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Abstract We have detected the lack of a widely accepted knowledge representation

model in the area of Blood Vessel analysis. We find that such a tool is needed for

the future development of the field and our own research efforts. It will allow easy

reuse of software pieces through appropriate abstractions, facilitating the development

of innovative methods, procedures and applications. After the identification of the key

representation elements and operations, we propose a Vessel Knowledge Representation

(VKR) model that would fill this gap. We give insights on its implementation based on

standard Object Oriented Programming (OOP) tools and paradigms. The VKR would

easily integrate with existing medical imaging and visualization software platforms,

such as ITK and VTK.

Keywords Vessel Analysis · Knowledge Representation · Medical Image

1 Introduction

Vascular-related diseases are among the most important public health problems nowa-

days. Heart and cerebrovascular diseases are respectively the first and third cause of

death in 2006 in the U.S.A [34]. Malignant tumors are the second cause of death,

and their growth is directly associated with vessel recruitment and angiogenesis [35].

Besides, vascular diseases are one of the principal causes of death and disability in

people with diabetes [21]. These facts are enough justification for the research efforts

providing a better understanding of the structure of the vascular system and related

processes and diseases, and leading to any improvement of diagnostic and intervention

procedures.
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The vessel structure of the blood circulatory system is one of the most complex

structures of the body. Blood vessel anatomy has been studied from castings and in-vivo

examinations in order to build models that provide valuable insight into the normal

and variant circulatory anatomy and that helps to understand the causes, evolution

and outcome of several vascular-related diseases. However, many answers to simple

questions about vascular morphology and angiogenesis remain open[85].

Recent advances on medical imaging provide high resolution images of the vessel

structures, so that the generation of accurate patient-specific geometric in-vivo vessel

models [6] and related quantitative measurements has become feasible. This has re-

sulted in a wide range of new applications for computer-assisted diagnostic, intervention

and follow-up of vascular-related diseases. Image-based vessel analysis provides valu-

able information for planning and navigation during interventional procedures, both to

avoid damaging vital structures and to use vessels as anatomical landmarks for orien-

tation and localization of structures of interest. Moreover, comprehensive image-based

vascular analysis has opened new horizons in the discovery and understanding of the

vascular structure and underlying processes, such as angiogenesis and blood circula-

tion, that may help to understand the evolution of diseases in which vascular structures

play an important role [9] [86]

The diversity of medical and biological applications and the availability of huge

amounts of high-quality information for vessel analysis has raised the problem of vas-

cular knowledge representation in its full multi-faceted complexity . The purpose of

this paper is to discuss appropriate knowledge representation and manipulation tools

for vessel structures which could serve as a common ground for the development of

compatible and reusable systems. We frame this study in the diversity of applications

found in the literature, and in our actual research experience [57,50,61,60,58,62,59].

We contribute a Vessel Knowledge Representation (VKR) model that, due to its effi-

ciency and versatility, may be used for a wide variety of image-based vessel extraction

schemes and vessel analysis applications. This model aims to fill an information man-

agement gap that we have detected in the literature dealing with vessel structures

computerized extraction and analysis of vascular structures.

We have in mind two objectives when proposing the Vessel Knowledge Represen-

tation (VKR) Model :

1. to ease the definition of new algorithms, providing a kind of road map of tools and

applications.

2. to allow the easy reuse of previously generated pieces of software. The visualiza-

tion of image processing as a kind of pipeline, allows the visualization of software

reutilization as building blocks in this pipeline. This approach is common to some

other medical imaging processes, like brain mapping.

The structure of the paper is as follows. In Section 2 we provide a review of the topics

of interest related to the definition of the VKR model: knowledge on vascular mor-

phology, vessel-related diseases, angiographic diagnosis, vessel extraction and analysis

techniques from these images and corresponding applications. As a corolary, in Section

3 we describe the requirements for a Vessel Knowledge Representation model, which

is described in Section 4. Finally we provide some implementation details (Section 5)

and some final conclusions (Section 6).
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2 Background Facts and Motivations

Here we review some background ideas about Vascular Morphology that influence the

definition of an abstract vessel representation. Some facts of vascular related diseases

serve as an introduction for the main applications in the field of modelling and visual-

ization of vessel structures. Next, we provide an overview of the angiographic modalities

for image-based diagnostic of vascular-related diseases, as well as the applications and

vessel information which is considered relevant for diagnosis in the clinical practice.

We will comment on the current computational techniques for vessel information ex-

traction from the angiographic images. Finally we discuss the need for a knowledge

representation model in this area.

2.1 Vascular Morphology

The efficient distribution and collection of nutrients requires a branching tree structure

for the blood vessels, except at the level of the capillaries. Vascular networks are asym-

metric tree structures, in which each parent branch, with Diameter D1, is bifurcated

(except in very rare cases) into two branches with smaller diameters (D2 and D3).

The tree may be also locally unbalanced regarding the diameters of child branches

(D2 6= D3) and the number of bifurcations along each path from the root to the leaves

of the each subtree [42]. Geometric models for the description of vessel bifurcations

were first proposed by Murray [67,90] and later by Oka and Nakai [71] specifying

relationships between vessel widths and angles based on physiological observations.

Recent studies [43,110] have discovered that the construction of the vascular trees

obeys a set of scaling laws which minimize both, the energy cost of fluid transporta-

tion, which decreases as the diameters increase, and the energy cost of construction

and maintenance of the vessel structure, which increases with larger diameters. These

scaling laws are morphometric relationships between the arterial volume, cumulative

length, and diameter of a branch and its distal subtree. In particular, it can be seen

that, in order to minimize the power needed to maintain the blood circulation opera-

tion over the network, the diameter relationship between a parent branch and its two

child branches is:

D
k
1 = D

k
2 + D

k
3 , (1)

with average values of k typically between 2 and 3.

With respect to the vessel sections, in a simplistic approach the vessel sections

can be assumed to be circular but, in fact, most of the times it has some smooth

irregular round shape. The thickness of the vessel wall is non-negligible, but most

imaging modalities only depict the vessel lumen, which is the space where the blood

flows. Few imaging modalities, such as Intravascular Ultrasound (IVUS), can image

the vessel wall.

In order to estimate the complexity and branching frequency of the human vascu-

lar trees [22,93,36,38,37,39], several studies used and adapted the Strahler order of

branching complexity [95], defined originally for hidrology studies but applicable to

all branching, tree-like structures. The original Strahler ordering system follows these

rules:

– The smallest branches are defined as of order 1.
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– When two vessels of the same order join into a confluent vessel, the order of the

confluent vessel is increased by 1.

– When a vessel of order n joins a vessel of order lower than n, the order of the

confluent vessel remains n.

However, the use of the original order as defined by Strahler encountered the problem

of diameter overlapping among vessels of consecutive orders when applied to vessel

morphometry of very large trees. In order to take into account the vessel radius, the

Diameter-defined Strahler Ordering System was defined [44]. This ordering system in-

cludes a new rule:

– When a vessel of order n meets another vessel of order ≤ n, the confluent vessel is

assigned order n +1 only if its diameter exceeds that of the lower order vessel by a

certain amount, which is determined by the statistical distribution of the diameters

of each order. Typically, assuming statistical normality, the threshold will be the

mean plus and minus one standard deviation.

In practice, this calculation is iterative, since the diameter distribution has to be recal-

culated when the order is assigned. Applied to haemodynamic studies, this enhanced

ordering system provides a reasonable and systematic way to handle main arteries that

vary considerably in diameter along their length, such as the main pulmonary artery.

In order to represent the connectivity of asymmetric branches and to distinguish

serial and parallel branches of the same order, three new concepts where introduced

in [44]: Vessel Segment, Vessel Element and Connectivity Matrix. A Vessel Segment,

corresponding to a branch, is the portion of vessel between two bifurcations. A Vessel

Element is defined as a set of serially connected segments of same order. Statistical

data of diameters and lengths are obtained for segments and elements. Haemodynamic

flow circuits are composed of vessel elements. Ratios of segment/element can also be

calculated for each order. The Connectivity Matrix is an upper triangular matrix, in

which each element C(m, n) is the ratio of the total number of elements of order m

whose parents are elements of order n divided by the total number of elements of order

n. In a morphometric study of the human lung vasculature casts [39] it was found that,

in pulmonary arterial and venous trees, the relationship between the order of a branch

[44] and its diameter follows closely a logarithmic scale. They found a maximal order

of 15 for both arterial and venous trees of the human lung.

2.2 Vascular-related Diseases

There are two main types of vascular accidents which occur with death consequences in

about 5% of the population over 65 years-old: haemorrages and embolysms. Haemor-

rages can be produced by vessel ruptures due to aneurysms. An aneurysm is a local

growth of the vessel diameter due to weakening of the vessel wall that suffers increased

local elasticity. Aneurysms occur most commonly in arteries at the base of the brain

(circle of Willis) and in the thoracic and abdominal aorta. Embolysms and throm-

bosis are obturations of the vessels as a consequence of a progressive abnormal local

reduction or the vessel diameter or stenosis (pl. stenoses). There are several causes or

conditions that lead to stenosis such as atherosclerosis, birth defects, diabetes, infec-

tion, inflammation or ischemia among others. Atherosclerosis is a condition in which

the arterial wall thickens, due to the accumulation of a mixture of substances such as
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calcium, cholesterol fibrin and macrophage blood cells, which causes stenosis or occlu-

sion of the vessel or aneurysms due to excessive compensation by enlargement of the

vessel. The possibility of performing early diagnoses of aneurysms, stenoses or other

vascular accidents may avoid further complications and thus, will decrease the mor-

bidity and mortality associated to vascular-related diseases. There exists evidence [7]

that regions of the vessel wall exposed to disturbed flow, such as at bifurcations and

regions of high curvature, are prone to the initiation and development of atherosclero-

sis. Identification of such regions by geometrical analysis may provide further insight

into the development of this disease.

There are some pathological conditions for which blood vessels play an important

role in their evolution. The most important case is the vascularization of malignant

tumors. In order for the cancer cells to obtain appropriate nutrients to grow and to

get rid of waste material, tumors need to be vascularized. Tumors achieve this by

several methods such as cooption (use of pre-existing vessels) and angiogenesis [35].

Furthermore, most of the conditions induce changes in vessels at different levels. Cancer

induces the development of abnormal, tortuous vessels [27], that can be reverted by

successful treatment [40]. Images of the retina may provide information on pathological

changes caused by local ocular diseases and early signs of certain systemic diseases

[5,109,19,104]. Other examples may be hypertension and diabetes, which induce the

narrowing of the arteries. For example, a recent study has shown that retinal vessel

microvascular structure is associated to risk of mortality from ischemic heart disease

and stroke [104].

2.3 Image-based Diagnosis

Some comments on the imaging modalities are needed in order to understand their abil-

ity to image the vessels, their possible application in clinical tools and research studies,

and the requirements that the Knowledge Representation Model (KRM) proposition

needs to take into account. The diagnostic support provided by the vessel structure

images is further made concrete by the specification of precise attribute measurements.

These attributes will be the key elements of the KRM, so a justified introduction is

mandatory.

2.3.1 Angiographic Modalities

Nowadays, there are many medical imaging modalities and protocols devised specifi-

cally for the visualization of vessels, that are generally denoted with the term angiog-

raphy. Some of them include the injection of a modality-specific contrast agent that

enhances the visualization of blood vessels1.

Digital Substraction Angiography (DSA) is an evolution of the original X-ray An-

giography (XA) technique, that digitally subtracts a pre-contrast image from a con-

trasted images obtained after injection of a contrast agent. Until recently, DSA has

been considered the standard vessel imaging technique in many diagnostic and inter-

ventional procedures, such as assessment of renal and carotid artery stenosis, cerebral

1 The first coronary X-ray angiography (XA) was performed accidentally by Sones and
Shirey in 1958 [94]. While injecting contrast material in the right ventricle, the catheter slipped
into the right coronary artery and for the first time discovered the advantages of imaging the
vessels.
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aneurysms, acute limb ischemia or arterio-venous malformations (AVMs) among oth-

ers. The main advantage of DSA imaging is that it allows real-time, live visualization

of very thin vessel structures, and thus can be used during interventional procedures.

However, DSA involves radiation exposure, is a 2D modality and, more importantly,

is an invasive procedure and thus, it has an associated risk of small complications.

DSA is gradually being replaced by some non-invasive 3D imaging techniques, such as

Computerized Tomography Angiography (CTA) and Magnetic Resonance Angiography

(MRA).

CTA images are standard Computerized Tomography (CT) images generated by

contrast injection simultaneously with the image acquisition. Depending on the syn-

chronization of the image acquisition with the flood flow, different contrasts may be ob-

tained, such as those corresponding to the arterial phase, venous phase, post-constrast

phase, etc., that depict several stages of the contrast inflow into the vessels. Some

of the applications of CTA imaging are analysis of stenosis in renal arteries, aortic

aneurysms, brain aneurysms or AVMs, atherosclerosis assessment and detection of

vein clots in legs. The main drawback of the technique is the radiation dose that the

patient receives during the scanning procedure. With the advent of multidetector tech-

nology and improved computational image reconstruction schemes, acquisition haves

increasing spatial resolution obtained in faster times with less radiation dose.

MRA comprises several techniques based on Magnetic Resonance Imaging (MRI).

The techniques are based either on imaging flow effects or on using contrast agents, like

in Constrast-enhanced MRA (CE-MRA). Vessel images can also be obtained by ade-

quate pulse sequences without contrast. Time-of-flight MRA (ToF-MRA) uses a short

echo time and flow compensation to enhance contrast of blood vessels. It is commonly

used in the head and neck, where it gives very high resolution image, but has prob-

lems in areas of slow blood flow such as aneurysms. Phase-contrast MRA (PC-MRA)

manipulates the phase of the MR signal providing both, the vessel image and the corre-

sponding flow speed. PC-MRA has larger acquisition times, since the techniquerequires

acquisitions in the three basic orientations (axial, sagittal and coronal). Recent MRI

techniques include Fresh Blood Imaging (FBI) [66] and Susceptibility Weighted Imaging

(SWI), also called BOLD Venography [83,107]. The main advantage of MRA compared

to CTA is the absence of radiation exposure while maintaining very high image quality,

though spatial resolution is lower in MRA than in CTA. However, as acquisition times

are larger, motion artifacts are more likely to appear.

Vessel Ultrasound imaging is a non-invasive procedure that allows live blood ves-

sel visualization. Combined with the technique of Doppler ultrasound, it also gives

measures of blood flow. It can help the physician to visualize and assess, stenoses,

aneurysms, varicose veins and many other vessel accidents. The main problem is its

low signal-to-noise ratio which gives poor image quality.

Optical imaging can also be used to image vessels, as in Retinal Fundus images,

where vessel analysis is used in the assessment of retinopathy and as an early sign of

systemic diseases [5]. Other recent techniques, such such as non-invasive Near-infrared

(NIR) imaging can be used for visualizing vessels through the skin [30].

Among the modalities that can provide vessel-related information other than the

lumen, Intravascular Ultrasound (IVUS) provides a means of imaging the vessel wall

by using a catheter equipped an ultrasound transducer. Another recent development is

the study of the mechanic properties of vessel wall by Magnetic Resonance Elastography

[105].
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Fig. 1 Examples of Angiographic Modalities. From left to right XA of the coronaries, DSA
of the brain vessels, MRA in venous phase and CTA showing stent after endovascular aortic
aneurysm repair.

2.3.2 Applications of Vessel Analysis

As the technology of vessel imaging evolves, improving the quality and quantity of

information about vessel structure that can be obtained, the applications have also

flourished. Here we enumerate some of the current ones, that will motivate the knowl-

edge representation and manipulation tools to be discussed below.

– Surgery

– Surgery planning: allows the surgeon to evaluate the alternative actions and

prepare for the intervention [89].

– Planning and navigation [99] during interventional therapy and biopsy : here

vessel structures are critical by themselves, but also serve as spatial reference

or anatomical landmarks for planning and navigation. It has strong real-time

requirements, because the vessel structure may be changing during the inter-

vention. Sometimes it requires fusion of diverse imaging modalities to improve

the interaction.

– Training of surgeons and interventional radiologists using annotated virtual

reality systems [98], virtual atlases, etc.

– Follow-up after intervention to monitor the evolution of the affected tissues and

areas [50].

– Cancer studies

– Non-invasive estimation of tumor malignancy and growth by vessel quantifica-

tion and localization of abnormal vessel clusters [15,16].

– Simulation and study of vessel angiogenesis, which is an important factor in

malignant tumor growth [27].

– Diagnosis of vessel-related diseases by quantification of vessel attributes

– Characterization of retinal-related diseases such as diabetic retinopathy or retinopa-

thy of prematurity by induced changes in vessel attributes such as diameter and

tortuosity [19].

– Quantification of stenosis and aneurysms [41].

– Image registration using vessel as landmarks [63]. This is typically used in non-rigid

registration [48].

– Studies of vessel morphometry [39] and haemodynamics [96]

– Construction of geometric models of vessel trees [42] which allow direct visual

diagnosis and fast and interactive visualization and exploration, and provide

by themselves a good understanding of the (patient-specific) vessel network

structure and morphology.



8

– Discovering of statistical properties of attributes of vessels in healthy and dis-

eased populations [17].

– Performing comparative studies, possibly with the help of anatomical atlases,

for assessment of vascular diseases, malformations and abnormalities.

– Simulation of arterial flow and pressure in organs that cannot be accessed by

direct measurement [88], in aneurysms [101] or for detecting regions of turbulent

flow prone to atherosclerosis, such as bifurcations and high-curvature regions

[7].

2.3.3 Vessel Attributes

The main concern in this section is about measurements that can be somehow obtained

from the images and used as a basis for diagnosis or any of the applications enumerated

above. These measurements are the relevant attributes of the KRM proposed below

for the feasible applications, therefore their identification from the literature survey is

most important step in the KRM definition. Qualitative attributes are not integrated in

any quantitative model, though they can result from computational image processing.

They are used by the clinician to perform diagnoses or intervention decision upon

their direct inspection. Structural attributes refer to the morphological and structural

description of the vessel network. They are mostly used for intervention planning and

some diagnoses based on structural morphology and complexity, like angiogenesis. The

quantitative description of each vessel branch and bifurcation are the bricks of the

decision support and model building processes.

Qualitative Vessel Attributes

– Vessel Shape: provided by direct visualization of volumes containing (contrasted)

vessels, or surface reconstructions of the vessel walls.

– Vessel Section Shape: needs some processing and abstraction from the image in

order to obtain an adequate representation. It may include the vessel wall or not,

depending on the imaging modality.

– Anatomical Location:more important than the absolute anatomical position of the

vessels is the relative position of the vessels with respect to adjacent organs or

structures of interest, specially pathological structures. It may require some image

registration techniques to obtain the corrected relative location.

Structural Vessel Attributes

– Vessel Network Topology : the topological structure and interconnections of the

vascular network.

– Total Number of Branches: when restricted to a space, it is a measure of vessel

density.

– Depth Level : this is the level of a branch with respect to the root branch of the

vessel network, that is, the minimum number of bifurcations that separate the

current branch from the root branch.

– Strahler Number : a numerical measure of branching complexity [95,44].

– Branching Frequency : the number of bifurcations and distance between them.

– Ratios of Branch Radii : several measures can be obtained as ratios of branch radii

in a bifurcation. The branching ratio and the area expansion ratio are related to

the portion of flux going into each branch in a bifurcation [4].
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Quantitative Vessel Attributes

– Diameter : is an immediate indicative of an aneurysm or stenosis.

– Length: though the absolute length of a branch may not be significative by itself,

and its significance is relative, it can be used to calculate other important properties

such as tortuosity.

– Size/Volume: volume and size of the vessels in a region of interest provides quan-

titative measurements of vessel growth.

– Tortuosity : is a property of a curve being twisted, having many turns. There have

been several attempts to quantify this property [102]. Tortuosity is a sign of vessel

abnormality usually associated to disease. Bullitt et al. [17] distinguish three types

of blood vessels tortuosity:

– Type 1 : where vessels elongate and become tortuous. This may occur in condi-

tions such as retinopathy, prematurity, hypertension and aging.

– Type 2 : vessels that make frequent changes of direction and may appear as a

“bag of worms”, as occurs in arteriovenous malformations and within hypervas-

cular tumors.

– Type 3 : high-frequency low-amplitude oscillations or ’wiggles’, associated to the

neovascularity of malignant tumors.

– Surface Area: as arteries bifurcate and convert into arterioles and capillaries, the

total surface area for the same blood supply increases.

– Section Area: this is the area of the vessel cross-sections, which lie in the normal

plane to the medial line or centerline.

– Blood Velocity : differences in blood velocity can be measured or simulated in order

to find stagnancy regions or abnormal circulation patterns.

– Elasticity : of the vascular walls that may change due to plaque accumulation or

the presence of aneurysms.

2.4 Vessel Extraction and Analysis in Angiographic Images

The number of proposed algorithms for vessel detection and extraction from angio-

graphic images is huge [52,73,45,18,26]. The approaches differ in the assumptions made

about the shape and structure of the physical vessels, the medical imaging modalities,

the mathematical models describing the vessels, the image features used to detect them,

and the algorithmic schemes to extract them. In a recent outstanding review [52], ves-

sel lumen segmentation techniques are categorized according to the underlying models

(assumptions on appearance and geometry of the real vessels as shown in the images)

image features (quantitative image metrics used to detect the vessels), and extraction

schemes, (the algorithm used to extract the vessels, according to the assumed models

and defined image features).

We proceed to describe the most important angiographic image-based vessel mod-

elling and extraction (segmentation) techniques, emphasizing the most salient elements

that are are explicitly modelled in our knowledge representation framework.

2.4.1 Vessel Models in Image-based Analysis

In image-based analysis of vascular networks, there are two main types of assumptions

and models used for vessels: photometric models and geometric models. Photometric
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models deal with the generation of vessel images in the corresponding angiographic

modalities. They are modality dependent, used for image processing, and outside the

scope of this paper. On the other hand, geometric vessel models describe elements such

as branches, corresponding cross-sections, bifurcations and relationships in the vessel

tree. They are relevant to the definition of our knowledge-based model which is more

influenced by geometrical considerations.

Surface-only models of vessels, defined by polygonal meshes, which may be obtained

directly from vessel segmentations by polygonal reconstruction [28], are not relevant to

our endeavour because they are rather difficult to manipulate and useless as the basis

for structural analysis and representation.

Vessels are elongated structures, except in some very specific (pathological) cases.

For this reason, one of the most common approaches is to use the centerline as the

main shape descriptor. The centerline corresponds to the medial loci of the vessel [10],

centered inside the lumen, and constituting the centroid of successive cross-sections.

The centerline allows to describe objects in terms of a tree of “elemental figures” [79].

However, it is very sensitive to vessel boundary details, so there has been an extensive

research in algorithms that obtain smoother centerlines, such as Voronoi skeletons

[69], shock loci of reaction-diffusion equations [91], “cores” (height ridges of medialness

functions) [78] and distance transforms [12].

From the vessel’s centerline, the external contour can be modelled as a general-

ized cylinder [3], that is, a tubular shape with a curvilinear axis (the centerline) and

varying width along its length, which is usually defined by the cross-sections along the

centerline. Different shape descriptors can be used to define these cross-sections (see

figure 5). Constraints can be imposed on the successive sections in order to maintain

spatial coherence when producing 3D models of vessels [70]. Sometimes the external

surface of the vessel can be modelled explicitly [28] or implicitly [97] [7] from the vessel

centerline. A mesh surface model of the vessel wall can also be obtained by sweeping

the cross-sectional contours [47,68].

The tree structure of vessel networks is naturally described in the form of a graph,

more specifically as trees (directed acyclic graphs) [32,14,89,2,76,64]. A vessel graph

is obtained from the segmentation by skeletonization (see 2.4.2) and analysis of line

structures. The graph description is useful for operations such as pruning, trimming,

correcting and reconnecting of vessel branches via graph-based techniques after initial

extraction. Graph-based representations can be mapped back into visual represen-

tations providing a better insight into the vascular structure by means of symbolic

renderings [32] or surface reconstructions from centerline and section data [26].

2.4.2 Extraction Schemes

Because of its central importance, we dwell on the methods for centerline extraction

found in the literature. Note that initial vessel volume segmentation can be obtained

by techniques such as simple thresholding, region-growing [11], wave tracking [82] or

vessel-adapted level-sets methods [55] among others.

Centerline Extraction by SkeletonizationCenterlines can be extracted by 3D skeletoniza-

tion of an initial volume vessel segmentation. Thinning algorithms [75] are based on

iteratively removing points on the border of the object that do not modify its topology

(simple points). The remaining set of points is the topological skeleton. The problem

is that they usually provide a centerline at a pixel/voxel level. Subvoxel accuracy may
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be obtained by other methods, such as flux of gradient vectors of distance functions

[12].

Direct Centerline Extraction In some cases, a rough estimation of each slice’s centerline

point is enough to provide an approximate segmentation of the vessel tree, that may be

useful for a more refined segmentation. This can be done by obtaining complete surfaces

from the centerline, or on a section-by-section basis, by fitting models of sections or by

extracting the section image planes and obtaining the boundaries by segmentation as

in [49] (Figure 5).

The first approach to centerline extraction is interactive manual selection of center-

line points and interpolation with or without an underlying mathematical curve model,

such as a B-spline. However, this method is not very precise, and automatic algorithms

are desiderable.

Direct centerline tracking algorithms start from a initial point or set of points,

selected manually or automatically in the centerline or its vicinity, and try to iteratively

extract consecutive vessel centerline points, usually by estimating vessel direction, until

the end of the branch or tree is reached. Most of these methods also estimate the local

vessel normal (section plane) and scale (approximate diameter) and differ mainly in the

image features used for centerline tracking, in their ability to handle bifurcations and

in their robustness to noise. We have found in the literature methods based on tracking

multi-scale medialness2 features [8], analysis of connected components of spheres [20],

Kalman filtering [106], moments of inertia [33] and Bayesian tracking [51] among others.

Centerlines can also be obtained as minimum cost paths (geodesic paths) between

start and end points detected on a branch or on the whole vessel tree. The inverse

of the features or metrics used to estimate medialness measures can be used in this

case as cost functions [103], minimized by optimization algorithms such as Dijkstra’s

shortest paths [24], graph-based schemes [72,103], or the Fast Marching algorithm [1]

used in [23].

Global Centerline Detection Centerlines can also be obtained by calculating vesselness

or medialness features in the whole region of interest and by obtaining patches of

centerlines by connected local maxima (ridges) of these features [80]. These patches

are usually too wide and usually need to be skeletonized in order to obtain the medial

representation that corresponds to the centerline. Other operations involve pruning,

for removal of noisy branches, and reconnection of broken branches, as vessel features

sometimes yield low values at bifurcations. For the reconnection, local strategies of

the aforementioned minimum cost paths approaches can be used between candidate

reconnection points.

2.4.3 Vascular Feature Models

Several vessel (disease-related) features can also be modelled. Stenosis are usually mod-

elled as local diameter reductions [29,53]. Aneurysms are more difficult to model and

quantify due to their shape variability. Specific models have been proposed for cerebral

[65] and aortic [58,56] aneurysms. Calcifications and stents often appear as hyper-

intense structures. Recently, methods have been proposed that combine appearance

and geometric models for the segmentation of these structures from CTA images [46,

2 A medialness function quantifies to which degree a point is part of the centerline
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100]. Recently, we proposed an automatic method for the detection of endoleaks after

endovascular repair of aortic aneurysms [57].

2.5 Need for a Knowledge Representation Model

There are some examples of specialized vessel representation systems in the literature.

The Vascular Modelling Toolkit [77] focuses on the geometric modelling of vascular

structures in order to generate surface and mesh models suitable for structural and

haemodynamic studies. Gerig et al. [32] proposed a symbolic model that encodes shape

features and structure relationships of vessels obtained from segmentations of angio-

graphic images, and applied it to the analysis of cerebral vasculature in MRA images.

The hybrid model proposed by Puig et al. [81] provides information of the topologi-

cal relationships of the vessels and incorporates vascular accidents such as aneurysms

and stenoses as special vessel segments. It is organized in three layers: global struc-

ture, which is a graph-based structure, vascular surface and volume model. The model

is constructed from segmented MRA images with application in a computer-assisted

neurovascular system. The model proposed here tries to overcome some limitations of

these early models, through a general yet flexible knowledge representation of vascular

systems.

Common elements, components and stages found in our experience and literature

review.

– In most of the cases, it is valid the assumption that the vessels are elongated,

tube-like objects, whose length is much larger than the diameter.

– Vessels appear as hyperintense3 structures (sometimes hypo) in the vascular imag-

ing modalities, brighter that their neighboring tissues, though sometimes we can

find contrast agent inhomogeneity or imaging artifacts.

– Homogeneity in vessel size and photometric intensity is desiderable, but usually it

is necessary to deal with varying vessel widths and intensity inhomogeneities.

– The use of a vessel centerline, as a descriptor of the shape of the vessel and extrac-

tion and modelling of sections, is also a common element.

– Some schemes reuse well-known features, such as medialness functions. or interme-

diate representations, such as medial-based representations or skeletons.

– Some common processing stages can be identified in families of algorithms, for

example, in vessel tracking procedures.

In fact, as emphasized in [52] many vessel algorithms rely on increasingly complex com-

binations of existing techniques, sometimes operating at different levels of abstraction.

The identification of the building blocks that constitute the extraction schemes and the

explicitation of some hidden assumptions and abstractions used in their conception is

a crucial step for a better understanding of the underlying concepts for the improve-

ment existing methods. This explicitation can be performed through the development

of unified frameworks, which implement the most commonly used models, features and

algorithms and identifying their appropriate settings.

In the present paper, we propose a unified framework focused on the modelling

of vascular vessel networks and related qualitative and quantitative information. The

framework models the vessel network in such a way that is easy to be handled by

3 Hypointense vessel can be converted to hyperintense just by inverting the image intensities.
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extracting schemes based on image analysis, but also to be converted into other repre-

sentations suitable in several applications (see Figure 2). Such a framework will allow:

– an increased automation of the processes, which, in turn, increases the reproducibil-

ity of the experiments and allows to perform large quantitative studies which would

be impossible to tackle otherwise.

– a quantitative comparison of the performance of different techniques under the

same conditions and with known implementations, that may provide better insight

into their behavior and that may lead to their optimization.

– an efficient reusability of components that will allow faster prototyping and more

reproducibility in research studies.

Next, we will proceed to describe our Vessel Knowledge Representation (VKR) model

in detail.

3 Requirements of the Vessel Knowledge Representation (VKR) Model

The VKR model is being defined through a process of identification and abstraction of

structural, geometrical and morphological properties of vessels in the literature and in

our own research experience. This leads to the identification of data structures, opera-

tions and components used in the most common models and schemes for vessel extrac-

tion. This model can then be converted into an appropriate data representation, such

as a mesh surface model, a refined segmentation or a symbolic visual representation.

When rendered, these representations can be used for localization and for interactive

exploration of the VKR model and underlying properties in some of the applications

described above. Alternatively, these derived data representations can also be used,

for example, for numerical studies, such as simulations of haemodynamics, structural

analysis or other medical and research applications out of the scope of this paper. The

VKR model must include the geometry and topology of vessel trees with constitut-

ing branches, bifurcations and sections, as well as vascular accidents such as stenoses,

aneurysms and abnormal regions, such as those feeding neighboring tumors. Models of

these physical entities and related concepts used in vessel analysis applications must

be devised and structured by using object-oriented design techniques.

We can make more precise some desired properties of our VKR model design:

– Versatility :

– Modelling of low level entities, such as vessel centerlines or sections, without

compromising higher level elements, such as the global graph-based model of

the vessel tree and its traversal mechanisms.

– Allowing several coexisting representations of the same vascular system, pro-

viding easy transformation among representations. This idea is illustrated in

Figure 3 where different graph-based representation of the same vascular tree

are shown.

– Decoupling algorithms from underlying data structures. Abstract mechanisms

must be provided for accessing, traversing and manipulating the data.

– Efficiency : as data amounts are huge in this kind of applications, and time require-

ments are increasingly tight, efficiency in terms of computational time and use of

resources is highly desired.

– Utility : to be useful the VKR must take into account actual design practices and

constraints from:
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– The vessel extraction algorithms (see 2.4.2) used for generating the vessel data

structure from the angiographic image data.

– A broad range of clinical and research applications that will be increasing in

complexity and response time requirements.

– Complexity Hierarchy : the framework should be able to provide different levels of

complexity and abstraction in order to represent the vessel structures at different

levels. The structures need to be represented at least at the tree, branch and section

level and at each level geometric, topological and semantic information layers need

to be managed.

– Integrability and Specificity : the framework needs to be designed so it can be easily

integrated into pre-existing frameworks which deal with certain specific models,

processes and data structures efficiently, such as the Insight Toolkit [108], for med-

ical image segmentation, registration and analysis and the Visualization Toolkit

[87], for visualization of resulting vascular structures together with image data.

4 Model Description

4.1 The VKR Model in Context

The VKR model is the core of the diverse operations and functions related with vessel

analysis techniques, as shown in the workflow diagram depicted in Figure 2. The boxes

in this diagram correspond to data types of some kind, while the labeled arrows cor-

respond to transformations or manipulations of the data. We have omitted the closed

operations, such as branch pruning or image filtering. The VKR vessel representation

can be obtained directly (see 2.4.2) from the angiographic image or volume or indi-

rectly from the results of an intermediate image segmentation process. In the latter

case, the segmentation detects the image/volume regions corresponding to the vessels,

from which the vessel representation can be obtained by skeletonization (see 2.4.2),

to obtain the centerlines, followed by section or boundary estimation. Alternatively, a

set of disconnected volume vessel regions can be obtained by a global detection pro-

cess of vessel features, followed by pruning and/or reconnection of centerline patches

(see 2.4.2). We include in the diagram obvious storage and retrieval operation of the

VKR to/from a file or database. The VKR model is the natural domain to perform

measurements which can be added to it as an enrichment.

By assigning symbolic graphical representations or glyphs (such as lines, spheres,

cones or more complicated shapes...) to the underlying components of the VKR model,

a symbolic visual representation of the vessel tree can be obtained. This may be used

as a roadmap, for agile exploration and interaction, or may be directly overlaid or

projected onto the angiographic images, slices, or volumes in order to provide visual

cues.

The VKR model can be the basis to build up a surface mesh of the vessel bound-

aries4 by several techniques such as contour sweeping of the cross-sections or by an

explicit or implicit surface model as explained in 2.4.1. The VKR model can also be

used to generate a mask or ROI on the CTA/MRA volume for further processes. The

VKR data can be then converted into a mesh surface by iso-surface reconstruction

4 This is only feasible with volumetric angiographies, but the model is able to handle 2D
representations too
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Fig. 2 VKR Workflow Diagram

[54]. Generated surface meshes can then be used for direct visualization and naviga-

tion, possibly mixed with other symbolic, surface, volume or slice renderings, in a kind

of Augmented Reality computational environment. In the same spirit, the identified

and labeled branches can be mapped into the CTA/MRA volume or mesh surface,

allowing increased interaction via direct structure picking. The mapping can go both

ways, allowing the access to the VKR model from the visualization of the CTA/MRA

volume, and visualization of CTA/MRA data corresponding to VKR selections.

4.2 Data Structures

4.2.1 Vessel Graph

In general, we can consider the vessel network as a binary tree structure since in most

cases bifurcations split a branch into two [39], with some exceptions like the Circle of

Willis in the brain [88]. Therefore, a graph representation is the natural choice for the

structural representation in the VKR.

A graph typically consists of nodes, representing the modelled concepts, and edges,

that connect the nodes and represent their relationships, which is in terms of par-

ent/child for tree structured graphs. In our case, a VesselNode represents an abstraction

of an element used for vessel representation and analysis at graph level. Such an ele-

ment may be a vessel branch, bifurcation or vessel accident, among others. Anatomical

vessel branches are modelled as nodes5 (BranchNode) and if we need to assign proper-

ties to the bifurcations, we can also explicitly model them (BifurcationNode). In order

to provide more modelling flexibility, we define also Composite nodes, which make use

of the Composite Pattern [31] in order to group nodes. This way the group of nodes

acts as a single entity, hiding their internal relationships and offering the possibility of

building a hierarchy of several levels of abstraction complexity in the graph.

5 This differs from other works where nodes are modelled as graph edges [81]
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Fig. 3 Vessel Graph Representations. a) Symbolic depiction of a vessel tree b) BVG rep. c)
BBVG Rep and OEVG after incorporating an Element supernode.

By inheritance of node objects we are also able to model conditions that occur in

the branches themselves or in the surroundings (FeatureNode). We allow also nodes to

model some abstract concepts, such as annotations that may be of interest in diagnostic

applications. The properties of each node type are defined by specific attributes and

operations and the use of OOP techniques such as polymorphism.

Our graph-based model, however, is not restricted to a tree structure, to provide

the flexibility in its definition, that is necessary in some applications. For example, the

number of parents of a node is not limited to one, although anatomical branches in

general have a single parent. This flexibility allows for several types of representation

of the same vessel network. The structure of these representations is open, since nodes

can be, in principle, arranged in any desired manner. However, our model was designed

at least to support a few representations that have been found useful for many vessel

analysis applications. We will proceed to describe these representations and introduce

the node types involved.

Branch Vessel Graph Representation The Branch Vessel Graph Representation (BVG)

is the simplest representation of a vessel network in VKR. It consists of a graph of

interconnected nodes of type BranchNode. This type of node is the most conspicuous in

VKR models, since it represents the geometry and properties of vessel branches, which

are the main constituents of physical vessel networks. The rest of the vessel network

is in fact an abstraction of the relationship of vessel branches (such as bifurcations),

related features, groupings of branches, etc. The most important part of a BranchNode

is the Centerline Model that is described in section 4.2.3. Several BranchNode instances

can be connected in series, in order to divide a branch into different segments. This

might be useful to model parts of a branch which require special attention, such as

stenotic or aneurysmal regions, and separate them from the healthy regions.

Branch-bifurcation Vessel Graph Representation The Branch-bifurcation Vessel Graph

Representation (BBVG) explicitly models the bifurcations using a BifurcationNode. In

this case, the parent and children of a BifurcationNode need to be a BranchNode or

any subclass of it.

Ordered Element Vessel Graph Representation The Ordered Element Vessel Graph

Representation (OEVG) is most suited for morphometric and haemodynamic stud-
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ies, since serial branches of the same order, with the order defined according to the

Diameter-defined Strahler Ordering System [44], are grouped into a CompositeNode

called ElementNode. In an OEVG representation, BranchNodes that are not grouped

can also be considered as ElementNodes since they also represent an element in Strahler’s

system. In haemodynamic circuits, a series of vessel branches of the same order are the

equivalent to an electric circuit composed of resistances in series.

4.2.2 Vessel Branch

A virtual vessel branch is represented in VKR by a BranchNode, and it corresponds

to the vessel segment that extends between consecutive bifurcations. A physical vessel

branch may also be represented by several concatenated BranchNode instances. This

would be useful when the user wants to make a difference between different parts along

the length of a physical branch, for example by indicating that part of a branch is

stenosed. This is performed by associating corresponding accident node representations,

such as the StenosisModel, to the BranchNode. This will be better described in section

4.2.7. The core of a vessel branch in our model is represented by the Centerline Model

described next.

4.2.3 Centerline Model

The vessel centerline or medial loci [10] is an important part of our model, since it is a

good descriptor of elongated objects. Compared to other descriptors, such as boundary

descriptors, the centerline captures better the vessel shape and provides a straightfor-

ward way of obtaining the relationships between the different branches of the vessel tree

[92], since the centerline can be easily converted into a graph structure. Furthermore, it

serves as a reference for calculating and storing local properties, both inside and on the

boundaries of vessels. For example, the vessel length is measured along the centerlines

and diameters are measured over sections whose center is the centerline. Therefore, we

provide an explicit, yet flexible and agile, representation of the centerline.

The Centerline Model is designed to provide several degrees of increasing repre-

sentation complexity, as shown in Figure 4 left. The simplest level of representation

complexity is to define a centerline by its point descriptors, where a point descriptor is

anything that may identify the location of a geometrical point on the centerline. Ex-

amples of point descriptors may be geometrical points in physical coordinates, image

pixel indexes, chain-codes, etc. The next level of complexity involves defining the vessel

normal section that defines the cross-sectional planes. On a third level, we can define

a section model, thus allowing further levels of flexibility and complexity.

Our point-based Centerline Model is independent from the mathematical model

used to define the centerline curve, whose points need to be defined explicitly in our

model. The reason is that the centerline curve needs to be discretized in order to store

local quantitative properties of the vessel centerline and sections, and to localize vessel

accidents or other features of interest that need to be referred to some point on the

curve. However, this does not preclude the definition of an interpolation mathematical

model that can be assumed as a curve point generator. Examples of this could be a

centerline curve defined as a B-spline by using control points. This can be implemented

either by subclassing Centerline class or, as will be described in section 4.3.6, by

decoupling the curve generation from its defining points, by providing an external

generator by subclassing the CenterlineAlgorithm class.
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Fig. 4 Centerline Models (left) and Frenet reference frame for a 3D curve (right).

Finally, the Centerline Model provides a placeholder for optionally storing local

centerline metrics which may provide valuable quantitative information about the local

shape of the centerline. The most common and useful local centerline metrics, that can

be defined at every point of the centerline, are the curvature, torsion (3D) and Frenet

frame of reference, which includes the tangent, normal and binormal vectors (Figure 4

right). We contemplate an implementation (LocalCurveMetrics class) that generalizes

this reference system to N-dimensions.

4.2.4 Section Model

Vessel Sections are localized at centerline points and they are assumed to vary along

the vessel length. This variability is reflected in the parameters that define the section,

for example, the diameter.

As we can see in Figure 5, vessel sections, like centerlines, can also be defined at

increasing levels of complexity. The simplest level is to define the section as a circle,

giving its center and radius/diameter. Since our sections are defined at explicit cen-

terline points, the center is already given. The next level of complexity is an elliptical

shape. More advanced mathematical models include radial functions and B-spline con-

tours. The section can also be implicitly defined by a segmentation mask image or

by level-sets of a higher dimensional function, that can be obtained by the level-sets

method, based on evolution of implicit curves or surfaces [74]. Another possibility is

that a section may define more than one contour. This is for example the case when

we want to model the shape of the external and internal vessel wall or when we want

to model the lumen and the aneurysm contour in abdominal aortic aneurysms ). In

the latter special case, the section is modelled in such a way that it can be shared by

at least two different branches (SharedVesselSection) since a single aneurysm contour

may extend to both iliac arteries.

These are just a few examples that demonstrate the versatility of the model. In

this sense, our section model does not impose any shape model, the only condition is

that it can be referred to centerline points.
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Fig. 5 Section Models

4.2.5 3D Surface and Voxel Models of Vessels

So far we have dealt with explicit modelling of cross-sections. Another possibility,

when dealing with 3D image data, is to directly generate a 3D surface mesh from the

centerline. If the 3D mesh is generated for the complete vessel tree, it can be referred

to branches or even to centerline points (and thus to sections) of the VKR model by

proximity to the corresponding centerline. This reference can be direct, by splitting

the model into surface patches and keeping references to them, or indirect, simply by

associating a scalar value, acting as identifier, to the mesh points that corresponds to

referred branches. This way a forth-and-back relationship may be kept between the

VKR and surface models. Explicit sections may also be obtained by intersection with

corresponding section planes.

If a segmentation is available, obtained either a priori or from the VKR model, it

can be referred to corresponding branches by just labelling the mask pixels/voxels with

corresponding branch identifiers. In this case, keeping references to separate volume

“patches” seems to be more difficult to handle but it is a possibility that could be

useful in cases where the source angiographic volumes are huge. The reason is that,

in most software frameworks, only arrays corresponding to rectilinear volumes can be

stored, and for sparse structures such as the vessels, sometimes many of these voxels

are empty. Another possibility is to store these labelled voxels as sparse images, which

is currently not implemented.

4.2.6 Vessel Bifurcations

Bifurcations may be represented explicitly in the VKR model by means of the Bifur-

cationNode object that defined at graph level. The use of this node type is optional

(see BBVG representation in section 4.2.1), and may be required when we want to

model special features of the bifurcation, when (quantification) operations need to be

assigned to the bifurcation, such as estimation of branch angles, and when there may

exist more than one parent branch.
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4.2.7 Vessel Features

In the VKR model, vessel “features” (FeatureNode) represent special characteristics

of the vessels that need to be highlighted. Their definition may include models for

vessel accidents or simply comments used for diagnostic. A feature may affect or may

be associated to a part of a branch, a whole branch or a set of branches, entirely or

partially. In order to make explicit these relationships, two mechanisms are devised:

1. FeaturesNodes are assigned as children (or alternatively as parents) of affected

BranchNodes. This is illustrated in Figure 3.

2. FeatureNodes keep a VesselRegion structure that indicates which vessel branches

are affected and to which extent. This is achieved by keeping a set of VesselBranch

node identifiers, and for each identifier, the starting and end indexes of the points

in corresponding centerlines that comprise the area affected by the feature.

Since a feature may affect more than one branch, FeatureNodes are treated in a spe-

cial manner and are not even visited when performing many operations that require

traversal of the graph. In this sense, FeatureNodes can be treated as “hypernodes” and

their relationship with VesselBranch nodes (or possibly other nodes) is not that of a

parent-child relationship but merely a reference.

An example of use of a FeatureNode is to perform an annotation, such as a diagnos-

tic remark in a application for computer aided vascular diagnosis. The clinician would

choose the branches affected by a given feature, for example, those feeding a tumor or

included on it, and assign them the corresponding nodes comment. Another possibility

is to assign specific models of vessel accidents or disease, such as a StenosisModel, to a

FeatureNode which are described next.

4.2.8 Models of Vessel Accidents or Disease

The VKR model offers the possibility of providing representation models for vessel

accident or disease. Examples of these models are the StenosisModel and Aneurysm-

Model. These models contain the quantitative morphological measurements and other

properties that are typical of a given vessel accident or related disease. We provide

flexibility for defining application-specific models of this kind.

There are two main possibilities for incorporating these models in the vessel graph:

in a BranchNode or in a FeatureNode. The first option is more suitable for cases in

which the accident affects a whole branch or a part of it. In this case, the affected

area is modelled by a subclass of BranchNode (for example StenosisBranchNode or

AneurysmBranchNode) that is connected serially in both extremes either to other

BranchNodes or to BifurcationNodes. This configuration can be seen in Figure 7 and

is further commented in section 4.3.6. Another possibility is incorporating the model

into a FeatureNode as explained in the previous section. This is more appropriate in

cases in which the accident affects more than one branch.

4.3 Supported Operations

Operations that can be performed on the VKR model data structures can be classified

by their nature or by the type of object they operate on. For example, quantification

operations can be performed at graph, branch, centerline or section level, among others.

Based on their nature we distinguish the following types:
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– Access Operations: these are abstract access mechanisms that allows to perform

other types of operations. For example, graph traversal is an operation that allows

to access nodes on the vessel graph and perform other operations on them.

– Edition Operations: allows to change the internal structure and properties of the

model.

– Quantification Operations: evaluation of quantitative measurements over different

elements of the model.

– Input/Output Operations: used to load and save the model data.

– Data Transformation Operations: include generation of the VKR model and trans-

formation into another representation that can be useful for intended applications.

– Model-specific Operations: these are internal operations that are specific to certain

elements of the model, such as the centerlines or sections.

4.3.1 Access Operations

Graph Traversal The most important access operation is graph traversal. Graph traver-

sal operations can be performed efficiently by using the Visitor Pattern [31] object-

oriented technique (GraphVisitor). This pattern allows to decouple the structure of

the graph and corresponding nodes from the operations performed of them. This is

desirable because it constitutes and efficient manner of extending the framework with

new operations. The visitor abstracts the mechanism of traversing the graph according

to a set of rules that are defined by the user. For example the user may choose to

visit only some specific type of nodes, such as bifurcations or may use node masks to

enable/disable visiting specific nodes. Subclasses define specific traversal rules and the

operation to be performed. Operations at any depth level that need to be performed

on the whole vessel tree are implemented this way.

Model Picking Picking operations are those that allow to access structures of the VKR

model by selecting them from a derived representation, either symbolic or geometric.

They constitute the random access means to any part of the VKR.

Picking operations are based on established relationships between the target struc-

tures of the model (nodes, branches or sections) and their representation. This can be

performed directly, by keeping references (pointers) to the structures on the model,

or by assigning corresponding identifiers as explained in subsection 4.2.5 for surface

meshes and volumes. Another possibility to establish this relationship is by proximity

in terms of Euclidean distance. For example, a user could pick a point on the surface

and the closest centerline point or section could be selected and its properties displayed.

4.3.2 Model Editing Operations

Most edition operations can be implemented in a straightforward manner by exposing

the internal structure of the data after a picking operation. Of particular interest

are graph editing operations, which alter the structure of the graph by changing the

relationships between nodes and insert or delete nodes on demand. Graph editing

operations can be performed interactively by the user, i.e. to correct artifacts in VKR

models produced during its extraction, or by autonomous algorithms, i.e. deleting noisy

branches based on their absolute length or underlying image values.
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4.3.3 Quantification Operations

Quantification operations can be performed once the initial graph structure of the ves-

sels has been created. Some of these quantitative measures are calculated and stored

in the model on-the-fly, when they are part of the necessary calculations performed

by the vessel extraction algorithms. Some other quantification operations are only per-

formed on demand, on the whole vessel tree or on a part of it, since they may be

computationally expensive. Whole tree calculations are performed via specific graph

visitors. These visitors may incorporate other specific objects to perform quantification

at deeper levels. For example, a CenterlineMetricsCalculatorVisitor object traverses

the tree searching for centerlines of BranchNodes. At each centerline, a CenterlineMet-

ricsCalculator object calculates local centerline metrics. If we want to calculate metrics

for a single centerline, we can access it directly and use this latter object instead of

using the visitor object.

Quantification can be performed at almost every level in the VKR model. A refer-

ence diagram of some of the attributes that can be measured is shown in Figure 6. The

diagram shows the data model on which the operations are performed and the locality

and type of measurement (i.e. geometrical, topological, image-based...) in a hierarchi-

cal manner. Some of the measurements are directly stored in the corresponding data

structures or placeholders of the VKR model. Others can be obtained from the object

that performs the operations.

4.3.4 Input/Output Operations

Input/Output (I/O) operations are intended to store/recover instances of the VKR

model data structures. Two main types of I/O operations are initially considered: file

and database I/O operations. The chosen format for file operations has been GraphML

[13]. It is an XML-based format specifically designed for serializing graph informa-

tion and that can be extended for custom needs. It allows to explicitly define the

graph nodes, its relationships as edges6. Attributes can also be assigned to nodes and

edges, allowing to store properties. On the other hand, application-specific relational

databases can be designed, mimicking the data structures of the VKR model.

4.3.5 Data Transformation Operations

Data transformation operations involve conversions between high-order vessel repre-

sentations and are summarized in the VKR workflow diagram in Figure 2. Except for

graph-to-graph operations, they consist of generation of the VKR model from external

image data and transformations to other types of data representations used in cor-

responding applications. Many of these external operations are not yet implemented,

but for the sake of completeness, we describe some of these operations and important

considerations here.

Graph-to-graph Operations These operations convert a vessel graph into another vessel

graph in which the configuration of the nodes has changed. This is possible because the

nature and openness of the graph representation in the VKR model allows the definition

of different types of graphs and nodes, and thus, conversion operations between graph

6 In our model, graph edges are implicitly defined as references or pointer to nodes
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Fig. 6 Quantitative attributes
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types. We do not include here operations that transform inner data structures only,

such as the centerlines. Typical graph operations are conversions between vessel graphs

representation described in section 4.2.1.

Another operation of this type is converting a disconnected set of branches obtained

by global detection algorithms into a vessel graph (see Figure 2). This is the equivalent

of having a container of disconnected nodes which are organized into a complete graph

by establishing the links.

Image-to-graph Operations These correspond to the VKR model construction from

the image/volume by using vessel extraction schemes as the ones described in section

2.4.2.Some schemes may use intermediate representations, such as a segmentation mask

or a disconnected set of nodes (see Figure 2).

Graph-to-image Operations Sometimes it is necessary to convert the graph into a voxel

representation (segmentation) that also involves branch labelling. This can be used, for

example, for overlaying and blending this labelled segmentation on top of the original

image and assigning a color to each label. These labels can also be used as region of

interests, to limit further processing operations on the source image to corresponding

branches.

Another set of graph to image operations is projection on 2D images (see Figure

2). A typical example is when we have a VKR model obtained from a 3D angiography

(such as CTA or MRA) and we want to project part of the model, such as the centerline

on a 2D X-ray angiography, in order to visualize the real paths of some vessels that

may be occluded.

Graph-to-mesh Operations These operations convert a vessel graph into a surface mesh.

The conversion depends on the actual representation of the graph. It can be obtained

by contour sweeping or by using a predefined mesh model either explicitly or implicitly

as described in section 2.4.1 among other techniques.

4.3.6 Model-specific Operations

We describe some model-specific operations that are not included in the previous classes

of operations and that are exclusive of the corresponding representations.

Graph Operations We consider here operations that modify the attributes of common

nodes only, because graph operations will be specified in terms of node operations and

visitor patterns.

Graph Labelling is a straightforward operation that assigns unique labels to nodes.

Node Wrapping/Unwrapping are operations that transform a vessel graph into another

vessel graph in which some nodes are wrapped into a supernode (subclass of Compos-

iteNode) and viceversa. Node wrapping may require specific rules by which nodes are

merged into a single supernode. On the other hand, node unwrapping may work with-

out setting any rules by simply restoring the underlying nodes. A specific wrapping

operation is defined in order to convert a (B)BVG rep. into a OEVG rep. (see section

4.2.1) as defined in [39].
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Fig. 7 Example of branch splitting operation to indicate an stenosis. A single BranchNode is
split into three serial nodes, where the middle node incorporates a StenosisModel.

Branch Operations Operations that affect the branches as a whole are included here.

A specific operation for branches is assigning them an order in the (modified) Strahler

ordering system (see section 2.1). This involves traversing all branches from the leaves

to the roots. If the diameter-defined method is used, this requires iteratively assigning

orders and calculating diameters.

Branch splitting is the operation of dividing a branch into several branches. This

operation (see Figure 7) may be performed, for example, to mark a region of a branch as

having a specific accident or disease model. Branch merging is the contrary operation,

where several branch patches are merged into a single branch node. They can be also

considered as edition operations (see section 4.3.2).

Section interpolation is an operation that needs to be considered at branch level,

since it involves both, generation of new intermediate centerline points, that define

the section location, and estimation of section normal and boundary according to the

corresponding model.

Centerline Operations Centerline operations involve modification of the points that

define a centerline. Centerline generation operations, such as centerline tracking or

skeletonization (see section 2.4.2and 2.4.2), lie in this group, but they are usually

part of the vessel extraction schemes that explicitly deal with centerlines and are not

considered here.

Centerline interpolation is the process of resampling an existing centerline, or one

that is being created, following a given mathematical model of curve. For example, if

the distance between centerline points is not uniform, a linear resampling may produce

uniform sampling. Another possibility is to fit the centerline curve to a set of connected

B-spline curves.

Centerline filtering may also be used to convert a rough, noisy centerline into a

smoother centerline, by removal of points or by several types of smoothing filters, such

as average, median or anisotropic diffusion filters that operate on centerline points.

Centerline registration is the process of converting a centerline into another cen-

terline by applying a rigid or elastic transform to the points of the centerline. This

transform is obtained by minimization of a cost function, that is usually based on

image-values. Examples of centerline registration applications are comparison of vessel

geometrical features between different patients [84] or quantification of aneurysms and

stenosis [41].
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Section Operations Section operations involve generally modification of the geometry

of the section, or reestimation of the section normal7. As in the previous case, these

operations can be performed after or during the vessel extraction procedure. In the

second case, section generation can be considered as an inherent part of the extraction

schemes described in 2.4.2 but, like in the case of the centerline, some of the algorithms

can be applied at a post-processing stage.

Section interpolation can be performed in two ways, either by interpolating the

section geometry according to its mathematical representation (resampling of points,

etc.) or by interpolating sections by creating new intermediate sections. In the later

case, it also involves a modification of the centerline and as such, can be considered a

branch operation (see section 4.3.6).

Section filtering involves geometric filtering of noisy boundaries. It is similar to

centerline filtering and depends greatly on the section model.

5 Implementation Details

In Figure 8 an UML diagram of the most important objects in the VKR model is

depicted. We do not pretend to be exhaustive, but only to give an accurate overview of

the main object definitions and their relationships. According to their function, we can

distinguish two main types of objects: data representation objects (left), that describe

the vascular structure, and algorithmic objects (right), that implement operations on

the data representation objects. As can be seen, there is almost a one-to-one corre-

spondence between data objects and algorithms. This separation between data objects

and algorithmic objects provides more flexibility, since it makes easy to define new

algorithms without affecting the data representations. Other more straightforward op-

erations are implemented as methods of the corresponding data objects. In Figure 8 we

have set a horizontal line that separates the depth level of the objects: data structures

and algorithms above this line correspond to graph level whereas those below the line

operate at underlying modelling levels.

The highest level data structure is the VesselGraph which may contain one or

several root nodes. All vessel graph nodes are subclasses of the GraphNode abstract

class, which provides generic node-handling operations and metadata such as node

identifiers, and VesselNode which is an abstract class specific for nodes of vessel graphs.

We chose not to model explicitly the edges of the graph. Thus, the graph consists

of nodes, that are connected by virtual links, which are implemented as references

(pointers) to the corresponding nodes. GraphNodes contain a set of children nodes, as

strong references, and a set of parent nodes, as weak references 8.

Due to their importance, we provide a brief description of some salient implemented

node types:

– BranchNode: is the most important node type, which represents the physical vessel

segment that extends between two bifurcations. A BranchNode contains a Center-

line. We decided to implement the centerline as a placeholder of Section objects,

where the simplest section model is a point that represents the centerline, instead

of keeping a list of points on the centerline model itself. This forces a one-to-one

7 reestimation of the section center corresponds to a centerline operation
8 Strong references imply a composition relationship and weak references an aggregation
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mapping and provides the flexibility for a non-explicit centerline definition. Cen-

terline points are thus the centers of Section objects, and can be defined with any

descriptor that identifies their geometrical position, such as euclidan coordinates,

image indexes, chain-codes, etc.. The same applies for the points that define the

section boundaries. This provides much flexibility in defining the centerline and sec-

tion for a wide range of applications. In general, this type of flexibility is provided

in the VKR model by using Generic Programming techniques [25].

– BifurcationNodes are more simple in their definition. They explicitly reference con-

fluent branches as parent/child nodes and their use is optional (see Figure 3).

Algorithms may be devised to operate on bifurcation nodes to take advantage of

the direct access to confluent branches.

– CompositeNodes are nodes obtained by wrapping other nodes and exposing the

internal links only. The information about internal nodes and links is kept when

wrapping is performed, so the situation can be reversed easily. This ability may

provide several types of simultaneous representations of the vessel graph, as can

be seen in Figure 3 (right). One direct application is converting the branch nodes

of the same (modified) Strahler order into a single element using the node type

ElementNode.

– FeatureNodes indicate relevant features in vessels and incorporate an optional fea-

ture model that describes the corresponding feature such as an stenosis (Stenosis-

Model) or aneurysm (AneurysmModel). They incorporate a VesselRegion structure

that indicates the area affected by the feature in corresponding branches.

With respect to the algorithms, those that operate at graph level are subclasses of

GraphNodeVisitor and VesselGraphNodeVisitor. The use of the Visitor Pattern [31],

allows to separate the node definition from the operations on the graph by decou-

pling the graph traversal from the node operations. These graph-level algorithms can

be classified according to the objects they ultimately operate on. An algorithm may

operate at graph level because only graph elements are involved in the corresponding

algorithms. An example is calculating the number of nodes in the branch, or com-

puting the (modified) Strahler order of BranchNodes. Another possibility is that they

encapsulate algorithms that operate at deeper levels (such as the level of centerline

or section) but are applied to the corresponding structures on the whole graph and

not only locally. In this sense, the level of encapsulation of the data structure finds a

correspondence in the level of encapsulation of the algorithms. This makes possible to

reuse local algorithms and apply them to the whole graph. An example is the family

of CenterlineAlgorithm classes, which perform operations on a single centerline. These

operations can be performed for all the centerlines of the BranchNodes of a vessel

graph by defining a specific visitor (CenterlineAlgorithmVisitor) which encapsulates

the former.

In Figure 9 we can see a representation of the external operations (we call them

“filters” here) that can be performed in order to create the VKR Model and to convert it

to other (3D) representations, such as surface meshes or segmentation masks. Objects

of type correspond to the vessel extraction schemes commented in section 2.4.2. Such an

extraction scheme, may use the VKR Model as an intermediate representation and then

use an algorithms of type VesselGraphToImageFilter to obtain the final segmentation

or a VesselGraphToSurfaceFilter object to obtain a surface mesh.
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Fig. 8 VKR Model. Internal Implementation

Finally, most high-level objects, such as filters, nodes, centerlines or sections are

implemented using reference counting, so they can be shared by many objects without

unnecessary copies and additional overhead.

Needless to say, implementation is an on-going never-ending process, as long as

applications, imaging resources and computational algorithms evolve. Therefore, the

description given of current state and trends of our implementation must be assumed

as a core implementation aiming at a continuing incremental process incorporating new

algorithms, accepting new imaging resources and addressing innovative applications.

6 Conclusions

The evergrowing applications and techniques of Blood Vessel Analysis have produced

a complex landscape of algorithms and data representations that hinders the com-

position of procedures, the reuse of software and the comparative analysis in terms

of computational efficiency and quality of final results (visualization, measurement,

edition, and others). We have detected the need of proposing a foundational Vessel

Knowledge Representation (VKR) model that may allow the exchange of data among

applications and users. One of the goals of VKR is the reuse of software pieces, provid-

ing a ground functional layer that may serve as the basis for new developments, thus

alleviating development efforts. The model can be used as an intermediate represen-

tation between image-based extraction schemes and clinical and research applications,
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Fig. 9 VKR Model. External Implementation

to perform quantitative measurements on extracted vessel structures and to provide

the necessary vessel representation and handling tools for the target applications. In

this paper we have identified, from the literature and our own research work, the key

knowledge representation items, as well as the key operations that are the building

blocks for nowadays and future vessel analysis processes and applications.

VKR provides a versatile and efficient object-oriented representation of vessel struc-

tures and associated algorithms and quantitative data. It contemplates flexible data

representations for the vascular tree, underlying structures such as branches, bifurca-

tions, centerlines and sections, as well as vessel features such as stenosis, aneurysms,

etc. It also contemplates operations and algorithms that operate efficiently on cor-

responding data structures. Furthermore, the model is designed so it can be easily

integrated with pre-existing frameworks. We are already applying the VKR model in

vessel-related applications related to our current research areas.
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