, 3, 4. Cross-

validation procedure is used to test the method. Specifically, 50% of the

images are randomly selected for the training set and the remaining 50% is

used as the testing set. This process is repeated 5 times and the average is

computed.

The accuracy or correctly classified rate of samples as a function of

these parameters is provided in Table 1 for each of the four regions. These

results are graphically represented in Fig. 10 and Fig. 11 to facilitate their

interpretation. In particular, Fig. 10 shows the accuracy results as a function

of the number of orientation bins, n, by averaging on b, for each area of the

image. Analogously, Fig. 11 illustrates the average accuracy results as a

function of the number of cells, b.
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As a first conclusion of the experiments we infer that the accuracy de-

creases for b = 4 in all the areas of the image. As for the number of orienta-

tion bins, a different behavior is observed for the frontal and the sides views.

Specifically, for the central close/middle and far ranges similar results are

obtained for n = 8 and n = 12, while the performance decreases notably for

n = 18. As opposed to it, for the left and right areas a significative accuracy

increase is observed from n = 8 to n = 12; a further increase to n = 18

does not bring an additional gain. This contrast is indeed reasonable, since

from a completely orthogonal viewpoint the edges of a vehicle are fairly

invariant and mostly vertical and horizontal; conversely, in the side views

the upright edges corresponding to the back window and its contour (es-

pecially the furthest from the image center) tend to divert from verticality.

Consequently more variability is found in the gradient orientation map, and

therefore more bins are necessary to capture fine-detail.

A good trade-off between complexity and performance is achieved by se-

lecting (b, n) = (2, 8) for the close/middle and far ranges, and (b, n) = (3, 12)

for the left and right views. This involves respective detection accuracies of

94,88%, 85.92% 91.82%, and 89.42%, which results in an average correct

detection rate of 90,51%. The rate difference between left and right views is

due to the particularities of the traffic participants in the right lane, which

usually includes slow vehicles (buses, tracks, vans, etc.), which involve a

great appearance variety and hence make classification much more chal-

lenging. Naturally the worse classification rate is obtained for the further
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vehicles, in which the edge-details are degraded. The results are improved to

an overall accuracy of 92,77% when using a Gaussian radial basis function

kernel (instead of the linear kernel), with respective correct detection rates

of 96.14%, 89.92%, 94.14% and 90.86% for the different areas. However,

the proposed method continuously generates hypotheses for the potential

vehicles, hence, even if a vehicle is not detected in a given frame, it is usu-

ally detected in the following frames. Therefore, the small latency incurred

by the linear kernel-based classification is usually negligible and it is not

necessary to use more complex kernels.

As regards vehicle tracking, the designed method has been tested on a

wide variety of sequences recorded on Madrid, Brussels and Turin. These

sequences, which were acquired in several sessions with different driving

conditions (i.e., illumination conditions, weather, pavement color, traffic

density, etc.) amount to 22 : 38 minutes. Test sequences were acquired from

a forward-looking digital video camera installed near the rear mirror of a

vehicle driven in highways. The method is able to operate near real-time at

10 fps on average over an Intel(R) Core(TM) i5 processor running at 2,67

GHz. Implementation is done in C++.

The above-mentioned test sequences are used to compare the perfor-

mance of the proposed tracking method with the two methods most widely

used in the literature. Namely, those involve independent tracking of mul-

tiple objects with a Kalman filter assigned to each object (which will be

shortly referred to as KF-based tracking), or joint tracking using parti-
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cles filters based on importance sampling (shortly, SIS-based tracking). For

the implementation of KF-based tracking, appearance-based region labeling

through connected-component analysis is used as in Section 7.1 to locate

vehicles in every frame, and tracks are formed temporally by matching the

regions according to a minimum distance criterion. As for SIS-tracking, a

sequential resampling scheme is used (see details of the algorithm in [21]).

Additionally, the motion model used for SIS-based tracking is exactly that

designed for the proposed method, while KF-based tracking uses the same

dynamic model for independent motion of vehicles, but cannot accommo-

date any interaction model. Other parameters of the dynamic model are

σq = (10, 15), wl = 90 and ds = 96. Regarding the observation model, the

dimensions of the local windows Ra and Rb are set to w = h = 10. Also, the

standard deviation of the proposal density is optimally calculated for the

proposed method and for SIS-based tracking as σq = (2, 3) and σq = (5, 8),

respectively. Finally, the same number of samples N = 250 is used for both

methods.

To compare methods, the number of tracking failures incurred by each

of the methods on the same test sequences is counted. A tracking failure

is considered when the tracker fails to provide continuous and coherent

measures for a given vehicle inside the Region of Interest (ROI). The ROI is

defined to be the scope of the Inverse Perspective Mapping, which usually

comprises the own and the two adjacent lanes, and extends longitudinally

up to a distance df that depends on the camera calibration. Comparative
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results are displayed in Table 2. As expected, the proposed method largely

outperforms the others in terms of tracking failures in the test sequences.

Naturally, KF-based tracking delivers the highest error rate as it is unable to

deal with situations in which vehicles interact. Notably, SIS-based tracking

also incurs in a significant number of errors, since the number of particles

is relatively small and fail to correctly sample the space when the number

of vehicles grows.

The strength of the method lies to a great extent in the combination of

two different sources of information (appearance and motion) for the defi-

nition of the observation model. Indeed, the combination of information en-

sures that whenever the two sources are available a robust average estimate

is produced, and most importantly, it allows to keep track of the objects

even if one of the information sources is unavailable or unreliable. Fig. 12 (a)

illustrates the sampling process for the original image in Fig. 12 (a1) when-

ever the two types of information are available. In particular, Fig. 12 (a2)

shows the rectified domain after IPM application, Fig. 12 (a3) corresponds

to the appearance-based pixel-wise classification (in which pixels likely be-

longing to the lower parts of vehicles are painted in white as explained in

Section 5.2), and Fig. 12 (a4) contains analogously the pixel-wise motion-

based classification as explained in Section 6.2.

The process of generation of samples in the framework of the Markov

chain is superimposed on Fig. 12 (a3) and Fig. 12 (a4). In particular, the

segment between the previous sample and the proposed sample is painted in
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green whenever the latter is accepted, and in red if it is rejected. As can be

observed, accepted samples concentrate in the area of high likelihood (i.e.

the transition between road and vehicles), while samples diverging from this

area are rejected. The final estimates for vehicles positions are indicated in

Fig. 12 (a5) with white segments underlining the vehicle rears.

As stated, dual modeling from two sources prevents the method from

losing track whenever one of the sources is unreliable. This is illustrated in

Fig. 12 (b) and Fig. 12 (c), where the sampling process is depicted anal-

ogously to Fig. 12 (a) for the images in Fig. 12 (b1) and Fig. 12 (c1). In

particular, in Fig. 12 (b) the motion-based observation provides no mea-

surement for the right vehicle (Fig. 12 (d)), however this is compensated

by the correct appearance-based observation, which avoids particle disper-

sion. Therefore, the vehicle is correctly tracked as shown in Fig. 12 (b5). In

contrast, the particles for the left vehicle overcome an inaccurate initializa-

tion and converge to its actual position due to good appearance-based and

motion-based observations. The opposite case is illustrated in Fig. 12 (c),

in which the appearance-based model fails to detect the furthest vehicle

(see Fig. 12 (c3)), whereas the region of motion is still observable in the

difference between aligned images in Fig. 12 (c4). This allows to keep tack

of the vehicle, as shown in Fig. 12 (c5).

Finally, apart from the statistical results in Table 2, some graphical

examples of the performance of the method are shown in Fig. 13. This fig-

ure displays snapshots of the tracking process for four different time points
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(from left to right), for three different example sequences. In the first se-

quence the method simultaneously tracks a vehicle that is being rapidly

overtaken by the own vehicle. Most interestingly, there is some degree of in-

teraction between the vehicles, in fact, they are fairly close in Fig. 13 (a3).

In traditional PF-based tracking methods particles are prone to concentrate

around the object with the highest likelihood which results in the loss of the

other object. In contrast, the designed interaction model allows to prevent

this situation and to successfully track the vehicles until they part. In the

second example, in Fig. 13 (b), tracking of a vehicle driving at a slow pace

in the right lane is shown. At the same time, the method swiftly detects a

vehicle in the left hand side (Fig. 13 (b3)) and tracks it until it is far away,

while also keeping track of the vehicle in front of the own car. Finally, in

Fig. 13 (c) simultaneous tracking of several vehicles is shown: the vehicle

ahead the own car moves from the lower-left corner of the image to the

upper-middle part, while at the same time tracking is kept for the distant

vehicle in the right lane. Meanwhile, a new vehicle entering the scene in the

left hand is detected and tracked until it is nearly at the same distance as

the other vehicles.

9 Conclusions

In this paper a new probabilistic framework for vehicle detection and track-

ing has been presented based on MCMC. As regards vehicle detection, a

new descriptor, CR-HOG, has been defined based on the extraction of gra-



Title Suppressed Due to Excessive Length 45

dient features in radial rectangular bins. The descriptor has proven to good

discriminative properties using a reduced number of features in a simple

linear-kernel SVM classifier, and is thus ideally suited for real-time applica-

tions. In addition, the tracker is proven to perform better than state of the

art methods based on Kalman and particle filtering in terms of tracking fail-

ures. The power of the algorithm lies on the fusion of information of different

nature, especially regarding the observation model. In effect, apart from ap-

pearance the method exploits another feature that is inherent to vehicles,

their motion, through the analysis of the geometry between successive views

of the scene. In addition, MCMC method is exploited to perform efficient

sampling and to avoid the performance degradation of particle filter-based

approaches in multiple object tracking arising from the curse of dimension-

ality. In summary, the method is able to overcome the usual limitations of

particle filter-based approaches and to provide robust vehicle tracking in a

wide variety of driving situations and environment conditions.
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Fig. 1 General scheme of the proposed method.

Fig. 2 Transformation to the rectified domain through Inverse Perspective Map-

ping. As opposed to the original image (a), in the rectified image (b) the effect of

perspective is removed and thus motion of vehicles is easier to model.

Fig. 3 Steps for initialization of EM regarding intensity feature parameters. The

sequence of images is the following: (a) example image in rectified domain; (b)

binary mask for high-gradient pixel removal (pixels in white are removed); (c),

(d) and (e) maps of pixels for pavement, lane marking, and vehicle class charac-

terization, respectively.

Fig. 4 Histograms of the (a) pavement, (b) lane marking, and (c) vehicle class

pixel maps in Fig. 3.
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Fig. 5 Relative pose of the camera at two different time points k1 and k2. The

world coordinate system has its origin at the position of the camera center at k1.

Fig. 6 Example of image alignment. Image (a) and (b) correspond to times k−1

and k, respectively, of the video sequence; (c) is the image at k − 1 warped with

Ĥk; (d) is the difference between aligned images, i.e., (b) and (c); and (e) is the

corresponding image of difference in the rectified domain. Both (d) and (e) have

been binarized for better visualization: white regions correspond to regions of

difference, which usually correspond to the lower edge of vehicles.

Fig. 7 Example of generation of a new vehicle hypothesis. The sequence of im-

ages is the following: (a) original image, (b) rectified image, (c) binary map Bm

corresponding to appearance analysis in (b): pixels in white indicate potential

location of vehicles. In the example, the regions labeled 1 and 2 correspond to

existing vehicles, while the small region arising in the lower left corner constitutes

a potential new vehicle.

Fig. 8 Combined HOG and symmetry based descriptor. In (a) the structure

of concentric rectangle HOG (CR-HOG) with its corresponding parameters is

illustrated. In (b) the refined region obtained after vertical symmetry analysis is

shown: green and red lines indicate respectively the symmetry axis and the width

of the region yielding the maximum symmetry values.
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Fig. 9 Possible configurations of CR-HOG regarding the number of orientation

bins. The range of gradient orientation angles [0-180) is divided in uniformly

spaced sectors. Pixels with gradient orientations inside each sector accumulate to

the corresponding bin of the histogram proportionally to the magnitude of their

gradient. Configurations with (a) 8, (b) 12, (c) 18 bins are considered.

Fig. 10 Classification accuracy as a function of the number of cells, b. The results

are broken down for images corresponding to (a) close/middle, (b) left, (c) right

and (d) far views and for b = 2, 3 and 4.

Fig. 11 Classification accuracy as a function of the number of orientation bins,

n. The results are broken down for images corresponding to (a) close/middle, (b)

left, (c) right and (d) far views and for n = 8, 12 and 18.

Fig. 12 Illustration of sampling process for different example images. From left

to right, images correspond to the (1) original image, (2) rectified domain, (3)

appearance-based vehicle probability map, Bm, (4) motion-based vehicle proba-

bility map, and (5) tracking results. The sampling process is illustrated in images

(3) and (4): accepted and rejected particles are painted in green and red, respec-

tively. Images (2)-(4) are zoomed for better visualization of the sampling process.

Images in (a) illustrate a normal sampling scenario, while images in (b) and (c)

show how combined sampling is able to overcome bad (b) motion-based and (c)

appearance-based measurements.
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Fig. 13 Vehicle tracking for three different sequences (a)-(c). From left to right,

the images show results at times k0, k0 +200, k0 +340, k0 +440; k0, k0 +170, k0 +

215, k0 + 295; k0, k0 + 250, k0 + 360, k0, k0 + 460 for sequences (a), (b), and (c),

respectively

Table 1 Classification accuracy rates of CR-HOG

Middle/Close Left Right Far

β = 2 β = 3 β = 4 β = 2 β = 3 β = 4 β = 2 β = 3 β = 4 β = 2 β = 3 β = 4

n = 8 94,88 94,98 94,68 91,04 91,18 91,16 88,58 89,14 87,94 85,92 85,86 85,76

n = 12 94,96 94,80 95,14 91,46 91,82 91,46 89,28 89,42 88,16 85,32 85,24 85,16

n = 18 94,78 93,96 93,24 91,98 91,60 91,06 89,34 88,84 88,10 85,76 85,22 84,60

Table 2 Summary of tracking results

Method Tracking failures Number of frames Number of vehicles

KF-based Tracking 36

33454 120PF-based Tracking 31

Proposed Method 9
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