
REAL TIME 3D SIMULATION TOOL FOR NC SHEET METAL CUTTING AND
PUNCHING PROCESSES

Aitor Moreno
Vicomtech

email: amoreno@vicomtech.org

Álvaro Segura
Vicomtech

email: asegura@vicomtech.org

Harbil Arregui
Vicomtech

email: harregui@vicomtech.org

Álvaro Rúız de Infante
Lantek Investigación y Desarrollo S.L.
email: A.RuizDeInfante@lantek.es

Natxo Canto
Lantek Sheet Metal Solutions
email: N.Canto@lantek.es

May 15, 2012

KEYWORDS

Computer Integrated Manufacturing and Engineering
(CIME), Industrial processes, Optimization, Interactive
simulation, Real time simulation

ABSTRACT

In this paper we present a sheet metal Numerical Con-
trol (NC) simulation tool for cutting and punching pro-
cesses, considering the internal representation of the
sheet metal as a 2D complex polygon. The nature of
the involved processes in the cutting and punching op-
erations supports the utilisation of Boolean Operations
between 2D polygons with fully established geometri-
cal methods. However, straightforward utilisation of
such Boolean Operations to support the material re-
moval process leads to slow simulation times, since com-
plexity of the sheet increases continuously. Some opti-
mizations have been introduced to outperform the sim-
ulation times, such as the spatial subdivision and opti-
mized methods to generate directly the swept area in arc
movements. Results show that those optimizations are
significant and have a direct impact in the simulation
performance.

INTRODUCTION

In the machining industry, technological advances have
led to increased productivity and business efficiency.
Generally, these advances have been higher in me-
chanical technology, obtaining more efficient machinery,
faster and more versatile, leading to better economical
results. The management and optimization of resources
is one of the most interesting challenges, since a small
improvement (in time or resource consumption) results
in a real savings in the processes that will produce thou-
sands of parts. In the field of sheet metal cutting it is
even more crucial because the very nature of the cut-
ting process will generate wasted material, having to be
returned to the melting industry for recycling.

Therefore, the simulation tools help to test and check

the programs in the design phase, being verified all the
necessary times before they are actually run in the ac-
tual machine. After a series of tests, including the op-
timization modifications, the program can reach an op-
timized state, good enough to be transferred to pro-
duction. Any not fully tested Numerical Control (NC)
program can cause or increase the risks and compromise
the machinery, provoking partial breakages of parts, col-
lisions between different machine parts, the sheet metal
and the tool.

Figure 1: Sheet metal cutting simulation example.

This work presents a NC simulation tool (see Fig. 1)
specifically aimed for the virtual representation of the
metal sheet main machining processes (see Fig. 2), like
cutting and punching. The first part of this work intro-
duces the technological advances in the field, being the
basis for the implemented simulation system, presented
in the corresponding section. The performance improve-
ments of the proposed architecture are addressed, fol-
lowed by the conclusions and some future guidelines.

RELATED WORK

The NC machining simulation using Computer Graphics
techniques is a widely extended research topic, where

Figure 2: Real sheet metal cutting and punching oper-
ations.

the main issue is related to the representation of the
dynamic parts of the simulation (in this case, the sheet
metal is considered dynamic, as its geometry changes
over time). Some traditional approaches do not store
the geometrical information during the simulation, but
they simply modify the drawing screen using an image-
based approach.
Some techniques store the intermediate results in the
computer’s memory, having an internal 3D geometric
representation of the object that is changed continu-
ously during the simulation process. With these meth-
ods, a permanent representation is always available and
provides free camera movement around the object, bet-
ter geometric accuracy control, geometric based collision
detection, etc.
Van Hook (Hook 1986) used an extended Z-buffer data
structure (called a Dexel structure) for the graphical
verification. In his work, a scan method to convert sur-
face data into his Dexel (depth element) structure was
presented. The Z values for the nearest and the farthest
surface at each Dexel are stored in such depth elements.
This technique has been extended by several authors
(Zhu and Lee 2004).
Other representation methods in the Computer Graph-
ics field are fundamentally geometric like i) Boundary
Representation (B-Rep) ii) Constructive Solid Geome-

try (CSG), and iii) Hierarchical Space Decomposition
(HSP).
Although B-Rep is the most used method for solid mod-
elling in modern CAD systems, its straightforward use
for machining simulation is not convenient due to the
long time required for the dynamic simulations (Spence
and Li 2001). A similar problem occurs with CSG rep-
resentation, with computational costs of order O(n2),
where n is the number of primitives (Stewart et al. 2003)
being computationally expensive. A modern imple-
mentation of CSG representation through BSP (Binary
Space Partitioning) trees has been ported to Javascript
and to the Web with a great but non real time perfor-
mance (Wallace 2012).
To cope with the complexity of the problem and the long
time required in these approaches, the approximation
of the exact geometry, and especially the partitioning
of the object in suitable regions has been proposed by
several authors (Stewart et al. 2003).
The most classic technique for volume partitioning is
the voxel representation (classical octree, extended oc-
tree (Brunet and Navazo 1990), SP-Octree (Cano 2002))
that combines the space partitioning, solid representa-
tion and boolean operation support in a single definition.
The sheet to be manufactured can be approximated by
a very thin extruded plane, given that the machining
program is limited to 2D movement over the sheet. This
sheet representation provides a direct way to perform
boolean operations between the moving tools and the
planar sheet. The 3D boolean operation is simplified in
a single 2D boolean operation between two 2D complex
polygons, that is a well reviewed research topics (Vatti
1992, Preparata and Shamos 1985).
In this work, we present how an efficient and optimized
sheet metal machining simulator has been designed and
developed, with an internal geometrical core based on
complex polygon boolean operations to support the ma-
terial removal processes.

METHODOLOGY

This work is aimed to develop a simulation system for
cutting and punching of sheet metal through a NC con-
troller. The simulator has been developed as a prototype
simulation software module and it is focused to obtain
consistent geometric results and high graphics quality
for the following sheet machining processes (see Fig. 3):

• Sheet metal cutting processes using laser, plasma,
oxy-fuel or water jet.

• Punching processes with tools defined with basic or
complex shapes.

By means of simulation techniques, this work tries to
emulate the behavior of the machine tool to the com-
puter. The simulation system takes as input a starting
NC program (normally, G-code dialect) translated to

Figure 3: Nesting example for sheet metal machining
(Lantek 2012) and a Virtual Punching 2D visualization
(LVDGroup 2012).

a common and simplified XML format, listing all the
movements that the machine will perform during the
cutting or punching operation. The operation mecha-
nisms differ between the cutting and punching process,
but essentially, they are based on the removal of material
from the sheet, so the internal module for such opera-
tions has been designed to be generic for such opera-
tions. The main significant difference is that in the cut-
ting process the removal process is continuous while the
torch is powered on, whereas in the punching process,
the removal process is instantaneous when the punch is
triggered.

In the following subsections, the system architecture and
the main modules will be described.

System Architecture

The simulator is structured as a multi-layered archi-
tecture, each one encapsulating different methods and
techniques. The low level layer involves the geometry
calculations (Geometric Kernel) with the management
of the boolean operations between 2D polygons as its
main responsibility. The Clipper library (Johnson 2012)
provides the functionality to calculate Boolean Opera-

APPLICATION (Qt) XML (QtXML)

NC MACHINING ABSTRACT LAYER (C++)

Clipper
Boolean Clipping

Operations 2D Polygons

OpenSceneGraph

Figure 4: Modular Architecture

tions between 2D polygons, as the basis for subtraction
between a complex polygon representing the sheet and
another polygon representing the sweep of a moving tool
in a given period of time (either cutting or punching).
This low level layer (green box in Fig. 4) provides the
access to the graphic system, responsible for rendering
the simulation results in the screen. In this work, we
have chosen OpenSceneGraph (OpenSceneGraph 2012)
as the graphics subsystem, which is used to draw on
screen the result of the Boolean operations, the 3D ma-
chine models and all the virtual elements in the scene.
The middle layer of the architecture (red box in Fig.
4 provides a conceptual representation of the entities
related to the NC machine domain, like Part, Tool, Ma-
chine and Axis, including all animation of all the mov-
ing elements. Also, in this layer the geometric sweep
volume of the moving tools are calculated and passed
to the lower level for the actual boolean operation with
the sheet metal representation.
Over the cutting and animation layer, we have added
the user oriented layer (blue box in Fig. 4), including
the graphical interface of the prototype application and
management of the XML files:

• Provide the user interface, including multi-language
interface options.

• Implementation of the different navigation methods
in the 3D virtual world, using the mouse.

• Manage and display the real NC instructions (high-
lighting the currently executing instruction) that
will be loaded into the simulator through the inter-
mediate and abstract XML representation.

• Manage and display the visualization options of the
3D objects corresponding to the individual parts of
the cutting or punching machine.

Both the user interface and the XML parsing functional-
ity have been implemented through the Qt library (blue
layer in Fig. 4).

Figure 5: Close up 2D sheet metal machining and
punching example.

Listing 1: Pseudo code for the subtraction methods for
cutting or punching movements

OpBoolCut (in−out Obj sheet , in Mov m)
{

Obj sweep = GenerateSweep (m)
BoolOp r e s = PolyClip2D (sheet , sweep)
shee t = r e s

}
OpBoolPunch (in−out Obj sheet , in Mov m)
{

Obj c = getPunchContour (m)
BoolOp r e s = PolyClip2D (sheet , c)
shee t = r e s

}

Overview of the Sheet Metal Cutting Algorithm

The main elements in the system are the metal sheet
and the tools that will translate the machining instruc-
tions into geometrical operations. As the tools moves
on the sheet, the swept area has to be removed from the

sheet, thus, after applying multiple subtraction boolean
operations, the sheet will be modified, resembling the
expected output in the real world.
The foundation of the methodology is a 2D polygon
clipping system. The cutting element or torch (laser,
plasma, waterjet, etc.) can be modelled as a cylinder
of varying radius (see Fig. 5, top). In a time interval,
the moving cutter intersecting the sheet metal sweeps
a shape than can be represented by a polygonal con-
tour with curves approximated by sequences of linear
segments. In each time step, such swept polygon is sub-
tracted from the polygonal representation of the sheet
containing all previously removed contours, setting the
result as the new sheet. Additionally, from this new up-
dated geometric representation of the sheet, the graphic
subsystem must be updated too, so the final rendering
on the screen is updated consequently (see Listing 1).
The geometric representation of punch tools is more
complex than the torches, since there are circular,
square, rectangular or even arbitrary shapes for punch-
ing processes. But the simulation process is simpler
as these tools are not activated in continuous mode.
A Punch instruction activates the current active tool,
making a hole in the sheet and returning to its original
position. This process can be done multiple times, at
a very fast pace, providing similar features to the sheet
metal cutting processes (see Fig. 5, bottom).

Cutting and Punching Machine Specification

Cutting and punching machines are essentially different,
but at the same time, they have similar components and
a generic hierarchical structure can be defined.
The hierarchical structure of the 3D model of the cut-
ting machines starts with the Table, as the static part of
the machine. Over it, the Bridge moves in the X axis.
The Torch Support is mounted over the bridge as the
Y axis. The movements in the Z axis of the machine
are performed by the Torch, fixed to the support struc-
ture (See Fig. 7). Although we have developed several
3D model for the different machines we have considered
(oxy-fuel, plasma, laser and waterjet), they all follow
the same hierarchical definition.
The hierarchical structure of the punching machine is
significantly different from the cutting machine. In the
punching machine, the sheet is the mobile element, while
in the cutting machine the sheet is static. Therefore, the
sheet is moved in the X and Y axis, while the punch-
ing stations give the punch movements in the Z axis.
The implemented prototype of the punching machine
has room for up to 20 individual punching tools. The
individual punch geometries are loaded from an XML
file.
The visualization of the punching machines requires
playing with transparencies in the punching station and
the bridge, since they hide completely the punching op-
eration (See Fig. 6).

Figure 6: Simplified 3D model for the punching machine
with transparent elements to ease the visualization of
the punching process.

Figure 7: Prototype loaded with a program for cutting
a rectangular metal sheet and configured for a single
oxy-fuel torch.

User Interface

The user interface displays a simple and clean interface
between the user and the simulation functionality. It
has been developed using the Qt library, which pro-
vides the technology needed to create professional and
high-quality graphical interface controls. The applica-
tion GUI is structured as a set of docking and floating
panels, which can be moved freely or docked to any side
of the screen (see Fig. 7) with the 3D virtual world
always in the central widget.
There are two ways of controlling the virtual simulation.
One is by running a continuous simulation, where an an-
imation factor is applied to control de simulation speed.
The other is a fast mode, which will run the simulation
in background as fast as possible, until the target in-
struction is reached. Combining both modes, users can
go to a specific instruction of the NC code (shown in an
independent panel) and from there, begin an animated
simulation with the desired speed factor. The rest of the

buttons in the Control Panel offer simple VCR function-
ality: play and stop, play only one instruction, and go
directly to the previous or next instruction, the first or
the last instruction of the loaded program.
The GUI provides the visibility options for all the ob-
jects in the virtual scene. Any object can toogle its
visibility, but not all the elements can modify the trans-
parency, as the lines (machining toolpaths and other
helping elements) and the ground model. The cam-
era properties and movements can be set up in another
panel, including the toogle button to go to 3D or 2D
mode and the Zoom and Pan functionality.
Finally, thanks to the multilingual support from Qt, the
interface has been easily translated to several languages,
with an easy and portable mechanism to add new lan-
guages.

PERFORMANCE OPTIMIZATIONS

As the NC program instructions are known before hand,
just when the simulator is started, it is possible to pre-
process some information. However, these actions can-
not be performed if a full run of the simulation is re-
quested as soon as the simulation is started. In this
worst scenario, all the machining instructions must be
run in the fastest way, optimizing the resources of the
hosting computer. Additionally, the state of the simu-
lator after the final instruction is reached must keep the
interactivity of the application for further simulations.
In the following subsections, some applied techniques
are presented to try to optimize the overall performance
in term of simulation time and other resources consump-
tion such as memory or hard disk.

Direct Contour Generation for Arc Sweeps

The circular movements of the tools were initially im-
plemented by a subdivision into linear piecewise move-
ments. We used a global variable in the system rep-
resenting the number of subdivisions that a full circle
would have. If this value is 32, a full circle movement
produces 32 linear movements and similarly, a π radi-
ans arc will be decomposed in 16 pieces. The immediate
drawback of such subdivision system is that the number
of boolean operations grows significantly.
In order to avoid extra boolean operations, we have im-
plemented a direct or native generation method for the
arc movements. Using such functionality, the swept con-
tour of a tool is generated directly, and thus, a single
boolean operation is performed (see Fig. 8), resulting
in a significant performance boost (see Table 1).
The subroutine AddArcPoints used in Listing 2, run as
p.AddArcPoints (p1, p2, c, CCW or CW), samples a
given arc movement going from point p1 to point p2,
with point c as the center of the arc, in the given sense,
clockwise or counter clockwise. The resulting sampled
points are appended at the end of the Polygon p. The

-0.5

0

0.5

1

1.5

2

2.5

3

-0.5 0 0.5 1 1.5 2 2.5 3

x

y
R

r
c p1 p12

p11

p2

p22

p21

α

Figure 8: Sweep arc geometric construction for a tool
with radius r moving from point p1 to point p2 in an
arc movement. The sweep contour is constructed by
sampling four partial arcs, using the points p11, p12,
p21 and p22 as the limit points.

GetCorners subroutine calculates the point coordinates
where the individual sectors of the arc are joined.

Listing 2: Pseudo code for the SweepArc function

SweepArc (in Point p1 , in Point p2 ,
in Point c , in f l o a t r ,
out Polygon p)

{
GetCorners (pc11 , pc12 , pc21 , pc22)
p = Polygon : : CreateEmptyPolygon ()
p . AddArcPoints (pc11 , p21 , c , CCW)
p . AddArcPoints (pc21 , p22 , p2 , CW)
p . AddArcPoints (pc22 , p12 , c , CW)
p . AddArcPoints (pc12 , p11 , p1 , CW)

}

The actual method SweepArc is more complex than the
pseudo-code shown in Listing 2, as there is a number
of cases that should be treated one by one, e.g., when
p1 = p2 or r > R. Additionally, a better consistency
with the sense of the arc sampling is desired in order to
get geometrically accurate contours for the tool sweep.

Spatial Subdivision

The efficiency of the polygon clipping algorithms de-
pends directly on the total number of contours and
points involved in the boolean operation (Leonov 1998):

O(n× log(n) + k + z × log(n)) (1)

Table 1: Performance improvement using optimized
sweep arc generation. A full simulation was performed
with and without the optimization and the number of
low level Boolean Operation and the time are presented
in the columns OpBools and Time.

Arc Optimization Movs OpBools Time (s)
No 560 1054 25
Yes 560 774 10

where n is the number of edges (points), z is the number
of contours and k is the number of edge intersections.

As the simulation is performed, the working part gets
more and more complex and consequently, the number
of points and contours grows. In order to limit the
number of points and contours that would increase the
boolean operation time, a high-level partitioning system
is added to the architecture.

This spatial partitioning decomposes the sheet metal
into a set of smaller subregions, leading to a high level
Boolean Operation pseudo-algorithm (see Listing 3).

The performance effect of the spatial subdivision is lim-
ited as an over-subdivided sheet will increase the num-
ber of individual Boolean Operations, as any movement
will span across multiple regions. The subdivision region
is aimed to reduce the complexity of the Boolean Oper-
ation (by limiting the number of vertices) but avoiding
to increase the mean number of Boolean Operations per
movement.

Listing 3: Pseudo code for the Boolean Subtraction be-
tween the sheet and the sweep

OpBool (in−out Obj part , in Obj sweep)
{

Set S = Se l e c tReg ions (part , sweep)
f o r each reg i on R in S }

BoolOp r e s = PolyClip2D (R, sweep)
part . SetRegion (R, r e s)

end f o r
}

In our experiments (see Table 2), varying the number of
subdivision with the same example, gives a performance
peak using the 16 × 16 subdivision. The Fig. 9 shows
the geometric complexity of the metal sheet after the
simulation program is completely executed. Approx-
imately, each full circle contains around 100 vertices,
50 for the internal circle and 50 for the external circle.
The whole geometric sheet contains around 1 million
vertices, and due to the spatial subdivision (16 ×16 in
this case), the rendering is performed in real time us-
ing the OpenSceneGraph’s internal polygon tesselator
(OpenGL’s GLUtesselator methods).

Figure 9: A complex cutting example with more than 12000 movements, combining linear and arc movements. The
simulation time is about 90 seconds on an medium range PC.

Table 2: Spatial Subdivision Performance, with the di-
rect sweep arc generation applied, varying the spatial
subdivision. The number of low level Boolean Opera-
tion and the time are presented in the columns OpBools
and T.

Model Movs Subdivision OpBool T (s.)

Simple 834

1× 1 774 10
4× 4 1008 5

16× 16 2700 6
32× 32 6556 10

Complex 12371

1× 1 11037 2100
4× 4 12481 195

16× 16 19533 87
32× 32 36910 130

Saving intermediate states

The VCR functionality enables users to select any de-
sired instruction in the NC program. If the user wants to
jump to a non executed instruction, the simulator must
run the program till that point in the highest possible
speed. But in the opposite way, the simulator should be
able to load already calculated simulation points. Un-
fortunately, in programs with more than 8000 instruc-
tions, it is not convenient to save all the intermediate
states into memory or even in temporary files in the
hard drive, since it would take a lot of resources of the
hosting machine.

So, the implemented solution saves a limited number

of instructions, acting as keyframes of the simulation.
Therefore, when users need to go a previous instruction
or, generally speaking, an already calculated position
in the CNC program, the simulator will load the pre-
vious saved state (the keyframe) and run a small and
silent simulation from that point to the target instruc-
tion. Of course, the overall performance impact is a mat-
ter of balancing the number of keyframes, since a very
high number of keyframes will reduce the mean waiting
time (the silent simulation step) but will increase the
resources usage. With a low number of keyframes, the
simulator will use less resources, but the waiting time
could interfere with the usability of the simulator, as
this seek functionality is widely used to review certain
parts of the machining process.

Hardware configuration

The tests and numerical analysis for this Section have
been conducted using an Intel Quad Core Q9400 proces-
sor, 4GB of RAM and a GeForce GTX 285, Windows
7 PRO 64 bits (Service Pack 1) with the latest stable
graphics drivers.

CONCLUSIONS AND FUTURE WORK

In this work we have presented a simulator for the sheet
metal cutting and punching processes. Due to the char-
acteristics of the sheet, a representation based on 2D
complex polygons has been used to represent the metal
sheet. All the operations of the programs have been
transformed to internal boolean operations between the

sheet and the sweep of moving cylinder (cutting ma-
chines) or a complex polygon (for punching machines).
As the efficiency of the boolean operations decay with
the number of points and polygons, we have introduced
several mechanism to optimize the overall result of the
simulation. To limit the number of points and polygons,
the spatial partition system has been used, checking that
it can not be increased to arbitrary numbers, since it
will provoke a huge explosion in the number of boolean
operations. A balanced spatial partition is required to
get the best performance. In the future, a more detailed
analysis of such conditions should be evaluated.
The optimizations for the generation of the sweeps in
arc movements have provided a boost to the effiency,
too. When applied, the number of boolean operations
decreases, replacing several operations by just a single
one with significant performance improvement. How-
ever, the sweep generation can be further improved as
the current method samples the arcs independently of
the radius of the arc movement and the tool. For exam-
ple, an optimized version of the function would sample
the inner arcs with fewer points than the exterior arcs.
As the sheet metal cutting simulator is intended to be
utilised by experts in their field, a fully usable proto-
type has been developed, providing a GUI to interact
with the simulation, displaying all the important infor-
mation about the NC code, and other features explained
in previous sections.

ACKNOWLEDGEMENTS

We thank the Basque Government Industry Department
for the financial help received under the GAITEK re-
search.

REFERENCES

Brunet P. and Navazo I., 1990. Solid representation and
operation using extended octrees. In ACM Transac-
tions on Graphics 9, 2. 170–197.

Cano P., 2002. Representation of polyhedral objects us-
ing sp-octrees. In Journal of WSCG 10, 1. 95–101.

Hook V., 1986. Real Time shaded NC Milling Display.
In SIGGraph86, Volume 20, Number 4. 15–20.

Johnson A., 2012. Clipper - an open source freeware
polygon clipping library. URL http://www.angusj.

com/delphi/clipper.php.

Lantek, 2012. Lantek Expert CAD / CAM system. URL
http://www.lanteksms.com/.

Leonov M.V., 1998. Implementation of boolean opera-
tions on sets of polygons in the plane.

LVDGroup, 2012. LVD - Sheet Metalworking tools. URL
http://www.lvdgroup.com/.

OpenSceneGraph, 2012. Open source 3D Graphics API
over OpenGL. URL http://www.openscenegraph.

org/.

Preparata F.P. and Shamos M.I., 1985. Geometry: An
Introduction. Springer-Verlag. ISBN 0-3879-6131-3.

Spence A.D. and Li Z., 2001. Parallel processing for
2-1/2D machining simulation. In Proceedings of the
sixth ACM symposium on Solid modeling and applica-
tions. ACM, SMA ’01. ISBN 1-58113-366-9, 140–148.

Stewart N.; Leach G.; and John S., 2003. Improved
CSG Rendering using Overlap Graph Subtraction Se-
quences. In International Conference on Computer
Graphics and Interactive Techniques in Australasia
and South East Asia. 47–53.

Vatti B.R., 1992. A Generic Solution to Polygon Clip-
ping. Communications of the ACM, 35(7), 56–63.

Wallace E., 2012. Constructive solid geometry on
meshes using BSP trees in JavaScript. URL http:

//evanw.github.com/csg.js.

Zhu W. and Lee Y., 2004. Product prototyping and man-
ufacturing planning with 5-DOF haptic sculpting and
dexel volume updating. In Haptic Interfaces for Vir-
tual Environment and Teleoperator Systems. 98–105.

