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Abstract. In this work we present a system that uses the accelerometer embedded 
in a mobile phone to perform activity recognition, with the purpose of 

continuously and pervasively monitoring the users’ level of physical activity in 

their everyday life. Several classification algorithms are analysed and their 
performance measured, based for 6 different activities, namely walking, running, 

climbing stairs, descending stairs, sitting and standing. Feature selection has also 

been explored in order to minimize computational load, which is one of the main 
concerns given the restrictions of smartphones in terms of processor capabilities 

and specially battery life. 
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Introduction 

According to the United Nations forecast, the population aged 60 years and over is 

expected to increase from 20 to more than 30 per cent by the year 2050 in the more 

developed regions, from 8 to 20 per cent in the less developed regions and from just 5 

to 10 per cent in the least developed regions, making ageing of global population an 

increasingly relevant topic in most government’s strategies. Additionally, according to 

the Madrid International Plan of Action on Ageing, as part of the United Nations work 

on ageing, the promotion of healthy nutrition habits and physical activity are two of the 

pillars to improve the quality of life of elderly people. Related to this plan, the Oxford 

Institute of Ageing in their Global Aging Survey (GLAS) report [15] remarks that 

suffering from illnesses and disability is one of the main concerns of elderly people. 

Another risk factor is obesity according to World Health Organization (WHO) report 

10 facts on obesity, where physical inactivity has been pointed as one of the possible 

causes. These two factors may be partially related to the increase in health care 

expenditure and therefore there is a need to foster physical activity. 
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There is an emerging movement called Quantified Self (QS), which consists in 

people recording daily living events that can be classified as inputs (weather, food 

intake, etc.), states (mood, blood oxygen levels, heart rate, etc.) and performance 

(mental and physical activities, etc.). The aim is to gain self-awareness and eventually 

to have an impact of determined daily life actions on people’s health, therefore 

promoting healthy habits and self-care.  

One of the catalysts of the QS movement has been the development of many smart 

wearable devices, miniaturized devices with sensing, computing and communication 

capabilities that a person can wear to automatically record different parameters. 

Recently these devices started to be shipped within mobile phones, but most of existing 

devices are designed to work in cooperation with a smartphone and, are autonomous in 

most cases. This movement is under the scope of mHealth, which brings the possibility 

to patients to monitor their vital signs or relevant parameters for better prevention, 

diagnosis, treatment and follow up. 

Additionally, in the last years, the use of mobile phones with advanced features, so 

called smartphones, is becoming more widespread among individuals. Usually these 

devices incorporate various types of sensors including proximity sensors, GPS sensor, 

compass and accelerometer sensors to name a few, as well as computational and data 

communication capabilities.  

The work presented in this paper has been driven by all these issues and trends and 

targets a specific challenge, the use of the triaxial accelerometer embedded in the 

majority of smartphones to perform activity recognition. The ultimate purpose of this 

work is to advance in the seamless monitoring of people’s level of physical activity 

during their everyday life. 

1. Related Work 

Activity recognition based on accelerometers is a research topic that has been 

extensively studied in recent years. Since early 2000s several studies have shown the 

capacity of external wearable accelerometer sensors to recognize different physical 

activities [1][2][3]. The most extensive and thorough work on the subject is that of Bao 

et al. [1], in which a recognition algorithm capable of recognizing 20 different daily 

activities using 5 biaxial accelerometers is presented. That paper makes a review of the 

state of the art and makes stress upon the use of data recorded and annotated by the 

user in a real-world environment, in contrast to most studies that use data gathered in a 

controlled environment. This work concludes that the use of multiple accelerometers 

helps discriminating among activities, although notes that good performance can be 

achieved with only two accelerometers (placed in the thigh and wrist). 

Over the last few years the technical capabilities of smartphones have increased 

considerably. These devices usually include a built-in triaxial accelerometer, among 

other sensors. Recently, in conjunction with the popularization of these devices, several 

experiments have been conducted in order to recognize physical activities using 

smartphones [4][5][6][7][8][9][10]. This approach differs from previous works mainly 

in the fact that a single accelerometer is used instead of several. Another major 

difference is that the position of the mobile phone in the body is not fixed, which leads 

to new problems. Sun et al. [6] have addressed the issue of the position and orientation 

variability by training several SVM classifiers (one for each predefined position) and 

applying the corresponding classifier based on a previous position identification 



process. Yang [7] tackles the orientation problem by means of computing the 

horizontal and vertical components in acceleration. A similar approach is presented by 

Henpraserttae et al. [10] who uses a projection-based technique for device orientation 

transformation. However, the work of Mizell [22] shows that the vertical component 

can be inferred by means of the static acceleration that the gravity produces. Our 

approach follows Mizell’s approach in order to effectively recognize physical activities 

regardless of the orientation of the device inside the pocket. 

Regarding the algorithms used for the activity classification task, there are various 

approaches. For instance, different implementations of decision trees, such as the C4.5 

algorithm family have been used, achieving high performance with low complexity 

[1][5][7][8][12]. Other classification algorithms included in Weka [20], such as k-

Nearest Neighbour or Naive Bayes, have also been employed in physical activity 

recognition [1][7][8][10][12]. Authors like Sun et al. [6] or Krishnan et al. [13] have 

studied the use of Support Vector Machines for this same classification task, achieving 

an accuracy of 94.8% and 83.6% respectively. As stated by Lester et al. in [11] and 

applied by Mannini et al. in [14], Hidden Markov Models may be useful to recognize 

physical activities based on their capacity to capture the temporal regularities and 

smoothness of activities. 

Unlike other works, ours presents two different classifiers corresponding to two 

different scenarii: I) an optimal classifier for ideal conditions of computation capacity 

and II) a classifier for limited computing capacity conditions. 

2. Data acquisition 

For data acquisition we used a mobile phone (LG Optimus L7) which contains an 

accelerometer that captures samples consisting of the acceleration on x, y and z axes (in 

m/s
2
) plus the timestamp containing the time at which the sample was taken (in 

nanoseconds). The sampling frequency at which the accelerometer can operate is 

variable and depends greatly on the operating system (Android in this case). When 

setting the sampling rate of the sensor we have observed that despite the fact that the 

approximate sampling rate can be programmatically specified (Android actually 

permits choosing among four different rates), the operating system will ultimately 

decide the actual sampling frequency depending on the background running tasks, in 

order to adjust processor load. 

In order to avoid consequent inconveniences we have defined two different 

methods. The first method lies in keeping the screen active while the program remains 

in the foreground (with high priority), preventing the OS from limiting its resources. 

Another solution is to run the recording applications in a freshly started device with no 

applications running on the background. Nevertheless, there is no guarantee that the OS 

will sustain the same sensing frequency when another application demands an intensive 

use of the smartphone resources. 

In order to collect the data we have implemented an Android application with a 

simple user interface that allows the user to fill in his name and the task or activity he is 

about to perform. During the activity, the user puts the phone in his pocket and 

meanwhile, the application records all the data coming from the accelerometer. For our 

experiments we used the highest sampling frequency allowed by the device, i.e. 96 Hz. 



3. Data Processing 

Most of the previous work in the field of activity recognition using accelerometers has 

been done using devices placed in fixed positions of the body [1][2][3]. In these cases 

the orientation of the device is known and therefore the local coordinate system is also 

known. However, this is not possible with a mobile phone since the orientation is no 

longer fixed, each person may carry it in different locations and with different 

orientations, and therefore data varies significantly. Our experiments show that the 

same activity carried out by the same person generates very different acceleration 

patterns depending on the location (e.g. hip, arm, leg) of the device. Moreover, data 

vary significantly depending on the shape and size of the pocket, whether the trousers 

are tight or loose etc. In order to restrain mobile device position variability, we made 

the subjects to keep the mobile phone in their front pockets of their trousers. 

For addressing the orientation related sensitivity, we followed the approach by 

Mizell [22], as stated previously. Following this idea, it is possible to estimate the 

vertical component of acceleration in world coordinates, including its magnitude and 

sign as well as its horizontal magnitude. 

In order to extract the vertical acceleration attributable to gravity, a vector v is 

calculated by computing the average absolute acceleration within a reasonable time 

interval. Let ai = (xi, yi, zi) be the acceleration vector at a given point of the sampling 

interval. Projecting ai onto the normalized v vector, , we get the length and sign 

(positive or negative depending on the direction) of the vertical component. The 

projection vector pi is obtained by multiplying the latter by . The horizontal 

component hi can be calculated by subtracting the projection vector pi from ai. In this 

case we only know that hi is orthogonal to pi but we have no way to know its direction. 

Therefore, the horizontal component is just a magnitude and has no sign. 

4. Feature Extraction 

As the result of the data processing method described before, the absolute horizontal 

component and signed vertical components of acceleration are calculated out of the 

accelerometer data. The set of features will be extracted out of this two dimensional 

vector of vertical and horizontal components. 

When calculating the features we use a window of 512 samples with 50% overlap. 

Several works [1][12][14] have shown the validity of using a sliding window with 50% 

overlap. In addition, with a sampling rate of 96 Hz we get a window of approximately 

5.33 seconds. This window size is similar to that used in [1] or [14] and has proven to 

be large enough to capture the most significant patterns of the activities. The window 

of 512 samples is not accidental, since a window of N2log
2  allows to compute Fast 

Fourier Transform (FFT) efficiently. 

For each window a set of temporal domain and frequency domain features are 

calculated. These features are calculated for both vertical and horizontal components. 

In the time domain we calculate some features such as arithmetic mean (mean), 

standard deviation (sd) and median absolute deviation (mad). We also compute the zero 

crossing rate, setting the zero level in the average, what we call the mean crossing rate 

(mcr). Interquartile range (iqr) and 25
th

, 50
th

 and 75
th

 percentiles are also calculated. 



In the frequency domain we compute the FFT and then we calculate the entropy 

and energy of both components. The feature set is completed with the correlation 

between the vertical and horizontal components. 

The complete feature set is composed of 21 features, namely: h_mean, v_mean, 

h_sd, v_sd, h_mcr, v_mcr, h_mad, v_mad, h_25percentile, v_25percentile, 

h_50percentile, v_50percentile, h_75percentile, v_75percentile, h_iqr, v_iqr, h_energy, 

v_energy, h_entropy, v_entropy and corr_hv. 

5. Classification 

In this work several classification algorithms have been evaluated and compared. 

Random Forest [16] is a classifier consisting of multiple decision trees trained 

using randomly selected feature subspaces. C4.5 [18] is a classification algorithm that 

generates a decision tree using the concept of information entropy in order to select the 

attribute in each node. Naive Bayes [17] is a classifier based on Bayes’ theorem 

assuming that, given the class variable, there is independence between a given feature 

and any other feature of the feature set. Multinomial Logistic Regression [19] is a 

model that allows establishing a relationship between a set of independent, continuous 

or discrete variables and a dependent variable. Multilayer Perceptron is an Artificial 

Neural Network formed by multiple layers that is able to distinguish data that are not 

linearly separable. 

Initially, we trained a classifier for identifying all the different activities in the 

whole dataset and the achieved precision was sufficient for the task. Nevertheless, in 

order to implement the classifier locally into a smartphone platform, with implies 

restrictions in the computational and storage capabilities, we also propose an 

optimization of the process: the implementation of a different classifier that would be 

computationally less expensive while preserving an acceptable precision level. In order 

to achieve this goal we propose a two-level classifier presented next. 

5.1. Two-level hierarchical classifier 

A two-level hierarchical classifier divides the classification process into two stages. 

The first stage consists of 4 classes, namely: sit, stand, run and other that groups other 

activities. The second stage performs a refinement in the classification of activities 

within the class other of the previous stage, namely: walk, upstairs and downstairs. 

When a new sample needs to be processed, the first classifier, which consists of a 

pruned decision tree, is applied from the very beginning. Its execution is very fast with 

a low computational cost. If the sample has been classified as other, the second 

classifier, which can be either a Random Forest or a Multilayer Perceptron, is applied. 

Its execution is slower than the first one and its computational cost is higher, but its 

accuracy is also better. 

Considering the system performance, another parameter to take into account is 

the features ensemble used by the classifier. The calculation of the features also has a 

considerable impact on the computational cost. Since the Fast Fourier Transform 

complexity for a reasonable number of samples is quite high ( NN log ), we have 

excluded frequency domain features in order to minimize this cost. Also, we have 



reduced the number of features to the minimum subset of relevant ones in the first-

stage classifier. 

The second stage classifier is more complex and relies on additional features. 

They are computed only when the first stage classifier has replied other. This way, we 

obtain a fast classifier yet very discriminative on the first stage and a heavier but more 

precise on the second one, resulting in a significant reduction of the computational cost 

while preserving a good level of accuracy. 

6. Results 

In our experiment we collected data from 8 male volunteers aged between 19 and 35. 

All the users were explained how to use the application and then they were told to put 

the phone in their trousers’ front pocket (without any further indication) and perform 

certain activity. Once the activity was completed the user removed the phone from his 

pocket and ended the recording. The recorded data was stored in the device’s internal 

memory and automatically uploaded to a server as soon as the phone was connected to 

a Wi-Fi connection. In order to skip the useless data produced during the placement 

and removal of the phone from the pocket, the first and last 6 seconds of each recording 

were removed. 

In total about 1.14 hours of data were collected with around 10 minutes of total 

recordings among 8 subjects, each individual recording consisting of between 1 and 3 

minutes of the 6 following activities: Sit, Stand, Walk, Run, Upstairs and Downstairs. 

As seen in Section 4, we used a window of 512 samples (approximately 5.33 seconds) 

with a 50% overlap. Therefore, from the collected data we obtain a dataset of 1443 

instances (295 Sit, 251 Stand, 299 Walk, 274 Run, 184 Upstairs and 140 Downstairs 

instances). Using this data we have evaluated several classifiers included in Weka [20] 

and compared their results. The classifiers that were evaluated are those presented in 

Section 5, namely Random Forest, C4.5, Naive Bayes, Logistic Regression and 

Multilayer Perceptron. All the tests were conducted using 10-fold cross-validation. 

When carrying out the experiments, different combinations of the features 

presented in Section 4 were used. Firstly, we have used a feature vector that includes 

all computed features, which we call full feature set. Secondly, we have used only the 

time domain feature. Thirdly, and in order to make a comparison between features in 

the spatial and frequency domain, we have also used a feature set consisting solely of 

frequency domain features. Lastly, we have selected the most significant features 

according to some feature selection algorithms discussed below. Table 1 shows the 

features contained in each of the above mentioned feature sets. 

Table 1. Features contained in each feature set 

 Feature Set 

Feature 
Full 

features 

Temporal 

Domain 

Frequency 

Domain 
Selected 

h_mean X X   

v_mean X X   

h_sd X X   

v_sd X X   

h_mcr X X  X 

v_mcr X X  X 

h_mad X X   

v_mad X X   



h_25percentile X X   

v_25percentile X X  X 

h_50percentile X X   

v_50percentile X X   

h_75percentile X X   

v_75percentile X X   

h_iqr X X   

v_iqr X X   

h_energy X  X  

v_energy X  X  

h_entropy X  X X 

v_entropy X  X  

corr_hv X X   

 

In the context of this work, the feature set that we want to obtain is not targeted to 

a particular predictive model, but to each of the above mentioned classifiers. For that 

reason in this paper we have utilized a filter algorithm for feature selection. Since an 

exhaustive search is impractical due to space dimensionality, we used heuristics, 

following a genetic search approach. As for filter metric we applied a consistency-

based approach. 

Among the different parameter settings we tried, we finally decided to run the 

genetic algorithm with a maximum of 500 generations, a crossover probability of 0.6, a 

mutation probability of 0.001 and a population size of 50. These values had proven 

their efficiency in previous feature selection and optimisation problems such as [21]. 

10-fold cross-validation was used in 10 independent executions using different seeds. 

As a result we obtain a feature set shown in the last column of Table 1, containing the 

following features: h_mcr, v_mcr, v_25percentile and h_entropy. 

Results of our experiments are shown in Table 2 where the prediction accuracy of 

each classifier according to the feature subset used can be observed. 

Table 2. Accuracy of each classifier according to the feature set 

Feature Set 
Random 

Forest 
C4.5 Naive Bayes 

Logistic 

Regression 

Multilayer 

Perceptron 

Full 98.26 98.4 86.62 92.93 96.11 
Temporal Domain 98.68 98.61 86.83 92.51 97.71 

Frequency Domain 89.32 86.07 83.16 82.95 81.98 

Selected 99.09 99.23 81.21 80.73 82.25 

 

When the full feature set is used the best results are obtained by the C4.5 Decision 

Tree with a 98.4% accuracy. Random Forest performs slightly worse with a 98.26% 

accuracy. The rest of classifiers perform well, achieving accuracies above 90% in all 

cases except Naive Bayes, which obtains the worst result with 86.62% accuracy, 0.883 

of precision and 0.866 of recall. 

Using the feature set containing only time domain features the results are slightly 

better than using the full feature set. In this case the best performance is achieved by 

Random Forest, followed by C4.5 with 98.68% and 98.61% accuracy respectively. 

The feature set consisting of the attributes of the frequency domain provides the 

poorest results. It can be argued that these attributes by themselves are not sufficient for 

a correct classification. 

When using the feature set selected by means of feature selection algorithms we 

get the best results. Random Forest and C4.5 obtain the best results with 99.09% and 

99.23% accuracy respectively. Nevertheless Logistic Regression and Multilayer 



Perceptron perform significantly worse with this feature set when compared to full and 

temporal domain feature sets. 

 
Table 3. Confusion matrix for Random Forest (Selected feature set) 

 walk run down up sit stand 

walk 298 1 0 0 0 0 

run 0 273 1 0 0 0 

down 0 0 138 2 0 0 

up 5  3 176 0 0 

sit 0 0 0 0 295 0 

stand 0 0 0 1 0 250 

 
Table 4. Confusion matrix for C4.5 (Selected feature set) 

 walk run down up sit stand 

walk 298 0 0 1 0 0 

run 0 273 1 0 0 0 

down 1 0 136 3 0 0 

up 2 0 3 179 0 0 

sit 0 0 0 0 295 0 

stand 0 0 0 0 0 251 

 

As seen in the confusion matrices shown in tables 3 and 4, walk, downstairs and 

upstairs are the most difficult activities to distinguish since their motion signature is 

very similar. Figure 1 shows two samples of walking and downstairs activities, where 

their similarity can be appreciated. 

 
Figure 1. Horizontal and vertical components of walk and downstairs activities 

 

6.1. Two-level classifier 

In a first stage we have trained a single classifier to classify all activities using the full 

dataset. As exposed in Section 5.1, we have also followed a two-level hierarchical 

classifier approach. According to this approach, in the first level we have built a 

classifier to predict activities of type run, sit and stand, while the rest of activities 

(downstairs, upstairs and walk) are encompassed in a new class named other. This first-



level classifier must have as high accuracy as possible, but it is also desirable to be 

computationally efficient in both prediction and feature extraction tasks. For this reason 

our first-level classifier is a pruned decision tree that uses only 3 features and achieves 

an accuracy of 99.93%. 

Instances classified as other are passed to the second level classifier, which is 

specialized in classifying the activities named downstairs, upstairs and walk. We used a 

Multilayer Perceptron, which despite using all the temporal domain features and being 

computationally more expensive (in both training and execution time), has an accuracy 

as high as 99.51%. The global accuracy of the hierarchical two-level classifier is 

99.72%. 

7. Conclusions and future work 

This paper has presented a work on automatic daily physical activity recognition using 

the accelerometers available on most of current smartphones. The proposed approach 

has been implemented using off-the-shelf equipment, proving its feasibility and 

practical application. In the future it could be ported to other smartphone platforms like 

iOS or Windows Mobile in order to cover potentially more people on the user end. 

Also a server-side middleware API based on REST web services for interaction with 

other applications would help other developments to arise on the developer and service 

provider end. 

Several contributions have been presented for the different steps involved in the 

recognition process. A sensor data pre-processing algorithm has been used to permit 

smartphone orientation independence for classification. Two scenarios have been 

proposed. First, the best case scenario, without technical limitations, using all the 

features available. And second, a more constrained smartphone scenario, where battery 

life and processing capabilities are limited. After the pre-processing, a set of features 

have been obtained. Then, feature selection algorithms have been used adapted to each 

of the two scenarios. 

Finally, several classification algorithms have been tested using different metrics 

and variations in the process, such as a comparison between the use of different feature 

sets. 

This work is expected to increase the set of recognizable physical activities which 

may have a distinctive motion pattern like cycling or driving a vehicle or may be 

recognizable by other means. To that end, it is expected to make use of the data 

captured by other sensors available in current smartphones (e.g.: camera, microphone, 

proximity sensor). For example, using GPS to detect vehicle movement or terrain 

topography or using the gyroscope for more precise tracking. The use of wearable 

sensor devices which can communicate with the smartphone, such as an ECG or 

pulsometer will also be considered. The combination of such heterogeneous data will 

require the extensive use of data selection and fusion algorithms, which we want to 

explore, in order to maximize the accuracy while minimizing the number of features 

used. 

There are at least two practical scenarios for these improvements. First, to be able 

obtain a precise monitoring of energy consumption or metabolic equivalent (MET) 

based on the activities recognized. And secondly, to monitor the activities carried out 

by the elderly people, fostering self-care and independent living under a ubiquitous but 

minimally-intrusive supervision. 
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