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Knowledge representation and engineering techniques are becoming useful and popular components of

hybrid integrated systems used to solve complicated practical problems in different disciplines. These

techniques offer features such as: learning from experience, handling noisy and incomplete data,

helping with decision making, and predicting capabilities. In this paper, we present a multi-domain

knowledge representation structure called Decisional DNA that can be implemented and shared for the

exploitation of embedded knowledge in multiple technologies. Decisional DNA, as a knowledge

representation structure, offers great possibilities on gathering explicit knowledge of formal decision

events as well as a tool for decision making processes. Its applicability is shown in this paper when

applied to different decisional technologies. The main advantages of using the Decisional DNA rely on:

(i) versatility and dynamicity of the knowledge structure, (ii) storage of day-to-day explicit experience

in a single structure, (iii) transportability and shareability of the knowledge, and (iv) predicting

capabilities based on the collected experience. Thus, after analysis and results, we conclude that the

Decisional DNA, as a unique multi-domain structure, can be applied and shared among multiple

technologies while enhancing them with predicting capabilities and facilitating knowledge engineering

processes inside decision making systems.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Now-a-days, engineering systems are established on evolving
paradigms; knowledge and users’ experience take a big role in
today’s applications as we have now the computational potential
of modeling such paradigms. The term knowledge engineering
(KE) has been defined as a discipline that aims to offering
solutions for complex problems by the means of integrating
knowledge into computer systems [1]. It involves the use and
application of several computer science domains such as artificial
intelligence, knowledge representation, databases, and decision
support systems, among others. Knowledge engineering technol-
ogies make use of the synergism of hybrid systems to produce
better, powerful, more efficient and effective computer systems.
Among the features associated with knowledge engineering
systems are human intelligence capabilities such as learning,
reasoning and forecasting from current knowledge or experience.
From an application point of view, different research projects
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have been presented by the scientific community involving
knowledge representation and decision making technologies to
extend the user’s understanding; however, to our acquaintance,
most of these approaches miss the potential of using knowledge
based theories that might enhance the user’s experience and at
the same time creating his/her decisional fingerprints.

In our case, we propose experience as the main and most
appropriate source of knowledge and its use leads to useful
systems with improved performance. Multiple applications per-
form decisions, and most of the decisions are taken in a structured
and formal way, this is what we call formal decision events. All
these formal decision events are usually disregarded once the
decision is made, or even worst, if the system is queried again, the
decision has to be repeated. What to do with the experience
gained on taking such decisions relies on our proposed knowledge
representation structure. We propose the Decisional DNA as a
unique and single structure for capturing, storing, improving and
reusing decisional experience. Besides, we make use of the Set of
Experience (SOE) as part of the Decisional DNA which allows the
acquisition and storage of formal decision events in a knowledge-
explicit form. It comprises variables, functions, constraints and
rules associated in a DNA shape allowing the construction of the
Decisional DNA of an organization. Having a powerful knowledge
ulti-technology shareable knowledge structure for decisional
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structure such as the Set of Experience Knowledge Structure
(SOEKS) within the Decisional DNA can enrich and develop any
decisional system based upon previous experience.

This paper presents the Decisional DNA as a multi-domain
knowledge structure that provides additional support by con-
structing a decisional repository, i.e., decisional fingerprints.
Additionally, such decisional repository, since it is multi-technol-
ogy applicable, can be shared and distributed enhancing the
user’s decisional experience. We present its application into four
technologies: Decisional DNA Ontology-based knowledge Struc-
ture, Reflexive Ontologies, Embedded Systems, and Decision
Support Medical Systems. We have chosen these technologies
due to their noticeable advantages of being wide spread technol-
ogies that are developing the Artificial Intelligence (AI) scientific
field. This paper is organized as follows: In Section 2, an overview
of the conceptual basis is presented. In Section 3, we introduce
four technologies implementing the Decisional DNA knowledge
structure. And in Sections 4 and 5, we present our conclusions and
lines for future work.
2. Conceptual basis and background

Humanity has always being accompanied by knowledge. Both
have grown together to construct what we understand now as
society and civilization. Hence, humankind has been trying to
make knowledge part of its assets. Knowledge seems to be a
valuable possession of incalculable worth and it has been con-
sidered as the only true source of a nation’s economic and military
strength as well as, the key source of competitive advantage of a
company [2]. Thus, humankind in general and, more specifically,
managers have turned to knowledge administration. They want
technologies that facilitate control of all forms of knowledge
because such technologies can be considered as the key for the
success or failure of an organization, and subsequently, knowledge
society. Knowledge itself appears as a human being attribute and
can be defined as [3]: (i) theoretical or practical expertise and
skills gained by a person through experience or education, or (ii)

familiarity gained by experience of a fact or situation.
One theory suggests that situation assessments are the base

for experienced decision-makers when taking decisions [4]. Deci-
sion-makers principally use experience for their decisions, i.e.,
when a decision event emerges, managers select actions that have
worked well in previous similar situations. Then, in a brain
process that is not well understood yet, managers extract the
most significant characteristics from the current circumstances,
and relate them to similar situations and actions that have
worked well in the past. Therefore, this theory suggests that any
mechanism that supports the process of storing previous deci-
sions would improve the decision maker’s job; and as such, it is
related to a process of storing knowledge and experience.

Since this paper tackles problems in the engineering and
computer fields, we concentrate on the concept knowledge
engineering (KE). According to Feigenbaum [1], ‘‘Knowledge
Engineering (KE) is an engineering discipline that involves inte-
grating Knowledge into computer systems in order to solve
complex problems normally requiring a high level of human
expertise’’. Two main movements surround KE, they are: the
transfer movement and the modeling movement. The transfer
movement aims for techniques to transfer human knowledge into
the artificial intelligent systems. The modeling movement aims
for modeling the knowledge and problem solving techniques of
the domain expert into the artificial intelligent system. Our
research concentrates on the modeling trend which requires the
areas of knowledge representation (KR) and knowledge modeling.
Therefore, KE [5] depends on computer science in general, trying
Please cite this article as: C. Sanin, et al., Decisional DNA: A m
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to mimic knowledge in a certain domain and within the scope of
an artificial system. This definition involves not only the need for
specific technologies, but also the need to overcome related
implementation issues.

From a mechanistic point of view, reasoning in machines is a
computational process. This computational process, to be feasible,
definitely needs systemic techniques and data structures, and in
consequence, several techniques have been developed trying to
represent and acquire knowledge. These kinds of technologies try
to collect and administer knowledge in some manner. Although
these technologies work with decision-making in some way, they
lack of keeping structured knowledge of the formal decision
events they participate on [6]; they do not use their experience.
We formally define a Formal Decision Event as a choice [decision]

made or a commitment to act that was the result [consequence] of a

series of repeatable actions performed in a structured manner.
For us, any technology able to capture and store formal

decision events as explicit knowledge will improve the decision-
making process. Such technology will help by reducing decision
time, as well as avoiding repetition and duplication in the process.

Unfortunately, computers are not as clever as to form internal
representations of the world, and even simpler, representations of
just formal decision events. Instead of gathering knowledge for
themselves, computers must rely on people to place knowledge
directly into their memories. This problem suggests deciding on
ways to represent information and knowledge inside computers.

A Knowledge Representation (KR) is fundamentally a replace-
ment, a substitute for the thing itself. KR is an element of
intelligent reasoning, a medium for organizing information to
facilitate making inferences and recommendations, and a set of
ontological commitments, i.e., an answer of how to interpret the
world [7]. KR has been involved in several science fields; however,
its main roots come from three specific areas: logic, rules, and
frames. They appear as the most generalized techniques, and
symbolize the kinds of things that are important in the world;
even though developed systems can use exclusively one of the
techniques, their hybridization is a common element. Logic
implicates understanding the world in terms of individual entities
and associations between them. Rule-based systems view the
world in terms of attribute-object-value and the rules that
connect them. Frames, on the other hand, comprise thinking
about the world in terms of prototypical concepts. Hence, each
of these representation techniques supplies its own view of what
is important to focus on, and suggests that anything out of this
focus may be ignored [7]. Recent advances in the field of KR have
converged on constructing a Semantic Web, an extension of the
current World Wide Web, looking for publishing information in a
form that is easily inferable to both humans and machines.
Current progresses have led to the standardization of the Web
Ontology Language (OWL) by the World Wide Web Consortium
(W3C). OWL provides the means for specifying and defining
ontologies, that is, collections of descriptions of concepts in a
domain (classes), properties of classes, and limitations on proper-
ties. OWL can be seen as an extension from the frame based
approach to knowledge representation, and a division of logic
called Description Logics (DL) [8].

These KR techniques have been implemented with different
data structures creating a universe of knowledge as big as the
number of applications researchers and IT companies have
developed. These technologies have been developed to make
useful huge quantities of stored information by modeling knowl-
edge in some way; however, none of them keep an explicit record
of the decision events they participate on. Hence, it is necessary
to define a multi-domain shareable knowledge structure able
to be adaptable and versatile as to capture all these different
decision events from the day-to-day operation, to store proper
ulti-technology shareable knowledge structure for decisional
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characteristics of the experience acquired, to keep this experience
as explicit knowledge, and to allow it for multiple technologies to
be used, analyzed, and categorized.

This paper presents four technologies that use Decisional DNA
(and the Set of Experience Knowledge Structure – SOEKS – within
it) as the knowledge representation. Decisional DNA is offered as
a solution to be utilized for the aims mentioned above. Decisional
DNA and SOEKS certainly improve KE and the quality of decision-
making by advancing the notion of administering knowledge in
the current decision making environment.

2.1. Set of experience knowledge structure (SOEKS) and

Decisional DNA

In living species, Deoxyribonucleic Acid (DNA) is a nucleic acid
found in cells that carries genetic information, and is the molecular
basis of heredity. DNA is made from a combination of four basic
elements called nucleotides. These nucleotides are Adenine (A),
Thymine (T), Guanine (G) and Cytosine (C). Their combination
allows for the different characteristics of each individual, and
becomes as one of the highlighted uniqueness of this kind of
structure. One part of the long strand comprises a gene. A gene is
a portion of a DNA molecule, which guides the operation of one
particular component of an organism. Genes give orders to a living
organism about how to respond to different stimuli. Finally, a set of
genes makes a chromosome, and multiple chromosomes make the
whole genetic code of an individual [9]. DNA demonstrates unique
aspects as a data structure [10]. Information about the living
organism is kept to be passed on to future generations, as well as
being the basis of new elements in the organism which are
evaluated in terms of performance. DNA stores information for the
survival of the species, and improvement in the evolutionary chain.

In our research and taking experience as one of the most
valuable ways to acquire knowledge, we rely on computers as in
important mean to capture it. However, computers must depend
on human beings to enter knowledge directly into them. Thus, the
problem is how to adequately, efficiently, and effectively repre-
sent information and knowledge inside a computer.

Based upon the DNA concept and using it as a metaphor, we
developed the Set of Experience Knowledge Structure (SOEKS) as
a form to keep FDE in an explicit way [6]. It is a model based upon
existing and available knowledge, which must adjust to the
decision event it is built from (i.e., it is a dynamic structure that
relies on the information offered by a FDE). Four basic compo-
nents surround decision-making events and FDE, and are stored
in a combined dynamic structure that comprises the SOE (Fig. 1);
they are: variables V, functions F, constraints C, and rules R.

Variables usually involve representing knowledge using an
attribute-value language (i.e., by a vector of variables and values)
[11]. This is a traditional approach from the origin of knowledge
V6V5V4V3V2V1

F1 F2

R1 R2

C1 C2

Fig. 1. Set of Experience Know
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representation, and is the starting point for the SOEKS. Variables
that intervene in the process of decision-making are the first
component of the SOE. These variables are the center root of the
structure, because they are the source of the other components.

Based on the idea of Malhotra [12] who states that ‘‘to grasp
the meaning of a thing, an event, or a situation is to see it in its
relations to other things’’ (p. 51), variables are related among
them in the shape of functions. Functions describe associations
between a dependent variable and a set of input variables;
moreover, functions can be applied for reasoning optimal states,
because they come out from the goals of the decision event.
Therefore, the SOE uses functions, its second component, and
establishes links among the variables constructing multi-objec-
tive goals, that is, multiple functions that restrict experience on
decision-making by the elements of a universe of relationships.

According to Theory of Constraints (TOC), Goldratt [13] main-
tains that any system has at least one constraint; otherwise, its
performance would be infinite. Thus, constraints are another way
of relationships among the variables; in fact, they are functions as
well, but they have a different purpose. A constraint, as the third
component of SOEKS, is a limitation of possibilities, a restriction
of the feasible solutions in a decision problem, and a factor that
limits the performance of a system with respect to its goals.

Finally, rules are suitable for representing inferences, or for
associating actions with conditions under which the actions
should be done. Rules, the fourth component of SOEKS, are
another form of expressing relationships among variables. They
are conditional relationships that operate in the universe of
variables. Rules are relationships between a condition and a
consequence connected by the statements IF-THEN-ELSE.

As stated above, SOE is a Knowledge Structure that is able to
store and act as a repository of decisional experiences based upon
FDE; therefore, functions and operations acting upon such knowl-
edge structure are commonly operated actions performed on
traditional computer-based structures. Many of these operations
are based upon the specific technology that is applying the SOEKS,
for instance, in [14], Sanin and Szczerbicki used SOE in combina-
tion with Genetic Algorithms (GA) techniques and therefore, the
SOEKS absorbed GA operations such as finding individual fitness,
mutations and crossover. Another example takes SOEKS to be
implemented on Reflexive Ontologies (RO) [15]; in such case, Toro
et al. create a SOEKS RO-based which uses RO operations,
allowing SOEs to be operated by Union, Intersection and other
set operations. Summarizing, SOEKS as a knowledge structure
absorbs operations depending on the technology that applies it.

Furthermore, the SOEKS takes other important features of
DNA. Firstly, the combination of the four nucleotides of DNA
gives uniqueness to itself, just as the combination of the four
components of the SOE offer distinctiveness. Moreover, the four
elements of a SOE are connected among themselves imitating part
V8 … VnV7

… Fr

Rq…

Cm…

ledge Structure (SOEKS).

ulti-technology shareable knowledge structure for decisional
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of a long strand of DNA, that is, a gene. Thus, a gene can be
assimilated to a SOE, and in the same way as a gene produces a
phenotype, a SOE produces a value of decision in terms of the
elements it contains. Such value of decision can be called the
efficiency or the phenotype value of the SOE [6]; in other words,
the SOEKS, itself, stores an answer to a query presented. Each SOE
can be categorized, and acts as a gene in DNA. A gene guides
hereditary responses in living organisms. As an analogy, a SOE
guides the responses of certain areas of decision making; in our
case, a decisional gene.

A unique SOE cannot rule a whole system, even in a specific
area or category. Therefore, more Sets of Experience should be
acquired and constructed. The day-to-day operation provides
many decisions (or FDE), and the result of this is a collection of
many different SOE. A group of SOE of the same category
comprises a decisional chromosome, as DNA does with genes.
This decisional chromosome stores decisional ‘‘strategies’’ for a
category. In this case, each module of chromosomes forms an
entire inference tool, and provides a schematic view for knowl-
edge inside an organization. Subsequently, having a diverse group
of SOE chromosomes is like having the Decisional DNA of an
organization, because what has been collected is a series of
inference strategies related to such enterprise (Fig. 2).

In conclusion, the SOEKS is a compound of variables, functions,
constraints and rules, which are uniquely combined to represent a
FDE. Multiple SOE can be collected, classified, and organized
according to their efficiency, grouping them into decisional
chromosomes. Chromosomes are groups of SOE that can accu-
mulate decisional strategies for a specific area of decision making.
Finally, sets of chromosomes comprise what is called the Deci-
sional DNA of the organization [6]. Furthermore, the Decisional
DNA can be used in platforms to support decision-making, and
new decisions can be made based on it. In this text a concise idea
of the SOEKS and the Decisional DNA was offered, for further
information [6] should be reviewed.
3. Constructing Decisional DNA

Applications involved in decision making produce myriads of
FDE, i.e., decisional experience, their results are, in most cases,
analyzed and stored; however, such decisional experience is
commonly disregarded, not shared, and put behind [16–19]. Little
of this collected experience survives, and in some cases, over
time, it becomes inaccessible due to poor knowledge engineering
practices or due to technology changes in software, hardware or
storage media. Knowledge and experience are lost indicating that
Please cite this article as: C. Sanin, et al., Decisional DNA: A m
experience, Neurocomputing (2012), doi:10.1016/j.neucom.2011.08
there is a clear deficiency on experience collection and reuse. We
suggest that some of the reasons are:
(a)
ulti
.029
the nonexistence of a common knowledge–experience struc-
ture able to collect multi-domain and multi-technology for-
mal decision events, and
(b)
 the nonexistence of a technology able to capture, store,
improve, retrieve and reuse such collected experience.
Through our project, we proposed three important elements:
(i)
-

a knowledge structure able to store and maintain experien-
tial knowledge, that is, the Decisional DNA and the SOEKS,
(ii)
 a solution for collecting experience that can be applied to
multiple technologies from different domains, that is, a
multi-technology knowledge structure, and
(iii)
 a way to automate decision making by using such experi-
ence, that is, retrieve collected experience by answering a
query presented.
In this paper, we introduce the reader to the three above
mentioned elements throughout four different technologies:
Decisional DNA Ontology-based knowledge Structure, Reflexive
Ontologies, Embedded Systems – Interactive TV (iTV), and Deci-
sion Support Medical Systems for Alzheimer diagnosis. Never-
theless, we would like to add that Decisional DNA is not limited to
these technologies and advances are being made with it in several
areas. To our knowledge, multiagents systems, web engineering,
and robotics are some additional technologies that are currently
using Decisional DNA.

3.1. Decisional DNA ontology-based knowledge structure and

Reflexive Ontologies (RO)

This section introduces our approach to model and apply
Decisional DNA knowledge structure from an ontology perspec-
tive. In order to obtain such ontology, Decisional DNA XML-based
was taken as the starting point. For a better understanding of
Decisional DNA XML-based, the reader should refer to [20].
Afterward, an ontology model process was performed using the
Protégé editor [21].

Reflexivity addresses the property of an abstract structure of a
knowledge base (in this case, an ontology and its instances) to
‘‘know about itself’’. When an abstract knowledge structure is
able to maintain, in a persistent manner, every query performed
on it, and store those queries as individuals of a class that extends
the original ontology, it is said that such ontology is reflexive.
technology shareable knowledge structure for decisional
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Thus, Toro et al. [15] proposed the following definition for a
Reflexive Ontology: ‘‘A Reflexive Ontology is a description of the
concepts and the relations of such concepts in a specific domain,
enhanced by an explicit self contained set of queries over the
instances’’. Therefore, any RO is an abstract knowledge structure
with a set of structured contents and relationships, and all the
mathematical concepts of a set can be applied to it as a way of
formalization and handling. A RO is, basically, an ontology that
has been extended with the concept of reflexivity and must fulfill
the properties of: query retrieval (storing every query performed),
integrity update (updating structural changes in the query retrie-
val system), autopoietic behavior (capacity of self creation),
support for logical operators (mechanisms of set handling), and
self reasoning over the query set (capacity of performing logical
operations over the query system). The advantage of implement-
ing RO relies on the following main aspects: Speed on the query
process, incremental nature, and self containment of the knowl-
edge structure in a single file.

The purpose of this case study is to exemplify how the SOEKS-
OWL is converted into a Reflexive Ontology by the use of the
ReflexiveQueryStorer class and the changes it generates in such
ontology; therefore, we start from a point where a SOEKS-OWL has
been already instantiated with real values. Next step comprises the
adaptation of the Reflexive Query Storer class with some initial
values such as the path of the ontology, options of saving the
reflexive structure and the query instances, and the type of query to
be performed. For explanation purposes, three queries are included
in this case study. The first query is defined in the code as: public
static String SIMPLE_RFLEXIVE_QUERY¼’’CLASS variable

with the PROPERTY var_name EQUALS to X1’’; notice that this
is a value type query. Such query is written in a human readable
form, but in other terms, it means ‘‘retrieve all the variables of the
ontology that have the variable name X1’’.

The execution of the code offers information about the type of
query executed and the successful saving of the Reflexive Ontol-
ogy Structure (created for first time) as well as the query executed
with results. Following, the results can be seen as a query
successfully executed with the new instance in the SOEKS-OWL
transformed into a Reflexive Ontology (Fig. 3):
START
Testing Simple query : CLASS variable with the

PROPERTY var_name EQUALS to X1
y saving successful.
File modification saved with 0 errors.
END
Fig. 3. SOEKS-OWL transformed into a Refl

Please cite this article as: C. Sanin, et al., Decisional DNA: A m
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The next example includes a data type query: public static
String SIMPLE_RFLEXIVE_QUERY¼’’CLASS term with the

PROPERTY withVariable EQUALS to X2_1; or in other words it
means ‘‘retrieve all the terms in the ontology that

involve the variable with name X2_1’’. Its results are as
follows (Fig. 4):
START
Testing Simple query : CLASS term with the PROP-

ERTY withVariable EQUALS to X2_1
y saving successful.
File modification saved with 0 errors.
END

In these results can be seen that the term_2 and term_4 are
valid for the query; in other words, those terms contain the X2_1
variable. One of the features of the Reflexive Ontologies is that
when a new query comes, it is not necessary to perform it again, if
it was already done. Finally, RO also allows performing complex
queries which comprise autopoietic behavior and support for
logical operations, and example is shown below.
START
Testing Complex query : CLASS simfactor with the

PROPERTY hasSterm EQUALS to term_1 AND CLASS sim-
factor with the PROPERTY hasSterm EQUALS to term_2

CLASS simfactor with the PROPERTY hasSterm EQUALS
to term_1 AND

CLASS simfactor with the PROPERTY hasSterm EQUALS
to term_2

Sub queries in query 2
y saving successful.
File modification saved with 0 errors.
END

As it has been shown, the Reflexive Ontolgy transformation
includes the creation of a new class inside the ontology, in this
case the SOEKS-OWL. Additionally, when different simple or
complex queries (data type or value type) are executed, they are
inserted as instances in the new Reflexive Ontolgy; this change
facilitates the application of similarity elements among the Sets of
Experience and it will allow an extended logic handling over the
SOEKS as it comprises the self reasoning over the query set
property of the RO.

A RO Decisional DNA-based model, once instanced, can be
accessed through different queries, which would be developed
according to similarity parameters [22] and users’ requirements.
exive Ontology with its new elements.

ulti-technology shareable knowledge structure for decisional
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A powerful representation, querying and inference capabilities are
exploited in several ways. For instance, the ability to perform
advanced queries on large sets of information with an optimal
response time was exploited by means of Reflexive Ontologies
(RO) [15,23].

As expressed by Nguyen [24], knowledge of a group is more
appropriate than the individual knowledge; therefore, having an
ontology-based repository ready to be feed with Decisional DNA
produced by members of a decisional community is the beginning
of a new way of sharing knowledge. The decisional community
would share decisions among its members allowing decision-
maker users to improve their day-to-day operation by querying
such repository, and along with this interaction, the decisional
community would increase and improve the Decisional DNA
available for being shared.

3.2. Decisional DNA-based embedded systems

Embedded systems are computer systems created to imple-
ment one or a few dedicated functions [25] such as the control
system in an elevator or the ABS (anti-lock braking systems) in a
car. They are usually embedded as part of a complete system.
Now-a-days, any device that includes a computer, but it is not a
general-purpose computer itself, can be regarded as an embedded
system [26]. ES range from household appliances like microwave
ovens and washing machines, to industrial applications like
automatic production lines and network switches; from portable
devices such as MP3 players to very big equipments like nuclear
power plants. Recent advances in microelectronics, IC (integrated
circuit), communications, computing, software and other infor-
mation technologies are influencing ES to be increasingly power-
ful and popular than ever. Such technologies are enabling ES to be
built as what is required to meet all kinds of demands from our
daily life [27].

In addition to embedded operating systems, software/firm-
ware and middleware technologies for ES are making notable
progress as well. Thanks to improvements on software, hardware
and embedded operating systems, it is now possible to apply
more mature approaches onto ES, like using regular Java, C or Cþþ
compiler on the ES itself, making applications portability an easier
job [27].

Knowledge-based embedded systems are the new trend on
Embedded Systems (ES) and they can make our world increas-
ingly intelligent and convenient. However, due to lack of
Please cite this article as: C. Sanin, et al., Decisional DNA: A m
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standardized solutions and development platforms, it is very hard
to share knowledge among different knowledge-based systems.
Therefore, we present Decisional DNA-based embedded systems
as an alternative for knowledge-based developments in this area
which can potentially be applied on various systems and enable
them with acquisition, reusing, evolving and sharing knowledge.

In order to use Decisional DNA on embedded systems, a series
of required features were defined; they involved a transformation
on the traditional Decisional DNA in order to make it a viable
alternative for ES. Decisional DNA was then adapted to make it
adaptable and cross-platform portable (not a problem since the
Decisional DNA API is already written in Java), Compact and,
Configurable.
3.2.1. Interactive TV Decisional DNA-based software architecture

Interactive television (also known as iTV) is an evolutionary
integration of the Internet and Digital TV (DTV) [28]. It contains a
number of novel smart technologies and enables viewers to
interact with television services and content. The most exciting
thing about an interactive TV is the ability to run applications that
have been downloaded as part of the broadcast stream. For the
user (viewer), this is what really makes a significant difference
between a basic Digital TV box and an interactive TV system. In
order to support and enable interactive applications, the receiver
is required to support not only the implementation of APIs
(Application Programming Interface) needed to run the applica-
tions, but also the infrastructure needed to inform the receiver
what applications are available and how to run them.

Decisional DNA, as a domain-independent, flexible and stan-
dard knowledge repository, can not only capture and store
experiential knowledge in an explicit and formal way, but can
also be easily applied to various domains to support decision-
making and standard knowledge sharing and communication
among these systems [6] [29]. In this paper, we present an
approach that integrates Decisional DNA with iTV to capture
and reuse viewers’ TV watching experiences. We have demon-
strated this approach in order to test the usability and suitability
of Decisional DNA in ES.

Decisional DNA iTV consists of the User Interface, the System
I/O (input/output), the Integrator, the Prognoser, the Convertor
and the Decisional DNA Repository (Fig. 5).

User Interface: The User Interface is developed to interact
with the user/viewer. In particular, the user can control, set and
ulti-technology shareable knowledge structure for decisional
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configure the system, select services, give feedback, and interact
with the service providers by using the User Interface.

System I/O: The System I/O allows the Decisional DNA iTV
platform communicating with its domain of operation. The
System I/O tells the iTV which service is selected, for example,
what movie should play or what feedback was given, etc.
Additionally, it is able to access and retrieve the media stream,
viewers’ feedback, system time, and service information from its
domain.

Integrator: The Integrator is where the scenario data is
gathered and organized. In our case, we link each decisional
experience with a certain scenario describing the circumstances
under which the experience is collected, such as the system time,
name of a selected service, user input, and other service informa-
tion. The Integrator organizes the scenario data and sends them to
the Prognoser for further processing.

Prognoser: The Prognoser is in charge of sorting, analyzing,
organizing, creating and retrieving collected experience. It sorts
Fig. 5. System Architecture for Decisional DNA iTV.

Fig. 6. Screenshot of D
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data received from the Integrator to further analyze and organize
it according to system configurations. Finally, it interacts with the
Decisional DNA Repository and the XML Parser in order to store
and reuse experience depending on the purpose of different tasks.

Convertor: The Convertor translates knowledge statements
generated by the Prognoser into the Decisional DNA structure and
interprets the retrieved Decisional DNA experiences for future
reusing. In this case, we used Decisional DNA XML-based.

Decisional DNA Repository: The Decisional DNA Repository is
the core architecture component in the iTV approach. It is the
place where experiences are stored and managed. It contains the
Repository Manager which is the interface of the Decisional DNA
Repository. It answers operation commands sent by the Prognoser
and manages the Chromosomes.
3.2.2. iTV case study

At this stage, the main purpose of our experiments was to
prove that Decisional DNA could be implemented with Java TV
providing its domain with the ability of experience capturing and
reusing. For testing the concept of Decisional DNA applied to iTV,
we used Java TV SDK on a generic setup box (DigitelþHD3000)
and considered only five types of movies, namely action, adven-
ture, animation, comedy, and crime. We simulated viewers
watching movies on the Decisional DNA iTV, where each movie
was represented by its type and an ID number, for example
Action1, Comedy2, and with 20 movies/type making a pool of 100
movies.

Fig. 6 shows a screenshot of the viewers’ TV. As it can be seen,
the viewers’ screen is composed of five components: Service Name
which shows ‘‘Movies’’, Service Information which displays infor-
mation about a selected movie, Ranking of the selected movie,
Movie Showcase which shows movies recommended by the
system, and ‘‘Show More y’’ button where the viewer can access
additional movies. Initially, Decisional DNA iTV recommends two
movies from each movie type creating an initial selected group of
10 movies. Once the system start collecting experiences, it
recommends movies according to those experiences.

We capture viewers’ watching experiences by collecting movie
and user’s knowledge and information, that includes rules relat-
ing preferences, times, dates, actors, ranking, director, among
others. Such knowledge is gathered and organized by the Inte-
grator to be sent to the Prognoser, which finally, transforms and
stores them into a SOEKS XML format. Once the system captures
such experiences, it begins to analyze the viewers’ watching
ecisional DNA iTV.

ulti-technology shareable knowledge structure for decisional
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experiences and provides viewers with smart recommendations
based on his/her past viewing experiences.

During the process in which the Prognoser recommends new
movies to the viewer, it retrieves watching experiences stored in
the Decisional DNA Repository and analyses those experiences
from the perspective of the user’s settings. In our experiments, we
analyze the movie types, most frequent week day and time, and
preferences collected in the Decisional DNA iTV for each viewer.
At this stage, simple mathematical model have been implemen-
ted; however, more advanced mathematical models are in our
future research agenda. For instance, Eq. (1) demonstrates how
the system calculates the number of movies that should be
considered for the movie recommendation list:

N¼ ðT � 100=Dþ5Þ=10 ð1Þ

where N represents number of movies that should be recom-
mended from a specific movie type; T tells us how many movies
of a specific movie type have been watched on a given week day;
D represents the total number of movies watched on that given
week day. For example, suppose that there is a viewer who
watched 11 movies in total during a given weekend and 5 of
those movies were action movies. Therefore, according to (1) there
should be five out of ten action movies in the next recommenda-
tion list: (5�100 / 11þ5) / 10¼5. During a number of weeks of
capturing experience, the system learns and remembers that this
viewer watched on average five action movies, two adventure
movies, one animation movie, two comedy movies, and one crime
movie on weekends so far. As the result, the system would
recommend for this viewer similar a movie composition on the
next Friday for the following weekend. Fig. 7 shows the screen-
shot of a newly recommended movie list in this case.

We presented an approach that integrates Decisional DNA
with iTV allowing capturing and reusing viewers’ TV watching
experiences. Further research involves query enhancement,
refinement and further development of the Prognoser algorithms,
and implementation of more advanced ways to interpret the
viewer experience.

3.3. Clinical decision support system Decisional DNA-based

The interest of making Clinical Decision Support Systems
(CDSS) for the diagnosis of Alzheimer Disease (AD) is huge, as it
is the leading cause of dementia in developed countries. Early
diagnosis of AD is commonly carried out analyzing results of
different medical tests, which are multidisciplinary by nature,
Fig. 7. Newly recommended movie l
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such as neurological, neuropsychological, and neuroimaging tests
[30]. During this process, large amounts of parameters are
generated and making a proper diagnosis becomes a knowledge
handling problem. CDSS help physicians overcome knowledge
handling problems that they face in their work. During diagnosis
processes, CDSS analyze data from medical tests and present
results to physicians such that they can diagnose properly in a
easily and efficiently from.

In this section, we present a CDSS that (i) supports physicians
during diagnosis of AD and (ii) offers tools needed to fulfill the
aforementioned need of discovering relevant parameters for this
diagnosis. In fact, this CDSS is based on the experience acquired or
learned from the user, and it enables the discovery of new
knowledge in the system and the generation of new rules based
on experience that drive the reasoning. Among several
approaches that can be used to endow the proposed system with
the ability of adapting and discovering rules when special condi-
tions are encountered, we have chosen the Set Of Experience
Knowledge Structure (SOEKS) and the Decisional DNA (DDNA) [6]
[29] in their OWL form [31] as a novel way of attaining this
behavior. These elements will allow the system to capture
previous experiences and discover new knowledge using bio-
inspired techniques and the reasoning capabilities offered by
ontologies, for instance, the fast query systems presented by Toro
et al. [15].

In our system, the experience of the physician while using our
system is stored and, with this experience, the system is able to (i)
make explicit the implicit knowledge contained in the system and (ii)
generate new criteria to drive reasoning. Supporting our system are
widely used ontologies within the medical domain; they are: the
Semantic Web Application in Neuromedicine (SWAN) [32] and
the Systematized Nomenclature of Medicine Clinical Terms
(SNOMED CT) [33].

The CDSS system is based on Decisional DNA OWL based for
the knowledge representation and a semantic reasoning process
that inferred diagnoses for patients. The semantic reasoning was
driven by a static set of production rules provided by AD experts.
Its architecture consists of 5 layers: Data Layer, Translation Layer,
Ontology and Reasoning Layer, Experience Layer and Application
Layer. Among these layers, the Experience Layer is based on the
SOEKS and the Decisional DNA, and it is in charge of storing users’
experiences (the methodology and criteria used for the diagnosis
process), in forms that represent FDE in an explicit way. This
experience is then applied, and new knowledge and new rules
that drive the diagnosis are discovered by the system. In this way,
ist for the experimental viewer.
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physicians are suggested not only diagnoses but also new or
modified rules to achieve those diagnoses.

The implementation of the CDSS Decisional DNA-based is
being developed as part of the Spanish MIND project (http://
www.portalmind.es), which follows a multidisciplinary approach
for the early detection of AD. Clinical trials are being performed
on more than 350 patients in three hospitals of Valencia (Spain),
with the intention of gathering information about the early
diagnosis of AD.
3.3.1. Evolving the set of rules by the means of Decisional DNA

As a type of decision-makers, medical experts also base their
current decisions on lessons learnt from previous similar situa-
tions, which in the context of Alzheimer diagnosis are represented
by studies performed on several groups of patients under differ-
ent contexts. In spite of the wide range of scenarios considered by
medical studies, the rules and conditions that derived from them
may prove to be insufficient, too general, or simply not relevant in
scenarios with very particular characteristics. This situation
clearly illustrates the need for an automated solution capable of
determining adaptability in the set of rules of the diagnosis
system, with the purpose of increasing the accuracy and effec-
tiveness of the diagnoses made by medical experts. The use of
Decisional DNA takes existing decisions made by experts stored in
the system and feed them into a SOEKS/DDNA ontology. Addi-
tionally, each decision is translated into its corresponding SOEKS
equivalent, and then the system will be able to infer new rules in
three categories:
�

P
e

Fine tuned rules: combination of existing rules to generate a
new one.

�
 Deprecated rules: rules are deemed not to be relevant any-

more based on previous experiences.

�
 Original rules: rules discovered by the system which were not

apparent to the experts.

In order to successfully accomplish the system’s aim, some
considerations were taken into account. Firstly, rules in the
Ontology and Reasoning layer are defined by experts, in other
words, they are heuristics representing the experience of several
medical practitioners, which means they are decisions and when
translated into SOEKS, they were considered as FDE. Second, for
all knowledge stored in the ontologies, several restrictions on
variables possible values have been defined, however, not math-
ematical functions that relate the different variables in an
independent/dependent form were defined.

Initially, the system requires data from the different trials
performed on the patients. Such data is gathered via a web-based
system called ODEI. When new data is loaded, the MIND Ontology
is instantiated using the information provided by users through
ODEI’s user interface. Then, a semantic reasoning process based
on the initial set of production rules is executed with the
objective of inferring diagnoses. An evaluation of the inferred
diagnoses and decisions on the appropriate course of action are
made by the physicians; their final decisions are loaded to the
Decisional DNA ontology. As described previously, a translation
and inference process between the SOEKS/Decisional DNA ontol-
ogy is required. However, performing such translation process on
a 1-on-1 basis is not practical, it is time consuming with a large
number of concurrent users, and may lead to inaccurate results
when the system is ‘‘learning’’ (i.e., has little or no experiences in
its initial state). This last issue is caused because an accurate
inference requires the evaluation of similar elements or situa-
tions; therefore, numerous experiences are preferred in order
to execute the automated inference process. Consequently, a
lease cite this article as: C. Sanin, et al., Decisional DNA: A m
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micro-batch approach is proposed, similarly to the ones used in
data warehouses that allows processing a reasonable amount of
data without the heavy workload of large batch processes, or the
inherent infrastructure complexity required for real-time or near
real-time processing. Additionally, processing small batches of
knowledge allows the system to deliver better inference results
even when the system is still ‘‘learning’’. The batch process
loading the Decisional DNA ontology has two main steps, trans-
lating and inferencing. The translation process uses a parser in
charge of reading the knowledge from the MIND ontology,
extracting the details of all OWL classes, individuals and attri-
butes and inserting them into the SOEKS-OWL form using the
SOEKS API. This API is a Java-based library that provides the
means to create manipulate and import/export SOEKS in XML or
OWL formats. The parser comprises different sub modules, each
module creates an image in memory of the SOEKS that is being
processed, which is written to the Decisional DNA ontology once
the extraction is finished. To illustrate the functionality of the
modules, we use an example production rule. It is assumed that
the variables and restrictions in the following example are
already stored in the MIND ontology:
IF((CLASS NeuropsychologicalInformation WITH THE
PROPERTY NeuropsychologicalInformation_FAQPfef-
fer GREATER THAN 5)) AND (CLASS Neuropsychologica-
lInformation WITH THE PROPERTY
NeuropsychologicalInformation_GDS SMALLER THAN 6)
THEN (( CLASS Diagnosis WITH THE PROPERTY Diagno-
sis_ReasonedDiagnosis EQUALS TO ProbableAlzheimer
) AND (CLASS Diagnosis WITH THE PROPERTY Diagnosis_-
ReasonedRisk EQUALS TO Low))

In the first place, the class module reads every class in the
MIND ontology and translates them into individual SOEKS. In the
example, we have the classes NeurophsycologicalInformation and
Diagnosis; as a result, two SOEKS instances (i.e., two experiences)
are created, as follows:
SOEKS NeurophsycologicalInformation ¼new SOEKS();
Category cat¼new Category();
cat.setArea(’’Neuro Psychological Informa-

tion’’);
NeurophsycologicalInformation.setCategory(-

cat);
SOEKS Diagnosis ¼new SOEKS();
cat.setArea(’’Diagnosis’’);
Diagnosis.setCategory(cat);

Each of these experiences has different variables. For the
NeurophsycologicalInformation class, the variables are
FAQPfeffer and GDS, and for the Diagnosis class, the variables
are ReasonedDiagnosis and ReasonedRisk; therefore, the
variable module creates two variables as shown below:
Variable FAQPfeffer ¼new Variable(’’FAQPfef-
fer’’,Variable.VARIABLE_TYPE_NUMERICAL,causeVa-
lue,effectValue,unitType,true);

Variable GDS ¼new
Variable(’’GDS’’,Variable.VARIABLE_TYPE_NUMER-

ICAL,causeValue,effectValue,unitType,true);
Variable ReasonedDiagnosis ¼new Variable(’’Rea-

sonedDiagnosis’’,Variable.VARIABLE_TYPE_CATEGOR-
ICAL,causeValue,effectValue,unitType,true);

Variable ReasonedRisk ¼new Variable(’’Reasone-
dRisk’’,Variable.VARIABLE_TYPE_CATEGORICAL,cau-
seValue,effectValue,unitType,true);
ulti-technology shareable knowledge structure for decisional
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Once the SOEKS and its variables are created, the constraints
module will read the OWL properties and constraints for every
variable and construct the constraints elements in memory. For
example, according to the production rule, FAQPfeffer is greater
than 5; therefore a constraint based on this knowledge should
look like this:
Constraint FAQ_Constraint¼new Constraint();
FAQ_Constraint.value(5);
FAQ_Constraint.symbol(’’4’’);
FAQ_Constraint.variable(FAQPfeffer);

This process is repeated for every constraint and variable in
the system. The last step before inserting the experience into the
Decisional DNA ontology is to link all the elements of each SOEKS
together. To do this, we create the different sets of the SOEKS. The
following code fragment illustrates the process with the Neu-

ropsychologicalInformation SOEKS.
VariableSet varSet¼new VariableSet();
varSet.add(FAQPfeffer);
varSet.add(GDS);
NeurophsycologicalInformation.setSetOfVaria-

bles(varSet);
ConstraintSet consSet¼new ConstraintSet();
consSet.add(FAQ_Constraint);
NeurophsycologicalInformation.setSetOfCon-

straints(consSet);

Finally, the translation process writes the SOEKS in an OWL
ontology. This is done by simply calling the soeksToOWL()

method provided by the SOEKS API. After all the experiences in
the batch are translated using the ideas described before,
the inference process is executed to discover new rules according
to the categories described above. Then, assuming the existence
of more knowledge in the system, under specific conditions
and after validation against other experiences, the inference
process is able to determine that the values obtained from the
Folstein test and the probabilities of suffering from AD are related.
As a result, the original rule discovered by the system is as
follows:
IF ((CLASS NeuropsychologicalInformation WITH THE
PROPERTY NeuropsychologicalInformation_MMSEfol-
stein SMALLER THAN 16 ))

THEN ( CLASS Diagnosis WITH THE PROPERTY Diagno-
sis_ReasonedDiagnosis EQUALS TO ProbableAlzheimer)

As a result of the extension of the system with the Experience
Layer, using SOEKS and Decisional DNA, the system is now able to
discover new knowledge and rules using bio-inspired techniques,
and the reasoning capabilities offered by ontologies. By using
these methods, the system acts as an advisor for physicians and
supports their decisions.
4. Conclusions

Along this paper, we have focused on the technical elements
required to implement Decisional DNA and SOEKS on different
technologies and showed that these novel knowledge representa-
tions can be shared or interpreted in several ways across different
domains. Additionally, we present different conceptual strategies
that might be used to exchange knowledge represented as Decisio-
nal DNA and SOEKS, with the goal of supporting complex decision-
making processes by autonomous and intelligent means, regardless
Please cite this article as: C. Sanin, et al., Decisional DNA: A m
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of the underlying technology. Once Decisional DNA is collected, the
possibilities are increased if converted into a standard language such
as XML or OWL. Thus, Decisional DNA can offers transportability and
shareability characteristics, and therefore, collected experience can
be reused in different systems that conform to the Decisional DNA
specifications. Additionally, once the Decisional DNA is constructed,
the experience repository acts as an enhancing tool for different
systems by adding predicting capabilities and facilitate knowledge
engineering processes inside decision making.

Decisional DNA and SOEKS can indeed improve the current
state of the art of Knowledge Engineering Applications. The
benefits of using the Decisional DNA are evident; however, we
believe that some challenges are still open. Some of such
challenges are the testing of Decisional DNA in more technologies
as well as on multimedia applications in a way that can collect
FDE related to images and sound.

Decisional DNA enables us to distribute experience among
different applications, and in that form, and through a decisional
community, organizations that are expanding the knowledge
management concept externally, can explore new ways to put
explicit classifiable knowledge in the hands of employees, custo-
mers, suppliers, and partners.
5. Future work

In terms of software agents, our intention is to develop a
platform that takes into account the aforesaid ideas and concepts
as the driving force that will help us create a knowledge market
using SOEKS and Decisional DNA. There have been some work and
experiments as first steps toward the development of such plat-
form, and further refinement, validation and testing is being
carried out. Another topic in the future research agenda for the
E-Decisional Community is Decisional DNA appropriation, which
means using the elements defined above we plan to determine
how new knowledge is merged with the one that an entity
already possesses. Determining the quality of knowledge and
user satisfaction, among other criteria, will support this process.
Desirably, once agents have assimilated knowledge after several
interactions, the answer of a query should eventually converge to
a common and globally accepted solution.

In regards to embedded systems, we are using robotics as test
platforms. We have worked in an approach that allows a robot to
capture and reuse its own experiences by applying Decisional DNA.
Since the Decisional DNA applied to robotics is at its early develop-
ment stages, there are further research and refinement remaining to
be done, some of them are: Refinement of the requirements of
Decisional DNA for robotics, such as inter-process communication
strategies, life cycle management and protocols need to be explored
in detail; enhancement of the compactness and efficiency of
Decisional DNA: optimization of algorithms, evaluation and com-
parison of the different strategies for Decisional DNA repository
storage and query; and, technical review of distributed systems and
middleware to determine their viability for a future implementation
of the Decisional DNA applied to robotics. Including shareability of
gained experience among different robots.
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