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1 Introduction

As semantic technologies mature, an increasing number
of private and public sector organizations are developing
ontologies to capture their knowledge about a domain of
interest in a machine-understandable way. These ontologies
are expected to act as communication interfaces between
humans and machines. They are commonly agreed, shared
conceptualizations through which humans express the
intended meaning of the types of things they talk about in
a specific domain; at the same time they form the basis for
the resolution of interoperability issues between IT systems.
Consequently, it is understandable that the question of how
to ensure the reusability of ontologies beyond the context in
which they have been initially developed has often been put in
relation to the impact semantic technologies might potentially
have in various business sectors. This question can be
addressed from multiple viewpoints, ranging from knowledge
representation languages over ontology reuse technology
to community and organizational processes (Simperl 2009,
Simperl & Bürger 2010, Pinto & Martins 2000).

While finding a solution to the problematic trade-off
between application setting-motivated usability and global
reusability is often considered an art more than a science,
the latter can be significantly improved by resorting to
several design principles, which have proved their relevance
across several fields in computer science confronted with
similar challenges: modularity and decomposition along
abstraction and functionality levels, standards compliance,
careful documentation of the development process, as well
as up-to-date, meaningfully organized artifact repositories.
Recent research achievements in the Semantic Web area
offer a feasible basis for many of these principles to be
put into practice. The usage of knowledge representation
standards in conjunction with the ubiquitous, URI-based
access of Semantic Web resources are a fair starting point
to facilitate the cross-application usage of ontologies (Bojars
et al. 2008, Gracia et al. 2010, Heath & Bizer 2011).
Semantic Web search engines and ontology repositories
play an equally important role in this context, as they
provide potential ontology users with the query, search and
browse support they need to identify ontologies potentially
relevant to their own needs (Fikes & Farquhar 1999,
Ding & Fensel 2001, Hartmann et al. 2009, Baclawski &
Schneider 2009, Noy et al. 2008). The work presented in
this paper provides the theoretical and technical foundations
to allow ontology engineering environments, including the
two types of systems just mentioned, to solve one of
their currently most stringent limitation: the lack of useful
metadata describing ontologies; this metadata is an important
ingredient for the implementation of useful retrieval and
navigation functionality.

Most ontologies, independently of their provenance and
location, are poorly documented, while additional descriptive
information is spread across the Web in various forms,
thus not being optimally accessible to potential users and
ontology reuse services. Available services in this area
offer a basic set of search, browse and navigation features
to the ontological resources administrated. However, their

functionality is negatively influenced by the absence of reuse-
relevant information about ontologies in a machine-readable,
structured form. A first step towards the alleviation of this
situation is the development of an explicit schema for the
systematic and comprehensive description of ontologies so
as to enable more effective access, management and usage
of them across the Web. To provide an informed background
for such a schema, we survey the most recent ontology
engineering technology, including ontology repositories,
Semantic Web search engines, and ontology documentation
tools, and the types of information they provide to describe
ontologies. We then introduce an ontology metadata schema,
which is not only aligned with the related formats implicitly
or explicitly used by state-of-the-art technology and tools, but
also combines and extends the best elements of these formats
in order to maximize the expressivity and usefulness of the
unifying result. As part of the OMV (Ontology Metadata
Vocabulary) standard, this metadata schema was evaluated
through professional reviews, and is supported by ontology
location services such as Oyster1 and Watson.2 A second
step towards more informatively documented ontologies is
the development and usage of automatic techniques to acquire
such documentation in order to scale to the number of
ontologies constantly being built in various sectors. For
this purpose we have developed the OMEGA (Ontology
MEtadata GenerAtion) algorithm, which is available as Web
application and REST Web service. The algorithm follows
a heuristic approach to automatically generate a wide range
of metadata information about arbitrary ontologies available
on the Web or indexed by Semantic Web search engines.
It was evaluated in terms of coverage, precision, recall, and
overall user-perceived quality in several studies with very
promising results. The evaluation revealed that automatic
ontology metadata generation is feasible to a much larger
extent than it is done in state-of-the-art Semantic Web search
engines if the wealth of knowledge resources freely available
on the Web is taken into account in the process, making
OMEGA a core building block for the realization of fully-
fledged ontology location services.

In a nutshell, the contribution of this work is twofold.
First, we provide a comprehensive overview of the types
of information used in state-of-the-art ontology engineering
environments to describe ontologies, identifying potential
limitations at the level of ontology metadata in current
ontology repositories, Semantic Web search engines, and
ontology documentation tools. Second, we investigate how
ontology metadata could be generated algorithmically in
order to prevent the metadata acquisition bottleneck with
which ontology location tools are typically confronted.

The remainder of this article is organized as follows:
First we review current state-of-the-art ontology engineering
technology with respect to ontology metadata they support
and the means to acquire it (Sections 2 to 4). In particular,
we introduce OMV (Ontology Metadata Vocabulary), which
is used by our approach for automatic metadata acquisition.
In Sections 5 and 6 we present the OMEGA algorithm and
its implementation. Its evaluation and main findings are the
presented in Section 7. We conclude with a short discussion
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of the limitations of the current approach, and sketch the
planned future work in Section 8.

2 Metadata schemas used to document ontologies

As a first step of the ontology reuse process the
ontology engineering team typically resorts to conventional
or Semantic Web-oriented search engines, and browses
repositories of ontological resources in order to build a list of
potential reuse candidates. The participants specify a minimal
set of desired features in terms of machine-understandable
queries, and review the results delivered by ontology location
services. Important for the execution of this step are core
ontology features such as the domain of the ontology, its
availability and licensing conditions, its development status
and the release date (Paslaru-Bontas et al. 2005, Simperl
2009).

In a second step the reuse candidates are subject to an in-
depth evaluation. A detailed documentation of the ontologies
and the associated engineering process provides real added
value for the effective operation of this primarily human-
driven, knowledge-intensive endeavor. Various aspects of an
ontology can be taken into account, also depending on the
evaluation methodology that is applied. Obviously relevant is
the content of the ontology, in terms of the domain modeled,
the key concepts, and the number of ontological primitives
of a specific type (Gómez-Pérez 2001). Equally important
is the language in which the ontology is formalized and its
semantics (Paslaru-Bontas et al. 2005, Simperl & Mochol
2007, Lozano-Tello & Gómez-Pérez 2004). Last, but not least
it is recommended to consider the application scenario and
the original purpose of the ontology, as using an ontology
in a different context typically requires some degree of
customization.

The selected ontologies are then adjusted to the
current application scenario. This includes aspects as
diverse as segmentation, translation to different knowledge
representation languages, alignment, merging, or integration.
As suggested for instance in (Mochol 2009), this last step
could capitalize on ontology metadata to make an informed
decision about the ontology alignment tools that are likely
to deliver optimal results. Graph-oriented metrics such as the
total size of the ontology, the number of classes, properties,
axioms and instances are correlated with the performance and
scalability of the alignment task. Further on, some tools are
explicitly targeted at a specific set of ontological primitives,
at a particular input format, or at natural language.

To summarize, the quality of the documentation about
an ontology influences its reusability in several ways. On
the one hand, it supports ontology engineers in their attempt
to understand what a particular ontology is about, and
whether the knowledge it captures is relevant wrt. their
requirements. On the other hand, the availability of structured
documentation forms the basis for the implementation of rich
ontology location tools, including ontology search engines
and ontology repositories. In the following sections we
will survey various metadata schemas, vocabularies and

ontologies, as well as the degree of documentation offered by
different ontology environements and tools.

2.1 General-purpose metadata schemas

Metadata is often defined as data about data. A metadata
record generally consists of a set of attributes or elements
describing a resource. Metadata can be created manually
or automatically. It can be integrated into the actual
resource or stored separately in a metadata database. Several
metadata schemas and vocabularies, specifying the set of
elements allowed, as well as their value ranges and intended
meaning, have been proposed. A good overview of metadata
standards for describing electronic content is provided in
(National Information Standards Organization 2004). From
the impressive number of existing metadata formats we
mention some of the most important standards capturing
information about textual documents, including those ones
relevant for the Semantic Web.

The Dublin Core DC metadata standard is a simple,
yet effective element set which can be used for a wide
range of networked resources.3 It differentiates among two
levels of detail: simple (with fifteen elements) and qualified,
including an additional element, as well as a group of element
refinements (or qualifiers) that adjust the semantics of the
elements for resource discovery purposes. The metadata that
can be declared with DC refers mainly to the creation and
publication of a resource. Thus, the elements included in the
DC Metadata Element Set provide a mechanism to indicate
the entity or entities that created, contributed to or published
the resource, the date and the location of the resource,
some features for describing its content (e.g., title, subject,
description, format, language, type and related resources),
and the way in which the resource can be further used (e.g.,
identifier, rights and coverage). Table 1 shows the set of
fifteen elements of DC. These elements can be applied using
different formats, due to the different serializations of the
standard that have been implemented, which include XML,
RDFS and OWL. When the RDFS and OWL versions are
employed, the resources can be described by means of RDF
descriptions. In such cases, the DC elements are exploited as
rdf:Properties and owl:DatatypeProperties
respectively, whilst the values of these properties can be
strings.

At a different end, the Creative Commons schema CC
captures information about copyright licenses.4 Defined in
RDF, the CC schema establishes six different levels of
protection depending on whether the author wants to avoid
commercial use, the jurisdiction of the license and whether
modifications are permitted or forbidden. There are six CC
licenses that regulate the usage of resources. The Attribution
license allows other people to copy, distribute, display and
derive works from the original one, on condition that the
author is recognized as she requested. The Attribution-
NoDerivs license restricts the previous license stating that
works can not be derived from the original one. The
Attribution-NonCommercialNoDerivs license adds a new
restriction stating that the resource can only be used for
non-commercial purposes. The Attribution-NonCommercial
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Table 1 Relevant metadata included in DC

Name Description Type
contributor contributor of the document string
coverage spatial or temporal topic string
creator creator of the document string
date temporal information about string

the document
description description of the document string
format physical information of string

the document
identifier unambiguous reference string
language language used string
publisher publisher of the document string
relation related resource string
rights rights attached to the document string
source origin of the document string
subject topic of the document string
title name of the document string
type category of the document string

license refers to the possibility of using the resource for non-
commercial purposes only, without imposing any restrictions
about derivative works. The Attribution-Non Commercial-
ShareAlike license has the same meaning as the previous one,
but includes a new restriction about the fact that the resource
can be distributed only under the same license. Finally, the
Attribution-ShareAlike license specifies that the work can be
used if the author is correctly recognized and the distribution
has to be performed under the same license.

Table 2 shows the properties defined in CC to waive
these restrictions on online resources such as ontologies.
The particular license attached to the resource can be
identified using the license property, while its legal
code can be pointed out by means of the legalCode
property. Moreover, metadata about specific requirements,
permissions and prohibitions related to the resource can
also be indicated. The author and the real location of the
resource is usually stated through the attributionName
and attributionURL properties.

Table 2 Relevant metadata included in CC

Name Description Type
license license attached to work license
morePermissions URL of other related string

permissions
attributionName name of the creator string
attributionURL URL of the work string
permits permission over permission

a license
requires requirement attached requirement

to license
prohibits prohibition established prohibition

by license
jurisdiction legal jurisdiction jurisdiction

of license
legalcode URL of legal text license
deprecatedOn date of deprecation license

2.2 Ontology-specific metadata schemas

Arguably, these standards, which have emerged outside of
the ontology engineering community, are only to a certain
extent suited to describe ontologies, as they do not take into
account the very nature of ontologies as knowledge models
(Hartmann et al. 2006, KnowledgeWeb European Project
2004). One of the first metadata schema developed with this
motivation in mind was the Reference Ontology (Arpirea et
al. 2000). It is a domain ontology that gathers, describes
and has links to existing ontologies, using a common logical
organization. A second one, which is based on the analysis
in (KnowledgeWeb European Project 2004), is the Ontology
Metadata Vocabulary (OMV), which is used as underlying
metadata schema of the OMEGA algorithm.

The Ontology Metadata Vocabulary OMV (Hartmann et
al. 2006, 2005) was developed and used over the last five
years in a series of European research projects such as the
EU IST thematic network of excellence Knowledge Web
and the EU ICT integrated project NeOn.5 It reflects the
shared understanding and empirical findings of the ontology
engineering community with respect to the metadata elements
which should be essentially supported by ontology reuse
technology.

Implemented as an OWL ontology, the latest version of
the OMV vocabulary (2.4.1) contains a total of 16 classes,
62 properties and 50 individuals. Following a modular
design, its developers distinguish between the OMV core
ontology where common ontology metadata is included
(OMV Core), and extensions accommodating specific aspects
of the ontology engineering process or of a domain of
interest (OMV Extensions) (Hartmann et al. 2006). OMV
Core models metadata about the technological means used to
develop the ontology, the context in which it was created, as
well as its implementation code. For instance, OMV allows
ontology engineers to provide information about the name
of the ontology language, the acronym of the syntax (e.g.,
RDF/XML) and the ontology engineering methodology used
(e.g., DILIGENT). Moreover, OMV can also show the name
of the person or the organization that developed, supported or
contributed to the development of the ontology. The license
model attached to the ontology, as well as the official name,
the locator and the creation and modification date can also
be expressed using OMV. Table 3 and Figure 1 provide an
overview of the most relevant ontology metadata included in
OMV.

OMV Core is supported by several ontology reuse tools,
such as Oyster, Cupboard, Watson and the Open Ontology
Repository (OOR) Initiative,6 whose main goal is to promote
the global use and sharing of ontologies. Others, such as
BioPortal, are considering to adopt the model as well. These
examples show that OMV is considered as a de facto standard
in the ontology engineering community; with more and more
ontology repositories and search engines implementing OMV
these tools can share and exchange ontology documentation,
thus facilitating the reuse of ontologies independently of a
particular system or platform. However, to capitalize on this
advantageous state of the affairs, one still has to face the
challenge of metadata acquisition.
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Figure 1 Excerpt of the OMV schema
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Table 3 Relevant metadata included in OMV

Name Description Type
URI URI of the ontology xsd:string
version version of the ontology xsd:string
resourceLocator URL where the ontology is available xsd:string
name name of the ontology xsd:string
acronym short name under which the ontology is known xsd:string
description a free text description about the ontology xsd:string
creationDate date when the ontology was created xsd:date
modificationDate date when the ontology was last modified xsd:date
naturalLanguage language used for labeling and commenting the ontology (e.g., English, xsd:string

German)
hasCreator person or organization who created the ontology Party
usedOntologyEngineeringTool tool used for ontology development (e.g., NeOn toolkit, Protégé) OntologyEngineeringTool
usedOntology EngineeringMethodology methodology followed to develop the ontology (e.g., NeOn methodology, OntologyEngineeringMethodology

DILIGENT)
conformsToKnowledge RepresentationParadigm KR paradigm used in the ontology (e.g., DL, F-Logic) KnowledgeRepresentationParadigm
endorsedBy organizations or individuals who support the ontology Party
hasDomain domain represented by the ontology (e.g., Tourism, E-Commerce) OntologyDomain
isOfType nature of the ontology according to established classifications (e.g., domain OntologyType

ontology, upper level ontology)
designedForOntologyTask purpose for which the ontology was built (e.g., data annotation, data OntologyTask

integration, semantic search)
hasFormalityLevel level of formality of the ontology FormalityLevel
knownUsage application where the ontology is being used xsd:string
hasOntologyLanguage ontology language used (e.g., RDFS, OWL-Lite, OWL-DL) xsd:string
hasOntologySyntax syntax used in the ontology (e.g., OWL-XML, RDF/XML) xsd:string
hasLicense license attached to the ontology (e.g., GPL, CCL) LicenseModel
hasContributor someone who contributed to the development of the ontology Party
useImports imported ontologies Ontology
hasPriorVersion other versions of the ontology Ontology
isBackwardCompatibleWith another ontology with which the ontology is backward compatible Ontology
isIncompatibleWith another ontology with which the ontology is not backward compatible Ontology

2.3 Web 2.0 and Web of Data metadata schemas

The Simple Knowledge Organisation System SKOS proposes
a vocabulary for describing knowledge organization systems,
including ontologies but also taxonomies and thesauri,
through RDF on the Semantic Web.7 The basic element of the
SKOS vocabulary, which has been developed in OWL Full,
is the skos:Concept. Relations between concepts can be
asserted to express broader, narrower or related links between
them. Moreover, concepts can be labeled in three different
ways (i.e.,, with the prefLabel property, the altLabel
property or the hiddenLabel property). Concepts can
be further described using the properties that the SKOS
data model contains for notes (i.e.,, note, scopeNote,
historyNote, changeNote, editorialNote), as
well as with definitions and examples.

The Statistical Core Vocabulary SCOVO (Hausenblas et
al. 2009) is a vocabulary to express statistical information on
the Web of Data. It is based on SKOS and data is defined
by means of datasets, dimensions and items. Given a data
source about, let’s say, book sales, SCOVO allows users to
state things such as the number of books that have been sold
in a particular country or in a given time period.

SCOVO, which has been developed in RDFS, is
comprised of three classes and five properties. These
elements enable developers to declare statistical datasets that
describe available data sources. In SCOVO, the properties
to be analyzed are declared as svoco:Dimensions
and the dataset to be generated is instantiated as a
scovo: Dataset. This scovo:Dataset is populated
with scovo:Item’s, which come from the result of

executing SPARQL queries against the existing data source
that is being analyzed. SCOVO properties refer to the
relation between a scovo:Item and a scovo:Dataset
(dataset and dataset Of), and to the relation
between an scovo:Item and a scovo:Dimension
(scovo:dimension). Dimensions may have minimum
and maximum values (scovo:min and scovo:max,
respectively).

Complementarily, the Vocabulary of Interlinked Datasets
voiD (Alexander et al. 2009), focuses on the description
of linked datasets so as to provide relevant information for
the discovery and usage of such datasets. Not only can
voiD specify features about a particular dataset, but it can
also relate the dataset to other linked datasets. Specified in
RDFS, voiD establishes a set of three classes and thirteen
properties. A data set can be documented by means of voiD
if it is declared as a void:Dataset. Once instantiated as
a dataset, its technical features can be pointed out, a subset
of the dataset can be identified, and data about its sparql
endpoint, the vocabulary that is being used within the dataset,
example resources, a data dump, its URI look-up protocol,
and a regular expression pattern of URIs. Moreover, the
links between the dataset and other datasets can be defined
by means of void:Linkset’s and the properties attached
to them (target, linkPredicate, subjectsTarget
and objectsTarget). Table 4 summarizes the metadata
elements included in voiD.

2.4 Alignment of existing approaches

Even though the aforementioned schemas were designed for
different purposes, they have some properties in common.
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Table 4 Relevant metadata included in voiD

Name Description Type
statItem item asserting statistical data scovo:Item
feature technical features supported TechnicalFeature
subset subset of given dataset Subset
target target dataset of link set Dataset
sparqlEndpoint SPARQL endpoint of dataset rdfs:Resource
linkPredicate RDF predicate of particular rdfs:Property

link set
exampleResource representative resource rdfs:Resource
vocabulary RDFS/OWL ontology used rdfs:Resource
subjectsTarget source target of link set Dataset
objectsTarget sink target of link set Dataset
dataDump data dump rdfs:Resource
uriLookupEndpoint URI look-up protocol rdfs:Resource
uriRegexPattern regular expression pattern XML Schema

of URIs regular expression

Thus, several alignments could be defined between these
models. It is worth emphasizing that the features shared
by the vocabularies mainly refer to the process of creation
and publication. More specifically, the information that these
schemas have in common is related to the identification of
the ontology, its version and location, the dates of creation
and modification, the parties involved in its development and
publication, and a brief description and the license attached to
it. Table 5 illustrates the identified mappings between OMV
and other schemas.

Table 5 Alignment between metadata standards

OMV element Mapped elements
URI dc:identifier
version owl:versionInfo, schemaweb:namespace
resourceLocator cc:attributionURL, schemaweb:location

schemaweb:location
name dc:title, rdfs:label, schemaweb:name

schemaweb:name
description dc:description, rdfs:comment,

schemaweb:description, rdfs:comment,
skos:note

creationDate dc:date
modificationDate dc:date
naturalLanguage dc:language
hasContributor dc:contributor
hasCreator dc:creator, cc:attributionName
hasDomain dc:subject, no:topic
isOfType no:category
hasLicense dc:rights, cc:license
hasPriorVersion owl:priorVersion
isBackwardCompatibleWith owl:backwardsCompatibleWith
isIncompatibleWith owl:incompatibleWith

3 Ontology metadata in ontology development
environments

Several ontology development environments have become
available over the last decade, both public, such as Protégé,
Apollo, WSMT, NeOn Toolkit, Swoop or IODT 8 and

commercial, such as OntoStudio, TopBraid Composer or
SemanticWorks.9

A survey we conducted revealed that almost all of them
fail to provide rich ontology documentation functionality.10

Some of them only permit free-text annotation of
classes and slots. In the case of Apollo (v01a18), this
annotation is declared as proprietary XML elements termed
documentation. Similarly, SemanticWorks (2009) makes
use of the RDFS constructs related to labels and comments to
perform class, property and ontology annotation. SWOOP’s
documentation (v2.3-beta4) also includes information
about the version of the ontology. Ontology development
environments such as OntoStudio (v2.31) and NeOn Toolkit
(v1.2.3) offer the possibility to define ontology annotations
by means of the owl:AnnotationProperty construct.
Through this option ontology developers can define arbitrary
annotation properties, thus being able to freely choose the
set of metadata that can be used to describe the ontology.
Nevertheless, the usage of a particular OWL variant
introduces some constraints. Thus, although OWL Full does
not give any constraint on annotations, OWL DL establishes
among other conditions, that annotations can be applied to
classes, properties, individuals and the ontology element,
as an instance of the owl:AnnotationProperty.
Besides, both RDFS and OWL predefine several annotation
properties that can be used by developers to describe data
about the version of an ontology, its compatibility with
other versions, general comments and related resources that
contain additional information. Furthermore, the ontology
metadata that can be declared in TopBraid Composer v3.1.0
is based on both the constructs that RDFS and OWL have for
this purpose and the extension that can be accomplished with
OWL annotation properties.

Finally, Protégé 4.0 allows the user to introduce ontology
metadata using built-in annotations, Dublin Core based
annotations and user defined annotations. Built-in annotations
involve information related to OWL constructs, including
compatibility, versions, deprecation, general comments and
related resources. Whereas DC annotations include the
Simple Dublin Core Metadata Element Set made up of
fifteen elements. User defined annotations can be built
using custom annotation URIs. Protégé was one of the
first editors to consider ontology metadata, and although
software has evolved in the past years, it is even now the
most complete and easiest to use ontology editor, at least
with regard to ontology metadata. What these tools have in
common is that they support a semi-automatic approach to
ontology metadata creation by presenting the user with a
form that guides the manual input of information about the
ontology currently being processed. All the information that
is being captured through the forms is automatically being
converted to ontological constructs, which are then stored
in the original ontology as annotation properties, attached
to the owl:Ontology construct. Nevertheless the number
of supported metadata elements is still limited in all of the
previously mentioned editors, whilst there is no guarantee
that the user will provide the metadata information associated
to the ontology she develops.
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There is some data that both Protégé and NeOn Toolkit
extract automatically from the ontology code, such as the
number of classes, the number of properties, or the number
of individuals. However, although this information is shown
to the user during ontology development process (in the
editor or by means of its OwlDoc plugin), it is not declared
as ontology metadata. Table 6 provides an overview of the
ontology metadata defined in the ontology tools mentioned
above.

4 Ontology metadata in ontology repositories and
Semantic Web search engines

Ontology repositories store and manage ontologies for future
reuse. Whilst the number of ontologies hosted by such
repositories has reached a critical mass in the last years
– probably as a consequence of the increasing popularity
of semantic technologies – the same positive trend can not
be observed for ontology reuse, which is limited to a very
restricted set of ontologies which are either straightforward to
use (like FOAF) or very general in their content (like upper-
level ontologies of the type DOLCE, SUMO and PROTON).
Obviously, some might interpret this state of affairs as
an indicator of the lack of high-quality ontologies in the
space spanned by these two extreme examples. Nevertheless,
without a useful documentation the existing ontological
resources, already in their tens of thousands according to
Watson, hardly stand the chance to be discovered and reliably
assessed by potential users.

Descriptive information about ontologies can be entered
by ontology developers manually at submission time in most
of the repositories we surveyed. This information is, however,
frequently missing. This in turn diminishes the quality of the
retrieval algorithms and, in the longer run, on the reusability
of the administrated ontologies. As a side note, a machine-
understandable representation of the ontology metadata is
often not available, which not only has consequences on the
retrieval, but also on the ability to share this metadata across
repositories and other ontology engineering tools.

In their first generation, ontology repositories or
directories were plain Web sites managing a collection of
links to (hundreds of) ontologies hosted on external servers.
The DAML ontology library (no longer updated), Vocab.org
(no longer updated), Protege OWL Library and SchemaWeb
are some often cited examples of such repositories.11 These
systems offer very basic metadata, which is stored separately
from the original ontologies; only SchemaWeb serializes
ontology annotations in both human and machine-readable
formats (based on an ontology for the latter). Metadata
elements supported are the name of the ontology, its location,
its namespace, a short textual description of its content,
as well as details about submission and authorship. In
addition, the DAML ontology library shows the number of
classes, properties and instances, as well as their local names.
Regarding submission, only SchemaWeb provides a means to
upload ontologies and the associated metadata.

With semantic technologies gaining momentum, ontology
repositories have significantly improved. Now at their second

generation, they incorporate new features, and enhanced
browsing and searching functionality. OntoSelect (Buitelaar
et al. 2004) is an ontology library where users can search and
browse ontologies submitted by authors. For each registered
ontology the system provides further information about
format, domain, language, number of classes, properties,
labels, imported ontologies and location. Some ontology
repositories are optimized to the characteristics of specific
contexts; for instance, TONES is the ontology repository of
the project with the same name, while BioPortal covers life
sciences ontologies and ONKI Finnish ontologies.12 TONES
allows the user to filter the result set using automatically
extracted metrics related to the syntax of the ontology,
its classes, properties and individuals. BioPortal offers
a collaborative, sophisticated environment for uploading,
browsing and searching ontologies. It contains metadata –
accessible through REST services – about format, name,
location, version and contact data, together with links to
related publications, projects and reviews. The technology
underlying BioPortal has been developed as a domain-
independent framework for ontology repositories that can
be applied in arbitrary contexts, similar to Oyster (Palma
et al. 2006), Cupboard (d’Aquin & Lewen 2009) and
OLS2OWL (Garca-Castro et al. 2009). Oyster establishes a
P2P framework where users can manage, search and share
ontology metadata. The information that is made available
through Oyster is compatible to OMV, and includes the
name of the ontology, its location, type, language, status,
syntax, license, authorship and related keywords. Cupboard,
which builds upon Watson and Oyster, offers an online space
where registered users can publish their own ontologies and
related information. Conversely, ontology practitioners can
search, evaluate and comment other ontologies. The ontology
metadata provided by Cupboard includes a link, details about
the development of the ontology, its syntax, type, number
of classes, number of properties, number of individuals and
number of axioms. The Protégé 4.0 OLS2OWL plug-in was
conceived as a support tool for the knowledge acquisition
phase of an ontology engineering process – it provides
ontology developers access to online and local ontologies
through a search interface, compares ontologies, and builds
a customized ontology repository within the Protégé editor.
Searches can be performed using concept labels as a starting
point, whereas the results include available metadata and
ontology statistics such as the number of classes, properties
and instances.

Complementary to ontology repositories we can find
several ontology search engines on the Web, among them
Swoogle (Ding et al. 2004), Watson (d’Aquin et al. 2007),
OntoSearch (Zhang et al. 2004), or Sindice (Tummarello
et al. 2007). Ontology search engines are fundamental to
ontology reuse, as they discover ontologies available on the
Web (or within an intranet) and provide a controlled interface
for potential users to access them. In this context, ontology
metadata information is required for ontology users to be able
to take an informed decision upon the appropriateness of an
ontology delivered by the search engine. Acknowledging this,
Semantic Web search engines such as Swoogle and Watson
provide a small number of ontology metadata elements,
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Table 6 Relevant ontology metadata in ontology development environments
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name or title string x x x x x x x
identifier rdf:Resource x x x x x
namespaces string x x x x x
label rdfs:Literal x x x x
comment rdfs:Literal x x x x x
seeAlso rdfs:Resource x x x x
isDefinedBy rdfs:Resource x x x x
versionInfo string x x x x x
priorVersion owl:Ontology x x x x
backwardsCompatibleWith owl:Ontology x x x x
incompatible With owl:Ontology x x x x
deprecated xsd:boolean x x x x
imports rdfs:Resource x x x x x
contributor string x x x x
coverage string x x x x
creator string x x x x
date string x x x x
description string x x x x
format string x x x x
identifier string x x x x
language string x x x x x
publisher string x x x x
relation string x x x x
rights string x x x x
source string x x x x
subject string x x x x
type string x x x x



206 Simperl, E. et al.

which can be extracted automatically. OntoSearch provides
even fewer details about the ontologies in the search results:
the URI of the ontology, its format and the size of the
file containing the ontology. Both Swoogle and Watson are
able to display the URI of the ontology, its format, the
size of the file, some comments or descriptions, number of
classes, properties, and individuals. Apart from this, Swoogle
can extract data about encoding, ontology ratio, number of
statements, as well as some details related to the ontology
discovery process. Watson on the contrary, is designed to
show user reviews, locations and imports. Both manage their
ontology annotations in HTML and RDF, according to a built-
in schema and Dublin Core (for Swoogle), and OMV (for
Watson). Sindice, is a powerful search engine for the Web
of Data. In terms of metadata, it supports elements such as
format, number of triples, size of the ontology file and release
date.

To conclude 7 gives an overview of the ontology metadata
defined in the ontology repositories and search engines
mentioned above.

5 OMEGA: A Tool for the Automatic Metadata
Acquisition

In order to overcome the ontology metadata acquisition
bottleneck, we conceived the OMEGA algorithm.

The OMEGA approach consists of three steps: i)
Metadata Harvesting, ii) Metadata Extraction, and iii)
Metadata Reuse. In essence, the algorithm works as follows:
First, an ontology is submitted to the algorithm as an input.
The algorithm then harvests ontology metadata elements
from the embedded meta tags within the ontology document
itself and file headers by using parsers. In the second
step, several OMV elements are derived with the help of
special heuristics and publicly available reference knowledge
sources: the Web searched using the Google engine through
the Google APIs,13 the Open Directory Project (aka the
DMOZ directory),14 or Wikipedia Categorical Index.15

Extracting metadata automatically from the content of the
ontology itself with the help of an inference engine such
as Pellet16 is also a part of this second step. The third step
serves as the last resort for the remaining unknown OMV
entries. Here we make use of existing metadata information
provided by online ontology repositories such as the DAML
Library and SchemaWeb and Semantic Web search engines
such as Swoogle and Watson. As a result, the algorithm is
not only able to provide nearly complete metadata entries for
online ontologies, but also to generate a minimal set of meta-
information for ontologies that are temporarily inaccessible
or not machine-processable.

5.1 Step 1: Metadata Harvesting

In this step the algorithm parses ontology files to
extract attributes or contents from specified tags,
comments and file headers. In an ontology, users can
record metadata as Dublin Core entries or as language-
specific constructs. Examples in this category include:

dc:date, dc:description, daml:versionInfo,
owl:imports, and rdfs:comments. Some ontology
editing tools by default produce metadata at the time
an ontology file is created or updated without human
intervention. In addition, meta-information embedded in the
file header such as last modification date, character encoding
and file size can be extracted automatically.

5.2 Step 2: Metadata Extraction

The metadata extraction step differentiates between
Ontology Mining and Ontology Classification, as
elaborated in the following.

5.2.1 Ontology Mining

At this stage the algorithm mines the content of the
ontology to obtain metadata, particularly the OMV elements:
hasFormalityLevel, numberOfClasses,
numberOfProperties, numberOfIndividuals,
numberOfAxioms, containsTBox,
containsRBox, and containsABox.

The values for the element hasFormalityLevel
are aligned with the ontological continuum proposed in
(McGuinness 2002). This basically divides ontologies (or
ontology-like structures) in informal and formal as follows:

• Informal models are ordered in ascending order
of their formality degree as catalogues, glossaries,
thesauri and informal taxonomies:

– A catalog is an ontology that has only class
definitions without labels or comments.

– A glossary is an ontology that has class
definitions with labels or comments.

– A thesaurus is an ontology that has classes and
class equivalent assertions.

– An informal taxonomy is an ontology comprising
classes and strict, yet informal hierarchical
subclass relationships between classes.

• Formal models are ordered in the same manner:
starting with formal taxonomies, which precisely
define the meaning of the specialization/generalization
relationship, more formal models are derived
by incrementally adding formal instances,
properties/frames, value restrictions, general logical
constraints, disjointness, formal meronimy etc.

To determine the appropriate formality level the algorithm
checks which types of constructs (classes, labels, comments,
relationships of various kinds, value restrictions etc) are
supported by the ontology and returns the most complex
formality level satisfying the tests. In addition, OMEGA
adds Data entries as an additional definition for ontology
documents having no schema elements but containing solely
instance data.

The remaining six metadata elements listed above
can be computed by checking whether the corresponding
type(s) of ontological constructs are available in the
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Table 7 Relevant ontology metadata in ontology repositories and search engines

Name Type Tools
name or title string SchemaWeb, Vocab, Protégé, OntoSelect, TONES, BioPortal, Oyster, Cupboard, OLS2OWL
identifier rdf:Resource SchemaWeb, Watson, Vocab, Oyster, Cupboard, OLS2OWL
location string DAML, SchemaWeb, Swoogle, Watson, Vocab, Protégé, OntoSelect, TONES, BioPortal,

ONKI, Oyster, Cupboard, OLS2OWL, OntoSearch, Sindice
description string DAML, SchemaWeb, Vocab, Protégé, BioPortal, ONKI, Oyster, Cupboard
language string OntoSelect, Oyster
ontology language string DAML, Swoogle, Watson, Vocab, Protégé, OntoSelect, TONES, BioPortal, Oyster, Cupboard
syntax string Swoogle, Vocab, OntoSelect, TONES, BioPortal, Cupboard
DL expressiveness string Watson, TONES, Cupboard
size string Swoogle, Watson, BioPortal
embedded ontologies boolean Swoogle, OntoSelect, Cupboard
included ontologies rdf:Resource Swoogle, Oyster, Cupboard
encoding string Swoogle
submission date date DAML, SchemaWeb
submission or discovery time time Swoogle
creation date date Vocab, BioPortal
last modification date date Swoogle, Oyster
version string Swoogle, Vocab, BioPortal,Oyster
keyword string DAML, Oyster
type string ONKI, Oyster
category string DAML, BioPortal
group string BioPortal
funder string DAML
owner or author string DAML, SchemaWeb, Vocab, BioPortal, ONKI, Oyster
contact email string DAML, SchemaWeb, BioPortal
submitting organization string DAML, Vocab
website string SchemaWeb, BioPortal
review string Cupboard
publications page string BioPortal
projects string BioPortal
license string Vocab, Oyster
number of triples integer Swoogle, TONES, Cupboard
number of classes integer Swoogle, OntoSelect, TONES, BioPortal, Oyster, Cupboard
number of properties integer Swoogle, OntoSelect, TONES, BioPortal, Oyster, Cupboard
number of instances integer Swoogle, TONES, BioPortal, Cupboard
number of axioms integer Swoogle, TONES, Oyster
number of subclasses integer TONES
number of equivalent classes integer TONES
number of disjoint classes integer TONES
number of data properties integer TONES
number of object properties integer TONES
number of transitive properties integer TONES
number of labels integer OntoSelect
ontology ratio integer Swoogle
notes string DAML, Swoogle, BioPortal
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ontology and eventually computing the number of
occurrences of each construct type. Pellet is employed
as an external component to check the consistency of
an ontology, which is specified in the OMV element
(isConsistentAccordingToReasoner) and to
derive language-related metadata information including the
knowledge representation language, the level of expressivity
and the knowledge representation paradigm.

5.2.2 Ontology Classification

In this step we extract the values of the following
OMV elements: isOfType, Keywords, KeyClasses,
hasDomain, and naturalLanguage. To do so we resort
to heuristic techniques utilizing publicly available knowledge
resources such as the DMOZ Directory Project, the Wikipedia
Categorical Index, or the vast amounts of online knowledge
accessible through a search engine interface, as explained in
the remainder of this section.

With respect to the generality of the domain modeled
by an ontology our algorithm differentiates between three
ontology types (OMV element isOfType)

• Upper-level ontologies: describe general-purpose
concepts and their properties. From a metadata
generation perspective, an upper-level ontology is
characterized by the usage of a notably abstract
vocabulary. Examples of typical terms in upper-
level ontologies typically include “object”, “unit”,
“relation”, “abstract”, “quantity”, “process”, “thing”
etc.

• Core ontologies: provide very basic concepts and
properties of a knowledge domain. For example, the
Semantic Network in UMLS contains general medical
concepts such as disease, finding, syndrome, thus being
a core medical ontology.17

• Domain ontologies: are used to model specific
domains, and are more detailed than ontologies in the
previous category.

To determine the type of an ontology automatically we use
the hierarchical structure of categories provided by DMOZ
as a reference.18 At a basic level, the algorithm performs
syntactic concept-matching between an ontology and the
DMOZ directory. The matching can be either exact (the
ontology class name is exactly the same as the DMOZ
category name) or fuzzy (the ontology class name is a
substring of the DMOZ category name). Then it determines
the level of the directory in which the majority of concepts
in the ontology can be feasibly matched. If all concepts
are not found in the DMOZ directory, then that ontology
is assumed to be an upper-level ontology. If most concepts
are found the the root level or on the first level of the
DMOZ directory (which contains categories such as Science,
Medicine or Computers), then the ontology is assumed to
be a core ontology. Otherwise, the algorithm considers the
ontology processed to be by default a domain ontology.

Identifying the keywords of an ontology (corresponding
to the OMV element Keywords) is a by-product

of the ontology type classification process. OMEGA
selects concepts that match DMOZ categories as keyword
candidates. A keyword candidate is considered as a
meaningful keyword if it is located at a high level in the
corresponding sub-hierarchy in the DMOZ directory and if it
is rarely used to describe other categories.

The weight of a keyword candidate k is calculated by

w(k) =
1

l(k)f(k)

where l(k) is the highest category level at which k appears
and f(k) is the frequency with which k appears as category
name in the DMOZ directory. Currently, the system selects
the ten highest-weighted keyword candidates as keywords.

Further on, in OMEGA, a class in an ontology can
become a key class (OMV element KeyClasses) if its
characteristics meet one of the following criteria:

• By structure: Taking into account the graph structure
underlying each ontology this criterion applies the
degree centrality measure (Wasserman & Faust 1994)
to identify the importance of a class in the ontology
based on the number of links connecting it with the rest
of the ontology graph.

• By readability: Intuitively, when an ontology
engineer builds an ontology, he will arguably
ensure that important concepts are well described
by defining several properties for both human
(i.e., rdfs:label and rdfs:comment)
and machine (i.e., rdfs:property,
owl(daml):ObjectProperty, and
owl(daml):
DatatypeProperty) processing. As a result, a
class that has a high number of properties is considered
a key class.

• By instance: The way data is placed within an ontology
can be another indicator for the importance of a class
or concept. OMEGA adds classes with a large number
of instances to the key class list.

The domain of interest of an ontology (OMV element
hasDomain) is defined in terms of the top categories of
the DMOZ directory. OMEGA makes use of the extracted
keywords and key classes in the earlier step instead
of using all classes to reduce computation complexity.19

In general, an ontology keyword may appear in several
categories in the DMOZ directory. For example, there are
ten categories that contain the sub-category “animal”. To
deal with this ambiguity issue OMEGA uses a maximum
likelihood approach. For each keyword, the algorithm starts
from computing full category paths of the sub-categories
which match the respective class name. Then it counts the
number of distinct top categories and computes the likelihood
of each related domain. The top DMOZ categories that have
the maximum likelihood based on all keywords previously
computed are the possible domains of the ontology, and thus
the values of the hasDomain metadata element.

The natural language of the human-readable content of an
ontology (OMV natural
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Language) is determined using a Google-supported
heuristics. Given the keywords and key classes of the
ontology OMEGA queries the Web using those terms and
counts the Internet top-level domains. By exploiting the
inherent language dependency of the top-level domains (such
as those related to a particular country or to types of
organizations), the algorithm maps each top-level domain to
a natural language, thus determining the natural language
primarily used in the analyzed ontology. National domains
are mapped to the official language of the country, while
general ones (.edu, .org, .com etc.) are ordered for historical
reasons to English.

5.3 Step 3: Metadata Reuse

In this step OMEGA aims to determine the value of the
remaining OMV elements by checking existing metadata
information provided by ontology repositories such as the
DAML Library and SchemaWeb, and Semantic Web search
engines such as Swoogle and Watson. As a result, the
algorithm is also able to provide some meta-information
of ontologies that are temporarily inaccessible or not
machine-parsable. For example, suppose that the ontology
http://www.kanzaki.com/ns/music is temporarily
unavailable, OMEGA is unable to generate the ontology
metadata in Step 1 and Step 2. However, the metadata
information of this ontology exists in Swoogle and the
SchemaWeb Directory. Therefore, OMEGA can provide up
to 13 out of 17 OMV metadata elements for the ontology
http://www.kanzaki.com/ns/music.

OMEGA’s metadata reuse algorithm details as follows:
First, based on the pre-created mapping table between
the OMV elements and elements in the metadata sources
(i.e., ontology repositories and search engines as shown
in Table 8), the algorithm looks for the entry that
matches the missing OMV elements. If there are two or
more matches, the algorithm will select the best answer
according to the predefined ordered metadata sources. In the
current implementation, the ordered list of metadata sources
are Watson, Swoogle, DAML Library and SchemaWeb,
respectively, which is sorted by the number of provided
metadata elements and the system’s last updated date. The
algorithm then retrieves the metadata values by means of
Web APIs or Web scraping techniques. Continued from the
previous example, the value of ResourceLocator for
Ontology http://www.kanzaki.com/ns/music can
be founded in both Swoogle (see Figure 3) and SchemaWeb
Directory (see Figure 2). The system will choose to retrieve
the value from Swoogle as the answerhas been retrieved via
Swoogle APIs. More metadata sources from Table 8 will be
included into the OMEGA appliation as part of our future
work.

To conclude this section, the OMV elements that are
generated in each step of the algorithm are summarized in
Table 9.

Table 9 OMV Elements Generated by OMEGA

OMV elements Step 1 Step 2 Step3
Harvest Extract Reuse

General Information
Name x - -
Description x - x
Notes x - x
Keywords - x x
KeyClasses - x -
CreationDate x - -
ModificationDate x - x

Provenance Information
hasCreator x - x
usedOntologyEngineeringTool x - -
usedKnowledgeRepresentationParadigm - x -

Applicability Information
hasDomain - x -
isOfType - x -
naturalLanguage - x -
hasFormalityLevel - x -

Format Information
hasOntologyLanguage x x x
hasOntologySyntax x - x
isConsistent - x -
Expressiveness - x -

Availability Information
ResourceLocator - x x
Version x - -
hasLicense x - -

Relationship Information
useImports x - -
hasPriorVersion x - -
isBackwardCompatibleWith x - -
isIncompatibleWith x - -

Statistics Information
containsTBox - x -
containsRBox - x -
containsABox - x -
numberOfClasses - x x
numberOfProperties - x x
numberOfIndividuals - x x
numberOfAxioms - x x

Additional Information
hasCharEncoding x - x
fileSize x - x
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Table 8 OMV Elements Acquired from Repositories and Search Engines
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Description x x - x x x - - x x x x - - -
Notes x - - - - - - - x - - - - - -
Keywords x - - - - - - - - - x - - - -
ModificationDate - - x - - - - - - - x - - - -
hasCreator x x - - x - - - x x x - - - -
hasOntologyLanguage x - x x x x x x x - x x - - -
hasOntologySyntax - - x - x - x - x - x x - - -
isConsistent - - - x - x - - - - - - - - -
Expressiveness - - - x - - - x x - - x - - -
ResourceLocator x x x x x x x x x x x x x x x
useImports - - x x - - - - - - x - - - -
numberOfClasses - - x x - - x x x - x x - - -
numberOfProperties - - x x - - x x x - x x - - -
numberOfIndividuals - - x x - - - x x - - x - - -
numberOfAxioms - - x x - - - x - - x - - - -
hasCharEncoding (additional) - - x - - - - - - - - - - - -
fileSize (additional) - - x x - - - - - - - - - - -

6 Implementation

OMEGA is implemented in Java as Web application and
REST Web service. The system is accessible at http://
research.siu.ac.th:8080/omega which is hosted
on an Apache Tomcat Web server. A MySQL database is used
to persistently store and maintain ontology metadata entries
automatically generated.20 Ontologies available online,
notably their URLs, are obtained from ontology repositories
that are currently active. In the current release of OMEGA we
use SchemaWeb, the DAML ontology library, Watson, and
Swoogle, which result in more than 26,000 ontology metadata
entries in the repository.

The OMEGA prototype provides the following
functionality:

• It generates OMV-based ontology metadata
information of arbitrary online ontologies in an
automatic fashion.

• It allows browsing, searching and retrieving ontology
metadata information by human users via a Web
interface.

• It allows querying the ontology metadata information
by software agents via a REST Web service.

Figure 4 shows the current interfaces of the OMEGA
prototype. Figure 4(a) illustrates the result page when a user
submits an ontology URL to generate an OMV entry or
queries about the properties of a particular ontology in the
OMEGA metadata repository. The result can also be saved
as an OWL file by clicking on the provided link. Figure 4(b)
shows the browsing page which enables users to explore the
OMEGA repository by a number of ontology classifications.

In addition, OMEGA enables user to locate ontologies that
have particular properties via the ontology search page (see
Figure 4(c)).

7 Evaluation

The automatic ontology metadata generation algorithm has
been evaluated in terms of coverage, precision, recall
and overall quality. This section explains the evaluation
procedures and discusses the results.

7.1 Coverage

This criterion refers to the number of different metadata
elements which can be automatically extracted by OMEGA
and state-of-the-art ontology reuse technology. Table 10
gives a comparative overview of the number of ontologies
and OMV elements that are covered by the current
implementation of OMEGA, and other related tools. It clearly
shows that OMEGA is able to provide much more ontology
metadata information to users than the others.

7.2 Precision and recall

A user experiment has been conducted to evaluate the quality
of the metadata extracted in Step 2 in OMEGA in terms
of precision and recall. The test collection comprised 100
ontologies randomly selected from the OMEGA repository.
The tests involved ten computer science students familiar
with semantic technologies. Each of them was asked to
tag ten of the given ontologies with OMV elements.
We focused on those OMV elements which can not
be computed directly from the content of an ontology:
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Table 10 Coverage of metadata elements in OMEGA and related tools
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No. of Ontologies 246 282 89 1652 25,000+ 20,000+ 26,000+ 19 218 202 88 - - - ? billions

OMV

General(11) 2 4 3 2 2 2 7 1 2 1 3 1
Provenance(6) 1 1 2 - - - 3
Applicability(6) - - - 1 - - 4 1 1 1
Format(4) - 2 1 1 3 2 4 2 1 2 2 2
Availability(3) 1 - - - 1 2 3 1 1 1 1 1 1 1 1 1
Relationship(4) - - - 1 1 1 4 1
Statistic(7) - - - 2 4 4 7 4 3 3 3
Additional(2) - - - - 1 2 2 1 1 1 1

keywords, keyClasses, isOfType, hasDomain, and
naturalLanguage. Contrarily, information such as the
number of classes, the knowledge representation language or
the level of expressivity can be obtained using core ontology
technology (parsers, reasoners).

Metadata automatically generated by OMEGA was
compared with the metadata produced by the test participants
in terms of precision and recall. Precision measures how
many of the automatic classifications are correct, whilst recall
means how many of the manually assigned classifications
were found in the results of the algorithm. In the experiment,
the participants were asked to limit the number of the
keywords and key classes to three, and this information was
matched against the top three keywords and three key classes
delivered by OMEGA.

Table 11 OMEGA precision and recall

OMV elements Precision Recall
naturalLanguage 1 0.961
isOfType 0.767 0.846
keyClasses 0.654 0.571
keywords 0.532 0.555
keywords (including synonyms) 0.627 0.662
hasDomain 0.413 0.714

As depicted by Table 11 OMEGA performs well when
determining the natural language, the type and the key classes
of an ontology. Interestingly, the algorithm provides high
precision and low recall on extracting key classes. According
to the experimental results, the algorithm performs better
on ontologies having less than 100 classes. An explanation
for this behavior could be that large-size ontologies cover
several domains of interest, which in turn result in a larger
number of eligible key classes. Around half of the manually
generated ontology keywords coincide with class names in
the ontology. In a second step we thus asked the participants
to consider alternative synonym keywords, whilst extending
the comparison so that it considers not only exact keyword
matches between human and machine-generated metadata
elements but also additional semantic relations as captured
in WordNet. The precision and recall values increased by

10%. This confirms that the heuristic used to determine
ontology keywords leads to meaningful results, at least as
perceived by the test participants. The results also indicate
that OMEGA obtains low precision and high recall value
when classifying the domain of an ontology. This occurs
because of three possible reasons. Firstly, most of the terms
used as keywords and key classes appear multiple times in the
DMOZ directory. Computing the maximum likelihood may
alleviate this problem, but not to a satisfactory extent. On
average, the algorithm returns two to three related domains
and one of them is the correct answer. The second reason is
the ontology size. In the dataset used for our experiments,
there were both very small ontologies (containing less than
five classes) and very large ontologies (containing hundreds
of classes). When the ontology is too small, keywords and
key classes do not provide a feasible basis for matching the
ontology domain to one of the DMOZ top categories. At
the other end of the spectrum, large ontologies are often
multi-domain and thus difficult to classify, at least using
the technique introduced in Section 5. Finally, due to the
characteristics of the DMOZ directory, ontologies containing
labels in languages other than English are always assigned to
the World domain.

7.3 User-perceived quality

A second experiment was conducted to test the overall user-
perceived quality of OMV entries produced by OMEGA. The
experiment involved ten computer science students with basic
knowledge in ontology engineering. They were provided
with a set of ontologies and their associated OMEGA-
generated metadata and were asked for each ontology to
indicate how well each of the metadata elements in the
corresponding record applied to the ontology. The scale
used for the evaluation contained the following scores: Very
Poorly, Poorly, Well, Very Well, or Unsure. In this second case
the dataset contained 90 ontologies retrieved from Watson
by issuing the query University. Each ontology/metadata
record pair was reviewed by two to three participants leading
to a total of 210 answers.

The average quality scores of each ontology are calculated
and represented as a histogram in Figure 5. The figure shows
that more than 75% of metadata automatically generated by
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OMEGA were rated with Well (46%) or Very Well (31%).
Most OMV entries that were rated Poor or lower contain
limited metadata information, which was directly reused from
existing metadata repositories or search engines

Figure 5 User-perceived quality

8 Conclusion

The availability of metadata information about ontologies
available on the Web constitutes a fundamental step forward
towards the realization of fully-fledged ontology repositories
and search engines, and facilitates the reuse of ontological
resources beyond the boundaries of their initial development
scope. In this paper we surveyed some of the most
important metadata schemas created in communities as
diverse as digital libraries, ontology engineering, Web 2.0
and Web of Data to identify those aspects that are most
relevant when it comes to supporting potential users in
finding, understanding, assessing and eventually utilizing
an ontology. Automatic methods to generate such metadata
are the only feasible approach to scale at the number of
ontologies constantly being developed in various sectors
to date. For this purpose, we introduced the OMEGA
(Ontology MEtadata GenerAtion) algorithm, which uses
OMV (Ontology Metadata Vocabulary) as basic ontology
metadata schema, and is available as Web application
and REST Web service for further usage within semantic
applications. The results of our evaluation experiments show
that a heuristic approach to ontology metadata generation
is feasible and that additional customizations to consider
multi-linguality, ontologies of various sizes and an alternative
category hierarchy are likely to enhance the results even
further. Improvements could be obtained by exploiting
the most recent features provided by the Watson tool,
in particular its means to compute ontology similarities,
which could be used as an additional criterion for testing
the correctness of the OMEGA results, as well as the
various statistics, which could extend the current coverage
of the algorithm. Finally, the algorithm could take into
account existing metadata from ontology repositories, or even
taxonomy repositories such as the Taxonomy Warehouse,21

to optimize its heuristics. We intend to develop our
implementation in these directions to transform OMEGA into
a core building block for ontology reuse technology.
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Palma, R., Haase, P. & Gómez-Pérez, A. (2006), Oyster: sharing
and re-using ontologies in a peer-to-peer community, in ‘15th.
International World Wide Web Conference WWW’, pp. 1009–
1010.

Paslaru-Bontas, E., Mochol, M. & Tolksdorf, R. (2005), Case
Studies on Ontology Reuse, in ‘Proceedings of the 5th
International Conference on Knowledge Management
IKNOW2005’, pp. 345–353.

Pinto, H. & Martins, J. (2000), Reusing ontologies, in ‘Proceedings
of AAAI 2000 spring symposium series, workshop on bringing
knowledge to business processes, SS-00-03’.

Simperl, E. (2009), ‘Reusing ontologies on the semantic web:
A feasibility study’, Data and Knowledge Engineering
68(10), 905–925.

Simperl, E. & Bürger, T. (2010), Data Management on the Semantic
Web, Nova Science Publishers, chapter Ontology Reuse - Is it
Feasible?

Simperl, E. & Mochol, M. (2007), Semantic Web Methodologies
for eBusiness Applications: Ontologies, Processes and
Management Practices, Information Science Reference,
chapter A Case Study in Building Semantic eRecruitment
Applications, pp. 83–104.

Tummarello, G., Delbru, R. & Oren, E. (2007), Sindice.com:
Weaving the open linked data, in ‘6th. International Semantic
Web Conference ISWC/ASWC’, pp. 552–565.

Wasserman, S. & Faust, K. (1994), Social Network Analysis,
Cambridge University Press, New York.

Zhang, Y., Vasconcelos, W. & Sleeman, D. (2004), Ontosearch: An
ontology search engine, in ‘24th SGAI Int. Conf. Innovative
Techniques and Applications of AI, UK’.

Note

1http://www.neon-toolkit.org/wiki/1.x/
Oyster-menu

2http://watson.kmi.open.ac.uk/WatsonWUI/
3http://dublincore.org/
4http://creativecommons.org/ns
5KnowledgeWeb: http://knowledgeweb.semanticweb.
org, NeOn: www.neon-project.org/

6OOR: http://ontolog.cim3.net/cgi-bin/wiki.
pl?OpenOntologyRepository

7http://www.w3.org/2004/02/skos/
8Protégé: http://protege.stanford.edu, Apollo: http:
//apollo.open.ac.uk/index.html, WSMT: http:
//sourceforge.net/projects/wsmt, NeOnToolkit:
http://neon-toolkit.org/wiki/Main_Page,
Swoop: http://www.mindswap.org/2004/SWOOP/,
IODT: http://www.alphaworks.ibm.com/tech/
semanticstk

9LinkFactory: OntoStudio: http://www.ontoprise.
de/en/home/products/ontostudio/, TopBraid
Composer: http://www.topbraidcomposer.com,
SemanticWorks: http://www.altova.com/products/
semanticworks/semantic_web_rdf_owl_editor.
html

10For the commercial tools, our analysis was in part based on
evaluation versions, and publicly available documentation.

11DAML ontology library: http://www.daml.org/
ontologies, Vocab.org: http://vocab.org/, Protégé
OWL library: http://protegewiki.stanford.edu/
index.php/Protege_Ontology_Library, SchemaWeb
directory: http://www.schemaweb.info

12TONES repository: http://owl.cs.manchester.
ac.uk/repository/, BioPortal repository: http://
bioportal.bioontology.org/, ONKI library service:
http://www.yso.fi/

13http://code.google.com
14http://www.dmoz.org/
15http://en.wikipedia.org/wiki/Portal:
Contents/Categorical_index

16http://www.mindswap.org/2003/pellet/
17www.nlm.nih.gov/research/umls/
18The Wikipedia Categorical Index can be used in a similar manner.
19Furthermore, the results from some preliminary tests showed

that using all classes of the ontology in this step decreased
classification accuracy.

20Of course other database management systems, particularly
triplestores, can be used for this purpose as well.

21http://taxonomywarehouse.com/
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Figure 2 An example of ontology metadata from the SchemaWeb directory

Figure 3 An example of ontology metadata from Swoogle
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(a) Result page showing an OMV entry

(b) Browse page

(c) Search page

Figure 4 Interfaces of the Web-based prototype system


