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Abstract. Accurate detection and extraction of 3D vascular structures
is a crucial step for many medical image applications that require vascu-
lar analysis. Vessel tracking algorithms iteratively follow vascular branches
point by point, obtaining geometric descriptors, such as centerlines and
sections of branches, that describe patient-specific vasculature. In order
to obtain these descriptors, most approaches use specialized scaled vascu-
lar feature detectors. However, these detectors may fail due to the pres-
ence of nearby spurious structures, incorrect scale or parameter choice
or other undesired effects, obtaining incorrect local sections which may
lead to unrecoverable errors during the tracking procedure. We propose
to combine this approach with an evolutionary optimization framework
that use specific modified vascular detectors as cost functions in order
to obtain accurate vascular sections when the direct detection approach
fails. We demonstrate the validity of this new approach with experi-
ments using real datasets. We also show that, for a family of medialness
functions, the procedure can be performed at fixed small scales which is
computationally efficient for local kernel-based estimators.

Keywords: Medical Image Analysis, Vascular Analysis, Vessels, Fea-
ture Detectors, Evolutionary Optimization, Vascular Tracking, Section
Estimator, Medialness, Vesselness.

1 Introduction

Accurate detection and extraction of 3D vascular structures is a crucial step for
many medical image applications that require vascular analysis [8][7]. Vascular-
related diseases, such as cerebrovascular accidents (stroke) or coronary artery
disease, are caused by anomalies in the blood supply, like hemorrhages or block-
ages. Knowledge of patient-specific vascular structure is crucial for planning
many interventions, such as neurointerventions or liver tumor resection. For
these applications, many medical imaging modalities exist that are able to de-
pict vessels. Among the most useful ones, we can mention X-ray Angiography,
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Computerized Tomography Angiography (CTA) and Magnetic Resonance An-
giography (MRA), being the last two 3D modalities.

In order to obtain a meaningful and helpful vascular representation for quan-
tification, visualization or other advanced analysis, it is first necessary to detect
and extract the vascular structures with specialized image analysis methods.

Extraction procedures determine which points are part of the vascular struc-
tures, by using some measure of vesselness (likelihood of being part of a vessel)
and geometric and/or appearance models of the vessels [4]. These algorithms
usually obtain some geometrical and topological descriptors of the vascular net-
work: the centerline of a vessel is often a good descriptor of the shape of the
vessel along its path, and information about the local shape of the vessel is usu-
ally obtained by extracting sections along its centerline [8], and if possible by
providing estimations of the local radius.

Tracking procedures [4] iteratively find the next vessel (center) point by ad-
vancing a given step size (fixed or adaptive) in the direction of the estimated
local normal of the current vessel (center) point. However, these local normal
and radius (and center point) estimators, which we will call section estimators,
fail often due to the presence of nearby spurious structures, incorrect scale or
parameter selection or other undesired effects. This may result in obtaining in-
correct local sections which may lead to unrecoverable errors during the tracking
procedure. On the other hand, estimating the correct local section may be in-
teresting in other procedures other than tracking, for example for quantification
of the section geometry, local curvature, centerline length, etc.

The present work focuses mainly on improving the accuracy and robustness
of the section normal and radius estimation. We propose to combine the stan-
dard approach of obtaining a simple solution from the detector response with a
non-linear evolutionary optimization procedure. The approach uses a 1+1 evolu-
tionary strategy (ES) algorithm [12] for optimization and a cost function based
on the classical section estimator approaches, in order to detect the local op-
timal orientation and size (radius) of the vascular structure. The optimization
may also be useful to find the optimal parameters for the estimators.

The paper is organized as follows: Section 2 is a review of vascular detec-
tion and extraction procedures with focus on the methods used on the current
work. Section 3 explains the procedure used to combine standard vessel feature
detectors with an evolutionary optimization strategy. Section 4 describes some
experiments on real datasets and corresponding results with the conclusions
summarized on Section 5.

2 Review of Vascular Detection and Extraction

Vascular detection and extraction procedures have been widely reported in the
literature. The proposed optimization procedure may be used with a high variety
of detectors/estimators, due to its open nature. Here, we will focus on some of
the most popular approaches that have been used in our implementation.
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The detection procedure usually consists of obtaining a function or metric for
every point of an image, called vesselness function, that expresses the likelihood
of a pixel (voxel) of being part of a vessel structure. The design of such a function
is based mainly on the basic property that vessels are usually visible as elongated
hyperintense (or hypointense) structures on vascular images. If the vesselness
value is higher in the centerline of vessels it is then called medialness.

The Hessian matrix is an important tool for vascular detection based on differ-
ential operators. For a three dimensional image I : R3 → R the Hessian matrix
H is defined as the matrix of (scaled) second order derivatives of the image

H(x, σ) =

⎡
⎣
Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

⎤
⎦ (1)

which describes the second order local image structure, that is, local image curva-
tures. The parameter σ is the scaling parameter and corresponds to the Gaussian
smoothing, assuming that the derivatives are calculated in scale-space [5].

The three ordered eigenvalues λi , λ1 ≤ λ2 ≤ λ3, of this Hessian matrix
describe the principal image curvatures which best describe the local image
second-order variations. The corresponding eigenvectors vi describe the direc-
tions in which the principal curvatures occur. When the point x is close to the
centerline or medial axis of a vessel and an appropriate scaling parameter is
chosen, the local structure of the image is that of a bright (or dark) tubular
structure, and the eigenvalues exhibit the following properties [10]:

λ1 ≈ λ2

λ1, λ2 � 0
λ3 ≈ 0

(2)

This assumes that the local curvature of the vessel is not too high and that the
section shows radial symmetry. If these conditions are not met, the eigenvalues
differ from this ideal situation.

The eigenvector v3 corresponds to the direction of the local vessel/tube axis
where the curvature barely varies, hence λ3 is almost zero. The other two princi-
pal curvatures, λ1 and λ2, occur in directions that go from the center of the tube
to the external part of the vessel, where the curvature varies highly. Hence these
eigenvalues are negative and of high absolute value (positive for a dark vessel in
a bright background). The associated eigenvectors v1,v2 are estimators of the
local vessel section plane, since they are aligned with the directions of maximum
curvature. Thus, they constitute a section estimator as described above.

Several detectors or filters may be designed using these second-order local
structure properties. One approach is to take non-linear combination of the
eigenvalues, trying to distinguish tube-like local structures from other shapes,
such as plate-like or blob-like structures, which exhibit different relationships
between the eigenvalues. For example, for plate-like structures two eigenvalues
are similar to zero, and blob-like structures show three eigenvalues of the same
relatively large value [2]. Of this kind are the methods of Sato et al. [10] and
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Frangi et al. [2] among others. Other approaches estimate the vessel section us-
ing the obtained eigenvectors, and then use some sort of differential or integral
operator. Examples are the offset medialness measure used by Krissian et al. [3]
or the ridge detection approach used by Aylward et al. [1]. Most of these authors
adopt multi-scale approaches, which first select a discrete range of scales, obtain
responses for each scale, and then integrate them into a multi-scale representa-
tion, usually by taking the maxima across scales. This requires a normalization of
derivatives across scales [5]. An estimate of the radius may be obtained by mul-
tiplying the scale which gives the maximum vesselness value by a factor which
depends on the vessel intensity distribution [3].

The offset medialness measure [3] is an integral measure defined in the section
plane as:

R+
σ (x, r) =

1

2π

ˆ 2π

α=0

−∇Iσ (x+ rvαi) · vαidα (3)

where vα is a rotating vector, or phasor given by

vα = v1 cosα+ v2 sinα (4)

Equation 3 is the integral of the projection of the negate of the gradient vector
in the radial direction of a circle of radius r around the considered point. This
circle is located in the estimated section plane formed by eigenvectors v1 and
v2. In fact, any other section estimator could be used. As we can see, by tuning
r we have an estimate of the local vessel radius.

The corresponding discrete implementation samples the circle points in which
the gradient is calculated and corresponds to:

R+
σ (x, r) =

1

N

N−1∑
i=0

−∇Iσ (x+ rvαi) · vαi , α = 2πi/N (5)

Pock et al. [9] use the gradient magnitude instead of the gradient projection. We
believe that is better to use the projection in the radial direction determined
by vα rather than the gradient magnitude, since spurious or adjacent structures
may have a greater undesired contribution in terms of gradient magnitude, which
may lead to large values of medialness where it should not. On the other hand,
as an improvement, they introduce the following symmetry coefficient:

ω(bi) = exp

[
− 1

2ξ2

(
1− bi

R+
σ

)2
]
, ξ ∈ (0, 1] ⊂ R (6)

where

bi = −∇Iσ (x+ rvαi) · vαi (7)
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is the contribution of each radial point, also called boundariness [13]. Here, we
have used the boundariness measure of Krissian et al. [3] but other boundariness
measures could be used. The resulting adaptive medialness function is:

Rσ(x, r) =
1

N

N−1∑
i=0

ω(bi) bi (8)

The symmetry coefficient ξ penalizes asymmetry in the radial distribution of
gradient values. When ξ = 1 no penalization is performed. The lower the value
the more the asymmetry is penalized. There is a trade-off between the asymmetry
of the section and the detection rate. If very asymmetrical sections are expected,
the value should be one or close to one. Otherwise, ξ = 0.5 gives good results in
most situations. We also divide the resulting medialness by one plus the gradient
magnitude at the center point, since it should be low in a centerline point. This
last step was also used by Pock et al. [9] but they substracted this value instead
of dividing it.

The original implementation of Krissian et al. [3] makes the radius r dependent
on the scale in the form r = τσ. In practice, it is not necessary to change r linearly
with the scale. Additionally, with large diameters, we would need large scales
with increased computational costs. A better approach is to choose a single or
a few scales valid enough for the range of diameters to be considered and then
adjust r to obtain a maximum response.

Next, we explain our hybrid method of combining this offset medialness mea-
sure with an optimization procedure so as to obtain an optimal section estimator.

3 Vascular Feature Detection with Evolutionary
Optimization

The vascular feature detection with evolutionary optimization procedure consists
of converting a vesselness measure into a cost function that is optimized with
respect to a set of parameters. Currently, we use the optimization in order to
obtain an optimal section estimator. For this purpose, the vesselness measure
needs to be a medialness measure, with the largest values on the vessel axis.
In our experiments, we have used the offset medialness measure in eq. 8. The
problem can be expressed mathematically as:

argmax
u∈Ω

Rσ(xc,u), Ω =
{
u = (n, r) ∈ R

4
}

s.t. ‖n‖ = 1 (9)

The optimization procedure tries to find the optimal unit section normal n
and radius r of the medialness at each section center point xc(assuming that
is the real vessel section center). This would involve a 4D parameter space for
optimization. However, the components of the unit section normal, which are
the director cosines, are related to each other by the expression:

‖n‖ =
√
n2
x + n2

y + n2
z = 1 (10)
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Then, the optimization procedure can be expressed as:

argmax
u∈Ω

Rσ(xc,u), Ω =
{
u = (nx, ny, r) ∈ R

3
}

s.t. {|nx| < 1, |ny| < 1}
(11)

This means that we have a 3D search space with two unit normal coordinates and
the radius of the detector since the last coordinate is calculated with the above
formula1. The new constraints for the nx and ny coordinates can be implemented
very easily by returning a zero value for the cost function when the constraints are
not met. This is a fast and simple alternative to other more complex approaches
such as using Lagrange multipliers.

Note that here the section center is not optimized and it is assumed to be
previously calculated, but it could be incorporated into the procedure. The scale
σ of the derivative calculations could also be included into the optimization.
However, gaussian scale-space derivatives are calculated locally using an imple-
mentation with discrete kernels [6] and this would require the calculation of a
large kernel at each optimization step.

The procedure for obtaining the section normal then becomes a two stage
method (see Figure 1), assuming that we are located on a vessel center point:

1. Estimate the local section using a standard non-optimized estimator. This
gives a single solution for the section normal, given the scale, radius and
center point. The initial parameters are chosen from the neighbor point if
previously calculated. A multiscale approach tests a discrete range of scales
and selects the scale that yields the maximum medialness value.

2. Compute the best parameters for the optimization problem in eq. 11 using
a (1+1)-ES evolutionary optimizer. Take as starting point the parameters
and value of the section normal and radius calculated on the first stage.

Next, we proceed to describe our experiments with real datasets.

4 Experiments and Results

We tested our optimization methods with real 3D datasets, one Contrast-
enhanced Magnetic Resonance Image (MRI) of the liver, one Magnetic
Resonance Angiography (MRA) of the abdomen and one Computerized To-
mography Angiography (CTA) of the abdomen. The resolution of the data was
variable, with the liver MRI 1.56x1.56x3.0 mm. spatial resolution, the CTA with
0.72x0.72x1.5 mm. and the MRA 1x1x1.5 mm.

For each dataset, we manually delineated the approximate centerline of one
or two long vessels: one major liver vein in the MRI dataset, the aorta in the
MRA dataset, and iliac arteries in the other two CTA datasets. The points were
interpolated by a B-Spline curve which was then sampled in order to increase
the number of centerline points.

1 Note that this would not be true with standard variable-length vectors.
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Fig. 1. Two-stage vessel estimation scheme used in our experiments

First, we estimated the sections by the direct method of calculating the eigen-
vectors of the Hessian matrix. In order to select the scale, for each centerline
point, we computed the offset medialness in eq. 8 in the estimated section plane
and chose the parameters for the best value (scale, section normal and radius).
We used a discrete range of scales ranging from 1.0 to 7.0 using a step size of
1.0. The radius used was the scale times a factor of

√
3 which is a good radius

estimate for Gaussian tubes [3]. For all our experiments we used ξ = 0.5 for the
medialness asymmetry parameter.

Second, we computed the sections with our optimization scheme. In order to
keep the two normal components in the range [−1, 1], we simply returned zero
as the medialness value outside this interval. The radius was also constrained in
the range [0, Rmax] where Rmax is chosen above the maximum expected radius
value on the images. The scale was fixed in all our experiments to σ = 1.0, since
we found out that the detection was more sensitive to the radius.

The optimization scheme used a non-linear optimization algorithm called
(1+1)-Evolution Strategy (ES) [12] as implemented in [14], which belongs to
the family of Evolutionary Algorithms [11]. As initial parameters, we chose the
normal and the radius from the first step. The medialness was calculated each
time on the estimated section. The stop condition was either 5000 iterations or a
minimal search radius of 0.25 (Frobenius norm of the covariance matrix). Most
of the times the procedure was finished after about 2000 iterations. Note, that
our focus here was to test the validity of the approach and not the performance
of the optimizer. The latter has quite a lot of margin for improvements, for ex-
ample, by trying to reduce the search space or by tuning the parameters for
optimal performance.
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Fig. 2. Volume rendering of real datasets with rendering of estimated vessel sections.
Delineated centerlines are shown in green and estimated sections in blue. For each
row, from top to bottom, results for an aorta in a MRI, one major liver vessel in the
same MRI, and iliac arteries for a MRA (third row) and CTA (fourth row) study. Left
column depicts the results of the first, direction estimation stage. Right column shows
the results after the evolutionary optimization procedure.
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Results of the described method for both stages are shown in Fig. 2. The
3D render shows the estimated sections and radius depicted as circles at each
centerline point (actually we did not draw all the centerline points but only a
subset). Note that the standard estimator works quite well at estimating the
sections. This is normal since most of the vessels were clearly visible. However,
there was a high variation in the scale and radius estimation along the vessels.
The optimized procedure shows very precise results at estimating the section
and radius, except maybe at bifurcations, where the first stage also fails. Note
specially that the accuracy in the radius estimation is really high, which would
be difficult to estimate by manually setting the parameter on the first stage.

It is important to highlight the fact that our method can be applied to virtu-
ally any vesselness function. In this sense, the method can be thought of as both
a shape and parameter estimator, thus decreasing the number of parameters of
the original estimator. In our experiments, we have initialized the parameters
for each section independently of the results of the previous optimization. How-
ever, the optimizer can be initialized with an initial position corresponding to
the previously calculated point. In this way, the optimization procedure would
be less time consuming.

The optimization stage is slower than the previous step (in the order of min-
utes, rather than in the order of seconds). In practice, it should only be used
when we accurate values of radius and section normal are required or when the
value of the direct section estimator is likely to be incorrect. During a tracking
procedure, this can be detected as an outlier, for example, when the normal ex-
ceeds an angle with respect the previous normal along the vessel path (assuming
that the step size is small enough). It may also be used as a parameter estimator
for the standard procedure obtaining parameter values to be used in a given
application.

On the other hand, the scale for the medialness was fixed to a small value in
the optimization stage. The reason is that the scale for this family of medialness
function should be chosen according to the size of the vessel boundaries (the
boundary is relatively thin) and not according to the diameter. Otherwise, pre-
cision would also be penalized, since we would have a poorer localization with
higher scales. This is an important conclusion, since we have observed that, for
these types of vesselness functions, we can operate at lower scales and with less
variability. The reason is that the scale of the diameters may vary considerably
but the scale of the vessel boundaries not so much. For local calculations us-
ing discrete kernels, this supposes smaller kernels and less kernel recalculations,
which is computationally faster. The procedure also does not require estimating
the Hessian at each iteration, which makes it faster than expected.

5 Conclusions and Future Work

We have developed a method for the estimation of vessel sections on medical
images. It uses an evolutionary optimization scheme together with well-known
vascular feature detectors. These were adapted as cost functions and acted as
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section estimators for the section normal and radius. This alternative approach
is used after a standard direct multiscale section estimator stage. In the current
work, we have used a family of medialness functions as section estimators, al-
though the method admits other types of estimators. We have tested the validity
of the approach by estimating the vessel sections of delineated vessel centerlines
on real MRI, MRA and CTA datasets. Our results show improved accuracy,
more evident in the radius estimation, at the expense of extra computational
time. The procedure can be used as a high accuracy estimator, as a backup
stage during a tracking procedure or as a parameter estimation for several vessel
feature detectors.

Future work will be focused on more exhaustive experimental work, extend-
ing the approach to use other types of section estimators and improving the
performance of the optimization procedure.
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