
Noname manuscript No.
(will be inserted by the editor)

Vehicle tracking and classification in challenging

scenarios via slice sampling

Marcos Nieto∗1, Luis Unzueta1, Javier

Barandiaran1, Andoni Cortés1, Oihana

Otaegui1 and Pedro Sánchez2

1Vicomtech-ik4, Mikeletegi Pasealekua 57,

Donostia-San Sebastián 20009, Spain

2IKUSI, Miketelegi Pasealekua 180,

Donostia-San Sebastián 20009, Spain

∗Corresponding author:

mnieto@vicomtech.org

the date of receipt and acceptance should be inserted later

Abstract This article introduces a 3D vehicle tracking system in a traffic surveil-

lance environment devised for shadow tolling applications. It has been specially

designed to operate in real time with high correct detection and classification rates.

The system is capable of providing accurate and robust results in challenging road

scenarios, with rain, traffic jams, casted shadows in sunny days at sunrise and

sunset times, etc. A Bayesian inference method has been designed to generate es-

timates of multiple variable objects entering and exiting the scene. This framework

Address(es) of author(s) should be given

2Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle

allows easily mixing different nature information, gathering in a single step obser-

vation models, calibration, motion priors and interaction models. The inference

of results is carried out with a novel optimization procedure that generates esti-

mates of the maxima of the posterior distribution combining concepts from Gibbs

and slice sampling. Experimental tests have shown excellent results for traffic-flow

video surveillance applications that can be used to classify vehicles according to

their length, width, and height. Therefore, this vision-based system can be seen

as a good substitute to existing inductive loop detectors.

Keywords: vehicle tracking; Bayesian inference; MRF; particle filter; shadow

tolling; ILD; slice sampling; real time.

1 Introduction

The advancements of the technology as well as the reduction of costs of processing

and communications equipment are promoting the use of novel counting systems

by road operators. A key target is to allow free flow tolling services or shadow

tolling to reduce traffic congestion on toll roads.

This type of systems must meet a set of requirements for its implementation.

Namely, on the one hand, they must operate real time, i.e. they must acquire the

information (through its corresponding sensing platform), process it, and send it

to a control center in time to acquire, process, and submit new events. On the

other hand, these systems must have a high reliability in all situations (day, night,

adverse weather conditions). Finally, if we focus on shadow tolling systems, then

the system is considered to be working if it is not only capable of counting vehicles,

but also classifying them according to their dimensions or weight.

Title Suppressed Due to Excessive Length 3

There are several existing technologies capable of addressing some of these

requirements, such as intrusive systems like radar and laser, sonar volumetric

estimation, or counting and mass measurement by inductive loop detectors (ILDs).

The latter, being the most mature technology, has been used extensively, providing

good detection and classification results. However, ILDs present three significant

drawbacks: (i) these systems involve the excavation of the road to place the sensing

devices, which is an expensive task, and requires disabling the lanes in which the

ILDs are going to operate; (ii) typically, an ILD sensor is installed per lane, so that

there are miss-detections and/or false positives when vehicles travel between lanes;

and (iii) ILD cannot correctly manage the count in situations of traffic congestion,

e.g. this technology cannot distinguish two small vehicles circulating slowly or

standing over an ILD sensor from a large vehicle.

Technologies based on time-of-flight sensors represent an alternative to ILD,

since they can be installed with a much lower cost, and can deliver similar counting

and classifying results. There are, however, as well, two main aspects that make

operators reluctance to use them: (i) on the one hand, despite the existence of the

technology for decades, applied for counting and classification in traffic surveillance

is relatively new, and there are no solutions that represent real competition against

ILD in terms of count and classification results; and (ii) these systems can be called

intrusive with the electromagnetic spectrum because they emit a certain amount

of radiation that is reflected on objects and returns to the sensor. The emission of

radiation is a contentious point, since it requires to meet the local regulations in

force, as well as to overcome the reluctance of public opinion regarding radiation

emission.

4Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle

Recently, a new trend is emerging based on the use of video processing. The

use of vision systems is becoming an alternative to the mentioned technologies.

Their main advantage, as well as radar and laser systems one, is that their cost

is much lower than ILDs, while its ability to count and classify is potentially

the same. Moreover, as it only implies image processing, no radiation is emitted

to the road, so they can be considered completely non-intrusive. Nevertheless,

vision-based systems should still be considered as in a prototype stage until they

are able to achieve correct detection and classification rates high enough for real

implementation in free tolling or shadow tolling systems. In this article, a new

vision-based system is introduced, which represents a real alternative to traditional

intrusive sensing systems for shadow tolling applications, since it provides the

required levels of accuracy and robustness to the detection and classification tasks.

It uses a single camera and a processor that captures images and processes them

to generate estimates of the vehicles circulating on a road stretch.

As a summary, the proposed method is based on a Bayesian inference theory,

which provides an unbeatable framework to combine different nature information.

Hence, the method is able to track a variable number of vehicles and classify

them according to their estimated dimensions. The proposed solution has been

tested with a set of long video sequences, captured under different illumination

conditions, traffic load, adverse weather conditions, etc., where it has been proven

to yield excellent results.

Title Suppressed Due to Excessive Length 5

2 Related work

Typically, the literature associated with traffic video surveillance is focused on

counting vehicles using basic image processing techniques to obtain statistics about

lane usage. Nevertheless, there are many works that aim to provide more complex

estimates of vehicle dynamics and dimensions to classify them as light or heavy.

In urban scenarios, typically at intersections, the relative rotation of the vehicles

is also of interest [1].

Among the difficulties that these methods face, shadows casted by vehicles are

the hardest one to tackle robustly. Perceptually, shadows are moving objects that

differ from the background. This is a relatively critical problem for single-camera

setups. There are many works that do not pay special attention to this issue, which

dramatically limits the impact of the proposed solutions in real situations [2–4].

Regarding the camera view point, it is quite typical to face the problem of

tracking and counting vehicles with a camera that is looking down on the road

from a pole, with a high angle [5]. In this situation, the problem is simplified

since the perspective effect is less pronounced and vehicle dimensions do not vary

significantly and the problem of occlusion can be safely ignored. Nevertheless, real

solutions shall consider as well the case of low angle views of the road, since it is

not always possible to install the camera so high. Indeed, this issue has not been

explicitly tackled by many researchers, being of particular relevance the work by

[3], which is based on a feature tracking strategy.

There are many methods that claim to track vehicles for a traffic counting

solution but without explicitly using a model whose dimensions or dynamics are

6Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle

fitted to the observations. In these works, the vehicle is simply treated as a set of

foreground pixels [4], or as a set of feature points [2,3].

Works more focused on the tracking stage, typically define a 3D model of the

vehicles, which are somehow parameterized and fitted using optimization proce-

dures. For instance, in [1], a detailed wireframe vehicle model that is fitted to

the observations is proposed. Improvements on this line [6,7] comprise a variety

of vehicle models, including detailed wireframe corresponding to trucks, cars, and

other vehicle types, which provide accurate representations of the shape, volume,

and orientation of vehicles. An intermediate approach is based on the definition

of a cuboid model of variable size [8,9].

Regarding the tracking method, some works have just used simple data asso-

ciation between detections in different time instants [2]. Nevertheless, it is much

more efficient and robust to use Bayesian approaches like the Kalman filter [10],

the extended Kalman filter [11], and, as a generalization, particle filter methods

[8,12]. The work by [8] is particularly significant in this field, since they are able

to efficiently handle entering and exiting vehicles in a single filter, being as well

able to track multiple objects in real time. For that purpose, they use an MCMC-

based particle filter. This type of filter has been widely used since it was proven

to yield stable and reliable results for multiple object tracking [13]. One of the

main advantages of this type of filters is that the required number of particles is a

linear function of the number of objects, in contrast to the exponentially growing

demand of traditional particle filters (like the sequential importance resampling

algorithm [14]).

As described by [13], the MCMC-based particle filter uses the Metropolis–

Hastings algorithm to directly sample from the joint posterior distribution of the

Title Suppressed Due to Excessive Length 7

complete state vector (containing the information of the objects of the scene).

Nevertheless, as happens with many other sampling strategies, the use of this al-

gorithm guarantees the convergence only when using an infinite number of samples.

In real conditions, the number of particles shall be determined experimentally. In

traffic-flow surveillance applications, the scene will typically contain from none to

4 or 5 vehicles, and the required number of particles should be around 1,000 (the

need of as few as 200 particles was reported in [8]).

In the authors opinion, this load is still excessive, and thus have motivated the

proposal of a novel sampling procedure devised as a combination of the Gibbs and

Slice sampling [15]. This method is more adapted to the scene proposing moves

on those dimensions that require more change between consecutive time instants.

As it will be shown in next sections, this approach requires an average between 10

and 70 samples to provide accurate estimates of several objects in the scene.

Besides, and as a general criticism, almost all of the above-mentioned works

have not been tested with large enough datasets to provide realistic evaluations of

its performance. For that purpose, we have focused on providing a large set of tests

that demonstrate how the proposed system works in many different situations.

3 System overview

The steps of the proposed method are depicted in Fig. 1, which shows a block

diagram and example images of several intermediate steps of the processing chain.

As shown, the first module corrects the radial distortion of the images and applies a

plane-to-plane homography that generates a bird’s-eye view of the road. Although

the shape of the vehicles appear in this image distorted by the perspective, their

8Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle

speed and position are not, so that this domain helps to simplify prior models and

the computation of distances.

The first processing step extracts the background of the scene, and thus gen-

erates a segmentation of the moving objects. This procedure is based on the

well-known codewords approach, which generates an updated background model

through time according to the observations [16].

The foreground image is used to generate blobs or groups of connected pixels,

which are described by their bounding boxes (shown in Fig. 1 as red rectangles).

At this point, the rest of the processing is carried out only on the data structures

that describe these bounding boxes, so that no other image processing stage is

required. Therefore, the computational cost of the following steps is significantly

reduced.

As the core of the system, the Bayesian inference step takes as input the de-

tected boxes, and generates estimates of the position and dimensions of the vehicles

in the scene. As it will be described in next sections, this module is a recursive

scheme that takes into account previous estimates and current observations to

generate accurate and coherent results. The appearance and disappearance of ob-

jects is controlled by an external module, since, in this type of scenes, vehicles are

assumed to appear and disappear in pre-defined regions of the scene.

4 Camera calibration

The system has been designed to work, potentially, with any point of view of

the road. Nevertheless, some perspectives are preferable, since the distortion of

the projection on the rectified view is less pronounced. Figure 2 illustrates the

Title Suppressed Due to Excessive Length 9

distortion effect obtained with different views of the same road. As shown, to

reduce the perspective distortion, it is better to work with sequences captured

with cameras installed at more height over the road, although this is not always

possible, so that the system must cope also with these challenging situations.

In any case, the perspective of the input images must be described, and it can

be done obtaining the calibration of the camera. Although there are methods that

can retrieve the rectified views of the road without knowing the camera calibration

[5], we require it for the tracking stage. Hence, we have used a simple method to

calibrate the camera that only requires the selection of four points on the image

that forms a rectangle on the road plane, and two metric references.

First, the radial distortion of the lens must be corrected, to make that imaged

lines actually correspond to lines in the road plane. We have applied the well-

known second order distortion model, which assumes that a set of collinear points

{xi} are radially distorted by the lens as

x′
i = xi(1 +K||xi||), (1)

where the value of the parameter K can be obtained using five correspondences

and applying the Levenberg–Marquardt algorithm.

Next, the calibration of the camera is computed using the road plane to image

plane homography. This homography is obtained selecting 4 points in the original

image such that these points form a rectangle in the road plane, and applying the

DLT algorithm [17]. The resulting homography matrix H can be expressed as

H = K

[
r1 r2 t

]
, (2)

10Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle

where r1 and r2 are the two rotation vectors that define the rotation of the camera

(the third rotation vector can be obtained as the cross product r3 = r1 × r2), and

t is the translation vector. If we left multiply Equation 2 by K−1 we obtain the

rotation and translation directly from the columns of H.

The calibration matrix K can be then found by applying a non-linear opti-

mization procedure that minimizes the reprojection error.

5 Background segmentation and blob extraction

The background segmentation stage extracts those regions of the image that most

likely correspond to moving objects. The proposed approach is based on the code-

words approach [16] at pixel level.

Given the segmentation, the bounding boxes of blobs with at least a certain

area are detected using the approach described in [18]. Then, a recursive process

is undertaken to join boxes into larger bounding boxes which satisfy dx < tX ,

dy < tY , where dx and dy are the minimal distances in X and Y from box to box,

tX and tY are the corresponding distance thresholds. The recursive process stops

when no larger rectangles can be obtained that meet the conditions.

Figure 3 exemplifies the results of the segmentation and blob extraction stages

in an image showing two vehicles of different sizes.

6 3D tracking

The 3D tracking stage is fed with the set of observed 2D boxes in the current

instant, which we will denote as zt = {zt,m}, with m = 1 . . .M . Each box

Title Suppressed Due to Excessive Length 11

is parameterized as zt,m = (zt,m,x, zt,m,y, zt,m,w, zt,m,h) in this domain, i.e. a

reference point and a width and height.

The result of the tracking process is the estimate of xt, which is a vector

containing the 3D information of all the vehicles in the scene, i.e. xt = {xt,n},

with n = 1 · · ·Nt, where N is the number of vehicles in the scene at time t, and

xt,n is a vector containing the position, width, height, and length of the 3D box

fitting vehicle n.

Using these observations and the predictions of the existing vehicles at the

previous time instant, an association data matrix is generated, and used within

the observation model and for the detection of entering and exiting vehicles.

The proposed tracking method is based on the probabilistic inference theory,

which allows handling the temporal evolution of the elements of the scene, taking

into account different types of information (observation, interaction, dynamics,

etc.). As a result, we will typically get an estimation of the position and 3D volume

of all the vehicles that appear in the observation region of the image (see Fig. 4).

6.1 Bayesian inference

Bayesian inference methods provide an estimation of p(xt|Zt), the posterior den-

sity distribution of state xt, which is the parameterization of the existing vehicles

in the scene, given all the estimations up to current time, Zt.

The analytic expression of the posterior density can be decomposed using the

Bayes’ rule as

p(xt|Zt) = kp(zt|xt)p(xt|Zt−1), (3)

12Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle

where p(zt|xt) is the likelihood function that models how likely the measurement

zt would be observed given the system state vector xt, and p(xt|Zt−1) is the

prediction information, since it provides all the information we know about the

current state before the new observation is available. The constant k is a scale

factor that ensures that the density integrates to one.

The prediction distribution is given by the Kolmogorov–Chapman equation

[14]

p(xt|Zt−1) =

∫
p(xt|xt−1)p(xt−1|Zt−1)dxt−1. (4)

If we hypothesize that the posterior can be expressed as a set of samples

p(xt−1|Zt−1) ≈ 1

Ns

Ns∑
i=1

δ(xt−1 − x
(i)
t−1), (5)

then

p(xt|Zt−1) ≈ 1

Ns

Ns∑
i=1

p(xt|x(i)
t−1). (6)

Therefore, we can directly sample from the posterior distribution since we have

its approximate analytic expression [13]:

p(xt|Zt) ∝ p(zt|xt)

Ns∑
i=1

p(xt|x(i)
t−1). (7)

An MRF factor can be included to the computation of the posterior to model

the interaction between the different elements of the state vector. The MRF factors

can be easily inserted into the formulation of the posterior density, since they do

not depend on previous time instants [13]. This way, the expression of the posterior

density shown in (7), is now rewritten as

Title Suppressed Due to Excessive Length 13

p(xt|Zt) ∝ p(zt|xt)
∏
n,n′

Φ(xt,n,xt,n′)

Ns∑
i=1

p(xt|x(i)
t−1), (8)

where Φ(·) is a function that governs the interaction between two elements n and

n′ of the state vector.

Particle filters are tools that generate this set of samples and the correspond-

ing estimation of the posterior distribution. Although there are many different

alternatives, MCMC-based particle filters have been shown to obtain the more

efficient estimations of the posterior for high-dimensional problems [13] using the

Metropolis–Hastings sampling algorithm. Nevertheless, these methods rely on the

definition of a Markov chain over the space of states such that the stationary dis-

tribution of the chain is equal to the target posterior distribution. In general, a

long chain must be used to reach the stationary distribution, which implies the

computation of hundreds or thousands of samples.

In this article, we will see that a much more efficient approach can be used by

substituting the Metropolis–Hastings sampling strategy by a line search approach

inspired in the slice sampling technique [15].

6.2 Data association

The measurements we got are boxes, typically one per object, although, in some

situations, there might be a large box that corresponds to several vehicles (due to

occlusions or an undesired merging process in the background subtraction and blob

extraction stages), or also a vehicle described by several independent boxes (in case

the segmentation suffers fragmentation). For that reason, to define an observation

model adapted to this behavior, an additional data association stage is required

14Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle

to link measurements with vehicles. The correspondences can be expressed with a

matrix, whose rows correspond to measurements and columns to existing vehicles.

Figure 5 illustrates an example data association matrix that will be denoted as D,

and Fig. 6 shows some examples of D matrices, corresponding to different typical

situations.

The association between 2D boxes with 3D vehicles is carried out by projecting

the 3D box into the rectified road domain, and then compute its rectangular hull,

that we will denote as x′
n (let us remove the time index t from here on for the sake of

clarity), i.e. the projected version of vehicle xn. As a rectangular element, this hull

is characterized by a reference point and a width and length: x′
n = (x′

x, x
′
y, x

′
w, x

′
h),

analogously to observations zm. An element Dm,n of matrix D is set to one if the

observation zm intersects with x′
n.

6.3 Observation model

The proposed likelihood model takes into account the data association matrix

D, and is defined as the product of the likelihood function associated to each

observation, considered as independent:

p(z|x) =
M∏

m=1

p(zm|x). (9)

Each one of these functions corresponds to a row of matrix D, and is computed

as the product of two different types of information:

p(zm|x) = pa(zm|x)pd(zm|x), (10)

Title Suppressed Due to Excessive Length 15

where pa(·) is a function relative to the intersection of areas of the 2D observation

zm and the set of hulls of the projected 3D boxes x = {xn} with n = 1 . . . N .

The second function, pd(·), is related to the distances between the boxes. Figure 7

illustrates, with several examples, the values of each of these factors and how can

they evaluate different x′
n hypotheses. Figure 8 illustrates these concepts with a

simple example of a single observation and a single vehicle hypothesis.

The first function is defined as

pa(zm|x) ∝ exp

(∑N
n=1 am,n

am

∑N
n=1 am,n

Nm

∑N
n=1 ωm,nan

)
, (11)

where am,n is the intersection between the 2D box, zm, and the hull of the pro-

jected 3D box, x′
n; am and an are, respectively, the areas of zm and x′

n, and Nm

is the number of objects that are associated with observation m according to D.

The value ωm,n is used to weight the contribution of each vehicle:

ωm,n =
an∑N

n=1 an
(12)

such that ωm,n ranges between 0 and 1 (it is 0 if object n does actually not intersect

with observation m, and 1 if object n is the only object associated to observation

m).

The first ratio of Equation 11 represents how much area of observation m

intersects with its associated objects. The second ratio expresses how much area of

the associated objects intersects with the given observation. Since objects might

be as well associated to other observations, the sum of their areas is weighted

according to the amount of intersection they have with other observations. After

the application of the exponential, this factor tends to return low values if the

16Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle

match between the observation and its objects is not accurate, and high if the fit

is correct. Some examples of the behavior of these ratios are depicted in Fig. 7.

For instance, the first case (two upper rows) represents a single observation, and

two different hypothesized x′
n. It is clear from the figure that the upper-most

case is a better hypothesis, and that the area of the observation covered by the

hypothesis is larger. Therefore, the first ratio of Equation 11 is 0.86 and 0.72 for the

second hypothesis. Analogously, it can be observed that the second ratio indeed

represents how much area of the hypothesis is covered by the observation. In this

case, the first hypothesis gets 0.77 and the second 0.48. As a result, the value of

pa(·) represents well how the 2D boxes zm and x′
m coincide. The other examples

of Fig. 7 show the same behavior for this factor in different configurations.

The factor related to the distances between boxes, pd(·), computes how aligned

is the projection of the 3D objects with their associated observations:

pd(zm|x) ∝ exp (−λ (dm,x + dm,y)) , (13)

where dm,x and dm,y are, respectively, the reference distances between the boxes.

According to the situation of the vehicle in the scene, these distances are computed

in a different manner. For instance, when the vehicle is completely observable in

the scene (i.e. it is not entering or leaving), the distance dm,x is computed as

dm,x =

∑N
n=1 Dm,n

∣∣x′
n,x − zm,x

∣∣∑N
n=1 Dm,n

. (14)

The distance in y is defined analogously. This way, the object hypotheses that

are more centered on the associated observation obtain higher values of pd(·). In

case the vehicle is leaving, the observation of the vehicle in the rectified view is

Title Suppressed Due to Excessive Length 17

only partial, and thus this factor is adapted to return high values if the visible end

of the vehicle fits well with the observation. In this case, dm,x is redefined as

dm,x =

∑N
n=1 Dm,n

∣∣(x′
n,x + x′

n,w)− (zm,x + zm,w)
∣∣∑N

n=1 Dm,n

. (15)

Figure 7 depicts as well some examples of the values retrieved by function

pd(·) in some illustrative examples. For instance, consider again the first example

(two upper rows): the alignment in x of the first hypothesis is much better, since

the centers of the boxes are very close, while the second hypothesis is not well

aligned in this dimension. As a consequence, the values of dx are, respectively,

0.04 and 1.12, which imply that the first hypothesis obtains a higher value of

pd(·). The other examples show some other cases in which the alignment makes

the difference between the hypotheses.

The combined effect of these two factors is that the hypotheses whose 2D

projections best fit to the existing observations obtain higher likelihood values,

taking into account both that the area of the intersection is large, and that the

boxes are aligned in the two dimensions of the plane.

6.4 Prior model

The information that we have at time t prior to the arrival of a new observation is

related to two different issues: on the one hand, there are some physical restrictions

on the speed and trajectory of the vehicles, and, on the other hand, there are some

width–length–height configurations more probable than others.

18Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle

6.4.1 Motion prior

For the motion prior model, we will use a lineal constant-velocity model [19], such

that we can perform predictions of the position of the vehicles from t − 1 to t

according to their estimated velocities (at each spatial dimension, x and y).

Specifically, p(xt|xt−1) = N (Axt−1|Σ), where matrix A is a linear matrix

that propagates state xt−1 to xt with a constant-velocity model [19], and N (·)

represents a multivariate normal distribution.

In general terms, we have observed that within this type of scenarios, this

model predicts correctly the movement of vehicles observed from the camera’s

view point, and is as well able to absorb small to medium instantaneous variations

of speed.

6.4.2 Model prior

Since what we want to model are vehicles, the possible values of the tuple WHL

(width, height, and length) must satisfy some restrictions imposed by the typical

vehicle designs. For instance, it is very unlikely to have a vehicle with width and

length equal to 0.5 and 3m high.

Nevertheless, there is a wide enough variety of possible configurations of WHL

such that it is not reasonable to fit the observations to a discrete number of fixed

configurations. For that reason, we have defined a flexible procedure that uses a

discrete number of models as a reference to evaluate how realistic a hypothesis

is. Specifically, we will test how close is a hypothesis to the closest model in the

WHL space. If it is close, then the model prior will be high, and low otherwise.

Title Suppressed Due to Excessive Length 19

Provided the set of models X = {xc}, with c = 1 . . . C, the expression of the

prior is p(xt|X) = p(xt|xc′), where xc′ is the model that is closer to xt. Hence,

p(xt|xc′) = N (xc|Σ) is the function that describes the probability of a hypothesis

to correspond to model xc′ . The covariance Σ can be chosen to define how much

restrictive is the prior term. If it is set too high, then the impact of p(xt|Xc) on

p(xt|zt) could be negligible, while a too low value could make that p(xt|zt) is

excessively peaked so that sampling could be biased.

In practice, we have used the set of models illustrated in Fig. 9. The number

of models and the differences between them depends on how much restrictive we

would like to be with the type of vehicles to detect. If we define just a couple of

vehicles, or a single static vehicle, then detection and tracking results will be less

accurate.

6.5 MRF interaction model

Provided our method considers multiple vehicles within the state vector xt, we can

introduce models that govern the interaction between vehicles in the same scene.

The use of such information gives more reliability and robustness to the system

estimates, since it better models the reality.

Specifically, we use a simple model that avoids estimated vehicles to overlap in

space. For that purpose we define an MRF factor, as in Equation 8. The function

Φ(·) can be defined as a function that penalizes hypotheses in which there is a 3D

overlap between two or more vehicles.

The MRF factor can then be defined as

20Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle

Φ(xn,xn′) =

0 if ∩ (xn,xn′) = 0

1 otherwise

(16)

between any pair of vehicles characterized by xn and xn′ , where ∩(·) is a function

that returns the volume of intersection between two 3D boxes.

6.6 Input/output control

Appearing and disappearing vehicle control is done through the analysis of the

data association matrix, D. If an observed 2D box, zm, is not associated with any

existing object xn, then a new object event is triggered. If this event is repeated in

a determined number of consecutive instants, then the state vector is augmented

with the parameters of a new vehicle.

Analogously, if an existing object is not associated with any observation ac-

cording to D, then a delete object event is triggered. If the event is as well repeated

in a number of instants, then the corresponding component xn of the state vector

is removed from the set.

7 Optimization procedure

Particle filters infer a point-estimate as a statistic (typically, the mean) of a set

of samples. Consequently, the posterior distribution has to be evaluated at least

once per sample. For high-dimensional problems as ours, MCMC-based methods

typically require the use of thousands of samples to reach a stationary distribution.

This drawback is compounded for importance sampling methods, since the number

of required samples increases exponentially with the problem dimension. In this

Title Suppressed Due to Excessive Length 21

work, we propose a new optimization scheme that directly finds the point-estimate

of the posterior distribution. This way, we avoid the step of sample generation and

evaluation, and thus the processing load is dramatically decreased. For this purpose

we define a technique that combines concepts of the Gibbs sampler and the slice

sampler [20]. Given the previous point-estimate x
(∗)
t−1, an optimization procedure

is initialized that generates a movement in the space to regions with higher values

of the target function (the posterior distribution). The movement is done by the

slice sampling algorithm, by defining a slice that delimits the regions with higher

function values around the starting point. The generation of the slice for a single

dimension is exemplified in Fig. 10. The granularity is given by the step size ∆x.

Figure 11 illustrates this method in a 2D example function. This procedure

is inspired by the Gibbs sampler since a single dimension is selected at a time

to perform the movement. Once the slice is defined, a new start point is selected

randomly within the slice, and the process is repeated for the next dimension.

In Fig. 11, we can see how the first movement moves x
(∗)
t−1 in the x-direction

using a slice of width 3∆x. The second step generates the slice in the y-direction

and selects x
(0)
t randomly within the slice. Two more steps lead to the new best

estimation of the posterior maximum at time t.

This technique performs as many iterations as necessary to find a stationary

point such that its slice is of size zero. As expected, the choice of the step size is

critical because too small values would require evaluating the target function too

many times to generate the slices, while too high values could potentially lead the

search far away from the targeted maximum.

We have designed this method since it provides fast results, typically stopping

at the second iteration. Other known methods, like gradient-descent or second-

22Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle

order optimization procedures, have been tested in this context, being much more

unstable. The reason is that they greatly depend on the quality of the Jacobian

approximation, which, in our problem, introduces too much error and makes the

system tend to lose the track.

For a better visualization, let us study how this procedure behaves to optimize

the position and volume of a 3D box for a single vehicle. Figure 12 represents two

consecutive frames: the initial state vector at the left image, and the result after

the optimization procedure at the right image.

Since the vehicle is quite well modeled in the initial state, we can guess that the

optimization process will generate movements in the direction of the movement

of the vehicle, while making no modifications on the estimation of the width,

length, or height. This is illustrated in Fig. 13. As shown, the slice sampling,

in the x-dimension finds that the posterior values around the previous estimate

are lower. The reason is that the vehicle is moving, in this example, in a straight

trajectory without significantly varying its transversal position inside its lane. The

movement of the vehicle is therefore more significant in the y-dimension. Hence,

the procedure finds a slice around the previous value for which the posterior value

is higher. The algorithm then selects the best evaluated point in the slice, which,

in the figure, correspond to four positive movements of width ∆y. The rest of

dimensions (width, height, and length) get as well no movement since there is no

better posterior values around the current estimates.

To exemplify the movement in the y-direction, Fig. 14 shows some of the eval-

uated hypothesis, which increase the y position of the vehicle. As shown, the slice

sampling allows evaluating several points in the slice, and selecting as new point-

Title Suppressed Due to Excessive Length 23

estimate the one with highest posterior value, which is indeed the hypothesis that

best fit to the vehicle.

8 Tests and discussion

There are two different types of tests that identify the performance of the proposed

system. On the one hand, detection and classification rates, which illustrates how

many miss-detections and false alarms the system suffers. On the other hand,

efficiency tests of the proposed sampling algorithm, which depicts the number of

evaluations of the posterior distribution p(xt|zt) are required to reach the target

detection and classification rates.

8.1 Detection and classification results

Tests have been carried out using six long sequences (1 h in average each one,

over 10,000 vehicles in total), four of them obtained from a low-height camera,

and the two others from two different perspectives with higher cameras. These

sequences have been selected to evaluate the performance of the proposed method

in challenging situations, including illumination variation, heavy traffic situations,

shadows, rain, etc.

Considering the detection rates, we have counted the number of vehicles that

drive through the scene and are undetected by the system (miss-detections or false

negative FN), the number of non-existing detections (false alarms or false positive,

FP), and the ground truth number of vehicles (N). Moreover, we will consider two

vehicle categories: light and heavy vehicles. Although images cannot be used to

obtain weight information, we deduce it using the length of the vehicles, i.e. a

24Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle

vehicle is considered as light if its length is lower than 6m, and heavy otherwise.

This approximation is motivated by the fact that road operators typically require

that vehicles are classified according to their weight. Hence, we will define pairs

of statistics for each type of vehicle, i.e. false positive and negative values and

total number of light vehicles (FPL, FNL, NL), and analogous variables for heavy

vehicles (FPH , FNH , NH).

The results of the tests are shown in Table 1. These results show simultaneously

the detection quality, and the classification errors. ECL is the number of light

vehicles classified as heavy, and ECP is the number of heavy vehicles classified as

light. For a better understanding and comparison of the results, we have computed

the associated recall and precision values of each sequence and type of vehicle.

Hence, we obtain pairs (RL, PL) and (RH , PH) for each sequence. These values

are computed as

Recall =
NL − FNL − FPL − ECL

NL
, (17)

Precision =
NL − FNL − FPL − ECL

NL − FNL + FPL + ECL
(18)

and an analogous expression for heavy vehicles. Recall is related to the number of

miss-detections, while precision is related to the number of false alarms.

Figure 15 shows the obtained results. Besides, an example image of each se-

quence is shown in Fig. 16. As shown, the recall and precision values are all com-

prised between 80 and 99%, corresponding in all cases the worsen values to the

heavy vehicle category. This is due to the wider variety of heavy vehicle sizes,

which also causes more problems to the system due to their projected shadows, or

Title Suppressed Due to Excessive Length 25

the occlusions they generate. For the low-height camera sequences, large vehicles

sometimes occupy a very significant part of the image, making that the camera

adjust its internal illumination parameters, which causes subsequent detection dis-

tortions.

Nevertheless, we have obtained good detection and classification results in all

these challenging situations, being of special interest the ability of the system to

reliably count vehicles with heavy traffic (such as in the third sequence). The

system is also able to work with different type of perspectives, since it computes

the calibration of the camera and thus considers the 3D volume of vehicles instead

of just 2D silhouettes. The last sequence (Color noise) has been selected since it

corresponds to a sequence captured with a low cost camera, which indeed shows

significant color noise in some regions of the image. The segmentation and blob

generation stages absorb this type of distortion and makes that the detection and

classification results are both excellent.

8.2 Sampling results

This subsection shows some experimental results that illustrate the benefits of us-

ing the proposed sampling strategy within the Bayesian framework. First, we show

with a real example that the proposed method can be used to reach high values of

posterior probability with few iterations. Second, we compare the performance of

this sampling strategy with that of well known sampling methods typically used

in the context of particle filtering and Bayesian inference.

26Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle

8.2.1 Real data example

The proposed method performance has been evaluated as well according to the

number of required evaluations of the posterior distribution to reach the above-

mentioned detection and classification rates.

As explained along the article, the proposed sampling strategy allows adapting

the number of evaluations to the movement of the vehicle. Hence, typically it is

only needed to carry out movements in the y-direction, while the movements in

width, height, and length are only necessary in entering and leaving situations.

The system generates a number of samples adapted to the number of vehicles of

the scene at each instant. The greater the number of vehicles the greater dimension

of the state vector and number of posterior evaluations.

Figure 17 shows the behavior of the system regarding the number of evaluations

according to the number of tracked vehicles. We have used accumulated values of

different sequences, divided into three characteristic scenarios: low traffic, normal

traffic and heavy traffic. The histograms of the left column show the distribution

of the number of vehicles for these scenarios, while the right column shows the cor-

responding distribution of number of evaluations. As shown, the number of objects

in the low-traffic scenario does not typically exceed three vehicles simultaneously

in the scene, and includes a large amount of instants in which there are no vehicles

at all. Therefore, we observe that the system performs a proportional number of

evaluations, 50 in average without considering the bin at 0, which correspond to

those instants without vehicles.

In the two other situations: normal traffic and heavy traffic, the number of

vehicles is increased, and there are some instants with 4 and 5 vehicles in the scene,

Title Suppressed Due to Excessive Length 27

which requires a higher computational load to the system. The histograms of the

number of evaluations show that, in these situations, the number of evaluations

ranges between 0 and 100, and between 0 and 200, respectively.

8.2.2 Synthetic data experiments

The following experiments aim to show that the slice sampling-based strategy

generates better estimates of a target posterior distribution compared to the im-

portance re-sampling algorithm [14] and the Metropolis–Hastings algorithm.

The tests are carried out as follows. For the sake of simplicity, a target distri-

bution is defined as a multi-variate normal distribution, N(µ,Σ), of D dimension,

where µ ∈ RD and Σ ∈ RD×D. The three-mentioned algorithms are executed to

generate a number of samples of this target distribution. The error is computed

as the norm of the difference between the average value of the samples and the

mode of the multi-variate normal distribution ϵ = ∥µ− 1
N

∑N
n=1 xn∥, where N is

the number of samples, and xn ∈ RD is the nth sample.

Each algorithm is executed 100 times, and the error is averaged to avoid nu-

merical instability. The test is executed for example instances of the multivariate

distribution, where D = 1, 2, 4, 10 and asking the algorithms to generate 10 to

1,000 samples.

Figure 18 shows the obtained error of each method according to the number

of samples, for 1D, 2D, 4D, and 10D. For low dimensionality (1D, 2D), the impor-

tance sampling algorithm performs well, similarly to the slice sampling. The MH

algorithm performs well although carefully selecting the step size. We can see that

a step size too small makes that the algorithm obtains high rejection rates that

affect to the accuracy of the estimation. When the dimensionality of the problem

28Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle

grows (4D or 10D), which is more adapted to real tracking problems, the impor-

tance sampling algorithm begins to offer very poor results. The reason is that this

method is known to require an exponentially growing number of samples to reach

good estimations [13]. We run these tests for obtaining up to 1,000 samples, which

is clearly insufficient.

In these high-dimensionality examples, we can see that the performance of the

slice sampling-based algorithm is very high, and better than the one of the MH. It

is noteworthy that the step size is very important for the MH algorithm, while the

SS algorithm adapts the step size to the target function and thus do not require

that fine parameter tuning. When the number of samples is low, this drawback

makes the MH to fail to reach the regions of the target distribution with higher

probability, and thus the error is too large. This is illustrated in Fig. 19, where

the MH and the SS methods are compared in a 2D example, using 10 and 100

samples. As shown, the slice-based method reaches the high-probability mass of

the target distribution in a couple of iterations while the MH do not. When the

number of samples is increased to 100, the MH reaches as well that regions of the

space.

Therefore, we can say that, compared to other methods, the SS algorithm

(i) generates better estimations with less number of samples; (ii) provides more

accurate results; and (iii) is less sensitive to parameter tuning. In summary, the

proposed scheme can be used for real applications as the one described in the

text which require accurate results and real-time processing, since it can generates

good estimates using a reduced number of samples.

Title Suppressed Due to Excessive Length 29

8.3 Computation requirements

Finally, attending to the computation time of the whole system implementation, it

runs at around 30 fps using images downsampled to 320×240 pixels for processing

on an Intel Core2 Quad CPU Q8400 at 2.66GHz, with 3GB RAM and a NVIDIA

9600GT. This is an industrial PC that satisfies the installation requirements and

allows us to process the images in real time.

The program has been implemented in C/C++, using OpenCV primitives for

data structure and basic image processing operations, OpenGL for visualization of

results, and OpenMP and CUDA for multi-core and GPU programming, respec-

tively.

9 Conclusions

In this article, we have presented the results of the work done in the design,

implementation, and evaluation of a vision system designed to represent a serious

alternative, cheap, and effective to systems based on other types of sensors in

vehicle counting and classification for free flow and shadow tolling applications.

For this purpose, we have presented a method that exploits different infor-

mation sources and combines them into a powerful probabilistic framework, in-

spired by the MCMC-based particle filters. Our main contribution is the proposal

of a novel sampling system that adapts to the needs of each situation, so that

allows for very robust and precise estimates with a much smaller number of point-

estimates with respect to other sampling methods such as Importance sampling

or the Metropolis–Hastings.

30Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle

An extensive testing and evaluation phase has led us to collect data on system

performance in many situations. We have shown that the system can detect, track,

and classify vehicles with very high levels of accuracy, even in challenging situa-

tions, including heavy traffic conditions, presence of shadows, rain, and variable

illumination conditions.

10 Competing interests

The authors declare that they have no competing interests.

Acknowledgments

This work was partially supported by the Basque Government under the ETOR-

GAI strategic project iToll.

References

1. M Haag, HH Nagel, Incremental recognition of traffic situations from video image sequences.

Image and Vision Computing 18:137–153 (2000).

2. B Coifman, D Beymer, P McLauchlan, A real-time computer vision system for vehicle

tracking and tracking surveillance. Transportation Research Part C: Emerging Technologies

6:271–288 (1998).

3. NK Kanhere, SJ Pundlik, ST Birchfield, Vehicle segmentation and tracking from a low-

angle off-axis camera. In: IEEE Proc. Conf. on Computer Vision and Pattern Recognition

(CVPR), pp. 1152–1157 (2005).

4. L Vibha, M Venkatesha, GR Prasanth, N Suhas, PD Shenoy, KR Venugopal, LM Patnaik,

Moving vehicle identification using background registration technique for traffic surveillance.

In: Proc. of the Int. MultiConference of Engineers and Computer Scientists (2008).

Title Suppressed Due to Excessive Length 31

5. C Maduro, K Batista, P Peixoto, J Batista, Estimation of vehicle velocity and traffic in-

tensity using rectified images. In: IEEE International Conference on Image Processing, pp.

777–780 (2008).

6. N Buch, J Orwell, SA Velastin, Urban road user detection and classification using 3D wire

frame models. IET Computer Vision Journal 4(2):105–116 (2010).

7. C Pang, W Lam, N Yung, A method for vehicle count in the presence of multiple occlusions

in traffic images. IEEE Transactions on Intelligent Transportation Systems 8(3):441–459

(2007).

8. F Bardet, T Chateau, MCMC particle filter for real-time visual tracking. In: IEEE Inter-

national Conference on Intelligent Transportation Systems, pp. 539–544 (2008).

9. B Johansson, J Wiklund, P Forssén, G Granlund, Combining shadow detection and sim-

ulation for estimation of vehicle size and position. Pattern Recognition Letters 30:751–759

(2009).

10. X Zou, D Li, J Liu, Real-time vehicles tracking based on Kalman filter in an ITS. In:

International Symposium on Photoelectronic Detection and Imaging, vol SPIE 6623, pp.

662306 (2008).

11. PLM Bouttefroy, A Bouzerdoum, SL Phung, A Beghdadi, Vehicle tracking by non-drifting

Mean-Shift using projective Kalman filter. In: IEEE Proc. Intelligent Transportation Sys-

tems, pp. 61–66 (2008).

12. X Song, R Nevatia, Detection and tracking of moving vehicles in crowded scenes. In: IEEE

Workshop on Motion and Video Computing, pp. 4–8 (2007).

13. Z Khan, T Balch, F Dellaert, MCMC-based particle filtering for tracking a variable

number of interacting targets. IEEE Trans. on Pattern Analysis and Machine Intelligence

27(11):1805–1819 (2005).

14. MS Arulampalam, S Maskell, N Gordon, T Clapp, A tutorial on particle filters for online

Nonlinear/Non-Gaussian Bayesian tracking. IEEE Trans. on Signal Processing 50(2):174–188

(2002).

15. CM Bishop, Pattern Recognition and Machine Learning (Information Science and Statis-

tics), Springer (2006).

16. K Kim, TH Chalidabhongse, D Harwood, L Davis, Real-time foreground-background seg-

mentation using codebook model. Real-time Imaging 11(3):167–256.

32Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle

17. RI Hartley, A Zisserman, Multiple view geometry in computer vision. Cambridge Univer-

sity Press (2004).

18. S Suzuki, K Abe, Topological structural analysis of digital binary images by border fol-

lowing. Computer Vision, Graphics and Image Processing 30(1):32–46.

19. PS Maybeck, Stochastic models, estimation, and control, Mathematics in Science and

Engineering vol 141. Academic Press, New York, San Francisco, London (1979).

20. R Neal, Slice sampling. Annals of Statistics 31:705–767.

Title Suppressed Due to Excessive Length 33

Table 1 Detection and classification results

Sequence ECL ECP FNL FPL FNP FPP NL NP RL PL RP PP

Dusk 0 5 24 9 1 0 1662 118 0.9801 0.9861 0.9492 0.9573

Rain and shadow 33 26 73 88 7 11 4516 627 0.9570 0.9484 0.9298 0.8780

Traffic jam 10 28 63 7 16 4 4796 563 0.9833 0.9891 0.9147 0.9180

Dusk and rain 8 13 19 48 0 1 968 115 0.9225 0.8842 0.8783 0.8145

Perspective 2 10 30 18 2 2 614 101 0.9186 0.9216 0.8614 0.8447

Color noise 0 3 0 1 0 0 561 23 0.9982 0.9912 0.8696 0.8696

34Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle

Fig. 1 Block diagram of the vision-part of the system.

Fig. 2 Two different viewpoints generate different perspective distortion: (a) syn-

thetic example of a vehicle and the road observed with a camera installed in a pole; and (b)

installed in a gate.

Fig. 3 Vehicle tracking with a rectangular vehicle model. Dark boxes correspond to

blob candidates, light to previous vehicle box and white to the current vehicle box.

Fig. 4 Tracking example: The upper row shows the rendering of the obtained 3D model of

each vehicle. As shown, the appearance and disappearance of vehicles is handled by means of

an entering and exiting region, which limits the road stretch that is visualized in the rectified

domain (bottom row).

Fig. 5 Association of measurements zt,m with existing objects xt−1,n, and the

corresponding data association matrix D (measurements correspond to the row

of D and objects to the columns).

Fig. 6 Different simple configurations of the data association matrix and their

corresponding synthetic vehicles projections (in blue), and measurements (in red).

Fig. 7 Example likelihood for three different scenes (grouped as pairs of rows).

For each one, two x hypotheses are proposed and the associated likelihood computed. In red,

the observed 2D box, and in blue, the projected 3D boxes of the vehicles contained in x.

Fig. 8 Likelihood example: (a) a single observation (2D bounding box); (b) a single vehicle

hypothesis, where the 3D vehicle is projected into the rectified view (in solid lines), and its

associated 2D bounding box is shown in dashed lines; (c) the relative distance between the 2D

boxes (dm,x, dm,y), and the intersection area am,n.

Fig. 9 Example set of 3D box models, X , comprising small vehicles like cars or

motorbikes, and long vehicles like buses and trucks.

Fig. 10 This illustration depicts a single movement from a start point x(i) to a

new position x(i+1) in a single dimension by creating a slice.

Title Suppressed Due to Excessive Length 35

Fig. 11 Example execution of the proposed optimization procedure on a 2D syn-

thetic example, showing three iterations.

Fig. 12 Example optimization procedure between two frames.

Fig. 13 Movement at each dimension for example case shown in Fig. 12. As shown,

only the slice in the y dimension shows movements that increase the value of p(xt|zt). For

simplicity, the step size is the same for all dimensions (since all of them represent the same

magnitude: meters).

36Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle

Fig. 14 Linear movement in y, and their associated p(xt|zt) values.

Fig. 15 Recall and precision graphs for the different sequences defined in Table 1.

The values of the graph for each sequence correspond to the recall–precision pairs of light (left)

and heavy (right) vehicles.

Fig. 16 Example results for each one of the sequences used for testing. From left

to right, the sequences correspond to those indexed in Table 1.

Fig. 17 Distribution of number of objects (left) and number of evaluations of the

posterior (right) for three different traffic scenarios.

Fig. 18 Comparison of the performance of the slice-based sampling method, the

importance sampling and the Metropolis–Hastings algorithms. IRS, importance re-

sampling; MH (σ), Metropolis–Hastings with Gaussian proposal distribution with standard

deviation σ; SS, slice sampling-based approach.

Fig. 19 Comparison of the performance of Metropolis–Hastings and the proposed

slice-based method when using 10 and 100 samples in a 2D target function.

