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This paper presents a Diminished Reality system that is able to propagate textures as well as structures with

a low computational cost, almost in real-time. An existing inpainting algorithm is optimized in order to
reduce the high computational cost by implementing some Computer Vision techniques. Although some of
the presented optimizations can be applied to a single static image directly, the global system is mainly oriented
to video sequences, where temporal coherence ideas can be applied. Given that, a novel pipeline is proposed
to maintain the visual quality of the reconstructed image area without the need of calculating everything again
despite slow camera motions. To the best of our knowledge, the prototype presented in this paper is the
only Diminished Reality system focused on structure propagation that works near real-time. Apart from the
technical description, this paper presents an extensive experimental study of the system, which evaluates the

optimizations in terms of time and quality.

1 INTRODUCTION

Augmented Reality (AR) is a major field of research
that is getting more and more support in the last few
years. As a result of this popularity, new research
branches have emerged. Diminished Reality (DR) can
be considered as one of the branches of AR that has
awaken the interest of researchers in the last decade.
AR is a mechanism that enriches the real world by
adding virtual elements to it. A typical example could
be the Google Glass (Google Inc., 2013), where the
user is able to see everything normally (real world),
but it is also able to see augmented content (messages,
videos or images) at the same time. On the contrary,
Diminished Reality (DR) basically does the opposite
effect of AR. The objective of DR is to remove un-
desired objects from the image, video or user view.
A combination of these two technologies can be used
to create an interactive virtual environment where the
user can add/remove virtual/real objects in real-time.
A DR technique is divided in three main modules:
object detection, tracking and inpainting. The object
detection module consists in recognizing the object
that needs to be occluded, the tracking system aims
to follow the object in the subsequent frames, and the
inpainting module consists in reconstructing the area
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Figure 1: General DR system diagram.

where the object is located. Figure 1 compares the
process of DR in image and video applications. As it
can be seen in the diagram, for a single image appli-
cation the tracking step is not required (it is enough
with the initial detection), while the video processing
includes a loop to extrapolate and exploit the informa-
tion of the previous frames to the subsequent ones.

The problem of actual inpainting techniques is
that they require a high computational cost for the in-
painting step. Existing techniques, such as (Criminisi
et al., 2004), (Komodakis and Tziritas, 2007), (Liu
and Caselles, 2013) have made efforts to improve the
visual quality of the results without taking care of the
processing time. Consequently, it is uncomfortable
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to implement these techniques directly to process a
live video because they would take too much time to
process each of the frames. One of the biggest opti-
mizations in computing time was presented in (Barnes
et al., 2009). The proposed randomized patch search
reduced considerably the processing time of the exist-
ing techniques. This technique can propagate textures
easily but it presents some limitations when structures
need to be propagated. On the other hand, a robust
technique for image inpainting was presented by (Cri-
minisi et al., 2004). This technique defines the prior-
ities of the filling order to maintain structural infor-
mation. Nonetheless, it is too slow for video appli-
cations, as it lasts minutes to recover a high quality
video frame.

To the best of our knowledge, the only existing
DR systems that are able to work near real-time are
(Herling and Broll, 2010) and (Herling and Broll,
2012). In both cases the inpainting method proposed
by (Barnes et al., 2009) is optimized. As mentioned
before, this algorithm is fast and efficient when prop-
agating textures, but it is not so accurate when struc-
tures need to be processed.

The solution presented in this paper spreads out
the real-time DR solutions by implementing an opti-
mized version of (Criminisi et al., 2004), which is a
robust algorithm that preserves structures. Moreover,
two different tracking techniques have been integrated
in order to create a robust system.

The rest of the paper is organized in 5 sections
as follows. In Section 2 we provide an overview of
some works related to DR and similarities with our
contribution. Then, in Section 3 we present all op-
timizations that have been introduced to get a near
real-time DR system that preserves texture and struc-
ture patterns. Section 4 shows extensive experiments
that validate the proposed system. Finally, Section 5
presents the main conclusions drawn from this work.

2 RELATED WORK

According to the number of cameras or views, DR
techniques can be classified in two groups:

e Multiview-based methods: (Lepetit et al., 2001)
and (Zokai et al., 2003) use cameras ore frames
from different points of view in order to seg-
ment the object that needs to be removed. The
result is almost perfect because these techniques
generate a 3D representation of the scene, going
from a 2D problem to a 3D problem, which fa-
cilitates the distinction between object and back-
ground. The weakness of these methods is that in
most real problems there is no control or ability to

place multiple cameras to get frames from differ-
ent points of view and do the 3D reconstruction.

e Frame-based methods: Most of the existing
methods like (Wexler et al.,, 2007), (Simakov
et al., 2008), (Herling and Broll, 2010), (Her-
ling and Broll, 2012), (Kawai et al., 2013a) and
(Kawai et al., 2013b) are based on the information
of a single camera. They do the image inpainting
based on the previous, actual and sometimes next
frames too (they do a backward process). In this
case, when multiple frames are used it is to ap-
ply temporal coherence rules. Even if these tech-
niques are not as accurate as the previous ones,
they are applicable in much more scenarios.

This article focuses on the frame-based methods,
because they are the trend in the last few years due to
their versatility for most scenarios.

(Wexler et al., 2007) present a novel algorithm
able to reconstruct damaged or missing frames from
videos. They introduce a coherence term, which
means that the reconstructed area should maintain the
same value in all the video. All video frames are used
in the inpainting step in a process called space-time
video completion. Even if this algorithm obtains re-
ally good results, there is no possibility to implement
it in real-time. Apart from that, this algorithm is de-
signed to work with static cameras.

(Simakov et al., 2008) design an innovative
method called bidirectional similarity. This method is
presented in their article in order to summarize data.
This summarization can be applied in images as well
as videos, and it can be used for several applications,
such as automatic cropping, photo reshuffling, im-
age collage, object removal and more. Simakov et
al. define the bidirectional similarity in two terms
called completeness and coherence. Completeness
means that all the patches contained in the input im-
age should be in some part of the output image. Co-
herence means that all the patches contained in the
output image should come from the input image. This
algorithm is also not applicable in real-time applica-
tions because of its high computational time.

(Herling and Broll, 2010) describe the first self-
contained real-time capable DR system for video ap-
plications. The main challenge for this technique is
making (Barnes et al., 2009) close to real-time with-
out loosing quality in the image. The same authors
present an evolution of the initial solution in (Her-
ling and Broll, 2012). In the new version, they add
a fingerprint selection to select the area and use a seg-
mentation technique to select the object inside the re-
gion of interest. They also change the object tracking
mechanism from an active snake (Kass et al., 1988)
approach to a two phase contour tracking approach.
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They use a homography based contour tracking in the
first phase, while i the second phase, the new con-
tour i3 refined and adjosted regarding w the undesired
ohject area.  This improvement leads to better con-
tour point cofrespondences between successive video
frames,

(Kawai et al., 2003a) propose & DR system con-
sidering background stractures. They focus on the in-
painting roone than on the detection or tracking pro-
cesses. The aim of this work is to overcome the profb-
lem of perspective distortion of segular patterns that
appears in exemplar-based inpainting.  This s done
by rectifying the input image and applying changes
bused on similar patterns from the image.  Their
scheme, presented in {Kowai et ol 2003b) as well
a5 i (Herhing and Broll, 20021, uses a homography 1o
ensure temporal consistency and 1o determine search-
ing areas in the next frame, The problem s that the
homography assumpdion works well when the back-
ground i= almost planar, bat the resalis in non-planar
hackgrounds are not accurate, In their method, the
scene around the target object is divided into multiple
planes, whose number is sutomaticelly determined.
Inpainted texiures are successfully overlaid on the tur-
gel obpect under comparatively unrestricted camera
motion wsing the estimated planes and the camera
pose calculoted by o complementary Visual-SLAM
=y stem.

According to cur prototvpe. the idea of the patch
search optimization explained in (Bames et al., 200
has besn toeken into account o improve (Criminiss
efal, 2004}, Apart from thi, the coberence term ex-
plained by Wexler ef o has besn also applied for
video applications in order (o obtan a better visual
effect amnd reduce even more the computational Linse,
Thus, our DE svatem has similarities with the work
described in (Herling and Brofl, 200 2). The main dif-
ference is that we optimize an inpainting method that
offer us more robdesiness (0 propagate structures, il
conseguently, it is more complicated. As a result. the
DE system proposed in this anicke is the only DR
solution designed for structure propagation that can
work near in real-time.

3 PROPOSED DIMINISHED
REALITY

The DE =olution that 15 presented in this articls works
near real-time and 15 capable of propagating siroc-
tures, Like any other DE system. it is composed
by three muin modules (Figure 15 object detection,
trocking amd inpuinting,

Axcording to our proteiype, it 1% mmportant 1o nede
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Figire 2; Mamaal object detecton, The while circle is se-
lected by the user using the mouse.

that the object detection is done manually, as the user
needs o select the area of the object that needs 1o be
remaoved (e, the region of interesi, ROT). The uscr
is responsible for drawing the outline of the object in
the image with the mowse (Figure 21 Although this
step can be done antomatically by an advanced object
recognition, this article focuses on the optimization
of the inpainting phase, so this improvement has not
been addressed,

Two different tracking methods (Cams=hlt | Brad-
ski, 1998 and Lucis-Kansde optical low (Bougoe,
HHM Y have been implemented o deal with obgects
of different appearances and o develop a more ro-
bust protatvpe,  In the case of the Camshifi track-
ing algarithin, it recalculates the position of the RO
based on colour information, so it supports objects
thar are homogenenus, without texture, The optical
Aow iracking, meanwhile, searches keyvpoints inside
the RO that will be tracked in subsequent frames, so
it is oricnted to ohjeces with texiure. As the opeical
fow tracking provides grester accuracy in estimating
the motion of the RO over time, its use is preferable.
For further details of these technigues, please refer to
the corresponding sources.

Two misdes of execcution are allowed for the in-
painting siep. The first one performs the inpainting
process ineach new fnnme, Tollowing the procedure
shown i Figure 1, The second one, however, ap-
plies w maotion maodel (represented by a homaography )
o update the pizels and it oaly calls the inpainting
function when a strong movement 15 detected (when
the motion model iz not a good estimation),  Fig-
ure 3 shows the flow diagram of the second execu-
tion mode. It is noteworthy that this second execution
mode is oriented to video applications, when several
sequential frames are available and where the maotion
model makes sense.

Additionally. the proposed DE system has been
designed to be modular in osder to facilitate the cre-
ation of different setups during the validation pro-
cess {see Section 43, Thus, it s simple to intearate
o new object detection, tracking or inpainting oloo-
nthm.  Similarly, 11 1% also possible 1o change the
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=1 Inpainting

Figure 3: Proposed DR system diagram.

parameterization (paich searching area, image down-
sampling size, eic.) o adapt o differend environ-
menis.

3.1  Real-time Optimizations

At is menboned i the introdaction, the mpaimting
Technigue that wses the profotyps presented in this ar-
piche 1% hozed on (Crimanis e al,, 20045, Furthermore,
we have implemented all the oplimizations wsing the
publicly available code (Rahal Verma, 201 3) as a ba-
s15. Thiz section includes the optimizations that have
been introduced 1o speedup the process of inpainting

and rewxch the real-time goal.

A1 Patch Search Reduction

One of the most imporant changes from the origi-
nal algorithm is the change of the paich searching
arca. In its original version, the area that has to be
reconsiructed is divided into small paiches {called
ferpet paiches) and each one is Olled by copying
patches from the rest of the image (called sowrce
patches). However, the proposed algorithm searches
source plches only in the surroundings of each target
patch, Even thoogh there 15 a loss of information, in
mexstof the cases thiz mformation is useless for the in-
painting, and therefore, a pointless processing. It has
been abserved that in many cases, the closest patches
were the best matches for the targed patch. Figure 4
is an example of the tests that were performed. As
it is shown in the image, the target region is morked
in green, and the source patches are marked in blue.
Muost of the source puiches come from the surround-
ings of the masked region (red rectungle). Theretore,
a reduction of the search area would improve the pro-
cessing time with g small impact on the resalt. We
have implemented the scheme proposed by Goyal ef
al, for determiming the patch search area, which has

been sel proportional w0 the patch size and 15 conlig-
urable for each execution.

Figure 4: Patch comespondences.  Green area {mrpet
patches) is eeomsmucted with the information of the bloe
patches (source paiches). The red rectangle represenis the
bounded search arca that could be wsed abmest withiout Jat-

ering the resoll

S50 (Sum of Squared Differences) is the most
commin technigque used in exemplar-based ipin-
ing algorithms 1o meassure the difference hetween the
source and target patches. (Criminisi et al., 2004)
does not define any rule io choose one patch or an-
other when there are two or more patches with the
same S50 value, Thus, we hove introduced a new
condition for the patch selection.  In {Goyal et al.,
201, they define & variance term o decide belween
paiches with the sume S50, In our approach, the eo-
clidean distance betwesn the target amd searce patch
lecations 1s caleulsed and compared, and the nearest
source pitch between the candidates with the same
S50 value is chosen as the best exemplar patch for the
target patch, This is coherent due w the fact that the
lighting conditicns are maore stable in surrounding ar-
eas, reducing the possibility of introducing wndesired
artefacts,

Figure 3 shows the differences between searching
in the whole image and our optimized local search, Asg
it can be seen in the images, there is not much differ-
ence between the onginal alzorithm and the result of
the optimized search in terms of quality, In some paris
of the image the original algorthm performs slightly
better than the optimized one (compare the building
in Figure 5 ¢ and di. but in other parts even the opli-
miizesd version works better {node the bush over the sea
in Figure 5 ¢ and &), Summancmg, it can be said that
the optimieed search reduces the computational time
while keeping similar quality resuliz.

ALE  Image Cropping and Downsampling

The original image is cropped by a proportional size
to the ROL. Thus, there is a reduction in the area that
need to be processed during the inpainting process.
Moreover, the cropped image is downsumpled sev-
eral scule factors to decrease the number of pixels that
are processed (Figure 61, reducing the processing time
substantially. These modifications reduce the time of
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Figure 51 Comparizon betwesn the optimized search aren
and the exisiing approsches, (Crindoist el al, 2004) {a-
di omd (Gooal et ol 20000 {e-h),  Images @ken From
{Bercalmio eral., 2000 and {Geoyal e al., 2010 From (a) 1o
{cly nndd from (e ) o (hi: Enpat image:; Mask that defines the

ROl Resule from (Crimindsi ef al., 20k or {Goval et al,,
2010 Besult using the propesed optimieed paich search.

both, the computition of the pidch prionty ws well as
the zearch of patch comespondences.  Aler caleul-
ing patch cormespondeces in the low sciale, matches
are mapped directly 10 the oniginal image based on
the cropping offset and the scaling facion,  Although
we have observed that using the comespondences cal-
colated in the low scale slightly reduces the resulting
vigual guality, it is a necessary modification o achicve
real-time {see Section 4.

ﬁ-
i
-
0

Figure f Croppang and downsampling steps

313 Patch Propagation

The patch propagation opiimization is an essential
madule for implementing a real-time system, In oor
approzch, & motion model between ten consecutive
frames iz calculated using the tracking information.
Given the location of some features (at least 4) in
the previous and current frames, we are able to cal-
culate & perspective transformation {represented by a
homography } that relates the movement between the
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two frames. Thus, the mew locations of the paches
can be obtaned by a simple matrix muolaphcation,
which simplifies caleulating patch comespondences
and avoid Baving to search them in each frame,

The efficiency of ths method reles on having an
accurate tracking syatern, Chven that, two different
wracking systems have been implemented o explore
their response amd achieve s robust solution: (Brad-
aki, 199#) and (Lucas etal,, 1981, (Bradski, 1998) is
a iracking system based on colour histograms, There-
fore, it is wery suitahle for working with texiureless
objects. MNeverthebess, it is not especially robust o
rotations, as it only provides four poines around the
object {four corners thet defire the oriemed boanding
box of the object) to Feed the homography calculntion,
n the other hund, {Lucas o ol., 19815 tracks feature
points that are detected on the object (RO, In the ini-
tial Fravmee, some feature poants ane detected with the
FAST detector [ Bosten and Drommond, 2005, amd m
subsequent frnmes the new locations of these poinis
are updated vaing the optical Mow estomation, Tn this
case, as there are multiple points 1o feed the hamogra:
phy calulation, an hvpothasis-verification methodao-
oy (known s BANSAC (Fischler and Bolles, 19813
is applicd, which offers higher accuracy and more ro-
hustnes against the movements of the camera. The
muin drawhack of this tracking system is that it does
mob work well with texiurcless objects, i.e. it reguires
obpects thot provide feature points on their surface.

The ability o employ the motion estimation gave
s the chance of working in real-time. Howewver, we
hove observed that the inpainting quality degrades
considerably afier a large movemend, Le., when there
15 & viewpoint change between the corment state and
the starting point where the complete patch corme-
spondence algorithm was performed.  To solve this
degradation, the prodotype presented in this artcle n-
cludes a comtrol madule (Figure 3) thatl Keeps track of
the cumiulotive movernent applied o the camera. 10 ss
caleulated by detecting the center of the object from
the tracking poants and companng it to e initial po-
gition, 'When this distance exceeds a threshold, the
original mpainting algorithm is executed to calculate
mew patch cormespondences, more appeopriate 1o the
current viewpodnt. [t is mote worthy that he threshold
can be configured to adapt the margin of maovement
for each scenano.

Another difficulty when working with the mo-
fion estimation approach is handling scale transfor-
mations. In this case, zaps between paiches appear
when all the patches wre updofed with the homogora-
phy estimation. This happens because the shape of
the object differs between the initial and subsequent
frames, Thiz effect 1= especially noticeable when the



Towards a Diminished Reality System that Preserves Structures and Works in Real-time

size of the object in the current frame is bigger than in
the initial moment. Figure 7 (b} is an example where
the mentioned undesired gaps are shown. In order to
overcome this problem, a pixel level comection has
been implemented. I8 s a two iteration process. In
the first iterution all the target patches are updated as
wsual. The change is that a mask that contains the
siatus of all the pixels that form the RO 15 main-
taimed, Thus, the stats of each pixed 15 italzed
as mor dpdate, and after the fica flerton, the statis
of those pixels thit have baen updated 35 changed, In
the second iteration, the same procedure is applied.
but in this case, each source pixel is copied 1o those
pixels that are inside a predefined radius of the tar-
get pixel. Before copying each pixel, it checks in the
mask wether the pixel has been already wpdated (in
the first iteration} or nod. 'With this procedore the vi-
sual guality iy mainizined (Figure 7 {c)) and calling
the origmal inpainting algorithm is avoided. Never-
thebess, 1t 15 ol convemient to apply o big radios be-
ciuse the result would degrade in strong scalings. In
our approach, we assure a pood guality combining the
sensitivity of the control moduale (to raise the original
inpainting algorithm when a strong scale tranzlormi-
o 15 apphied) and the pixel correction radios.

{a) b} i

Figune T: Scaling exanypde of paich propagation. Froos leil
o right: Origimal frame; Pacch propagation with moton es-
timsation; Fatch propagateen with mothon estimation and gap
filling.

4 EXPERIMENTS AND RESULTS

This section provides a performumee amd gualily evi-
lution of the prototype. 1t is divided in three subsec-
tons! implementation details, results and discussion.

4.1 Implementation Details

The main module that has been paid attention in oor
DR system is the impainting process. The proposed
silution should mamtain o balance between quality
and speed, Speed s a parameter thal can easily be
measured objectively, and therefore, the resuliz that
are ohtained from this Kind of measarement can di-
rectly be interpreted. However, the quality is a sub-
jective indicator that needs an extra gep 1w proof s

validity. In order to quantify the guality, a web form
with videos that were processed with differend con-
figurations (see below) was prepared and presented o
different users.

The different conhgurations that have been con-
sidered are;

The modular design of the proposed solution al-
Iows s i change from one configuration fo another
eazily in the process of testng, Hence, a progressive
fesling process is presenled, starting from the onginal
algorithm and introducing each optimization ugp 1o the
final protoype.

* Original (v0): Consists in executing frame by
frame the original algonthm proposed by {Crim-
inisi et al., 200 ).

& Driginal+Patch search (vOP): Consists i exe-
cuting the orginal algorithm plus the patch search
pplimization {Section 3.1, 1), which consists in re-
ducing the patch search area.

= Original+Paich search+ Downsampling (P ):

Consists in executing the algonthm with the op-
timized search and wsing image downsampling
(section 3.1.2) o accelernte the process,

« Final (vF): Consists in executing the algorithm
with all the optimizations mentioned i this ari-
cle. Patches are calculated just when there is a
hig movement, and the rest of the video process-
ing consists in finding the cormespondence using
the motion model estimation (Section 3,13 Ad-
ditionally, this configuration has been executed in
turn with the two tracking systems described in
Section 3.1.3, Camshift (vFC) and Optical Flow
(vFOF).

Stmilarly, several scenarios with different com-
plesiy have been considered, starting from the maost
simple one op 0 the most complex one:

= Simple scenario: Consists in removing an object
in a mon-structural background, For example, a
picee of paper on the wop of o table {Figure & {aj).

# Mediom scenario: Consiziz i removing an ob-
pot moa simple structural backeroamd,  For ex-
ample, o mobile phone that partially occludes the
junction of two tables (Figure 8 (b)),

= Complex scenario: Consisis in removing an ob-
Ject in a comples structural hackground, For ex-
ample, a card that is in front of a bulding with
homogeneous color and several structumal compo-
nents (Figure £ {c)).

Moreover, three different videos were reconded for
each scenario o represent different motions:  rota-
nod, translation and scaling. All these videos were
recorded in 7200k,
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(a)
Figure 8: Simple (a), medium (b) and complex (c) scenarios
used in the experiments.

For each of these cases the timing information as
well as the output video were recorded to obtain some
comparisons and conclusions. The hardware setup
consists of an Intel i5-3470 at 3.20GHz and 8 GB of
RAM running under windows 8.1. The code was writ-
ten in C++ using the OpenCV library (Itseez, 2016).

4.2 Experimental Results
4.2.1 Time

Figure 9 shows the execution time of each configu-
ration for each scenario according to the motion ap-
plied. As expected, the procesing time decreases
when more optimizations are introduced. In the case
of the scaling, there is an increase of the process-
ing time in the latter frames. This happens because
the object that needs to be inpainted becomes bigger
over time, and as a result, more patches are needed
to cover the area. With respect to the final versions
with Camshift and Optical Flow tracking systems, it
can be seen that they have a really low processing
time in most of the frames (between 50-60 millisec-
onds when there are no peaks, i.e., when the origi-
nal inpainting method is not called and the motion es-
timation is used). In the case of the Optical Flow,
there is a peak at the beginning because patches are
initialized using the original inpainting function. In
the rest of the video the tracking algorithm is robust
against movements and avoids calculating the patches
again (Section 3.1.3). On the other hand, the Camshift
shows peaks all over the video because it needs to re-
calculate the patches to maintain a good visual qual-
ity.

Furthemore, Tables 1, 2 and 3 present the total
procesing times for simple, medium and complex sce-
narios respectively. It can be observed that the pro-
posed DR system has reduced computational cost sev-
eral orders of magnitude compared to the original so-
lution.

4.2.2 Quality

15 users with skills in computer graphics (but with-
out extensive knowledge in DR) took part in the ex-
periment. To each user the videos reconstructed with
the different configurations were presented (see some
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Table 1: Simple scenario, total processing time (in seconds)
for each configuration and motion.

Config Rotation | Translation Scaling
‘1 (199 frames) | (152 frames) | (177 frames)
vO 52862,84 53526,35 105292,73
vOP 3097,53 3226,45 5098,17
vOPD 259,69 266,97 425,49
vFC 17,04 23,12 12,85
vFOF 10,77 8,62 9,08

Table 2: Medium scenario, total processing time (in sec-
onds) for each configuration and motion.

Config Rotation | Translation Scaling
‘1 (199 frames) | (152 frames) | (102 frames)
vO 92435,89 53548,90 57551,18
vOP 5209,06 3478,99 3712,20
vOPD 409,29 283,65 309,46
vFC 31,00 37,49 15,47
vFOF 14,80 22,33 6,18

Table 3: Complex scenario, total processing time (in sec-
onds) for each configuration and motion.

Config Rotation | Translation | Scaling
*| (175 frames) | (135 frames) | (75 frames)
vO 61440,18 4344994 22814,54
vOP 2467,36 2119,33 157421
vOPD 278,24 232,88 117,40
vFC 16,69 23,61 491
vFOF 11,83 9,40 5,46

frame examples in Figures 11, 12 and 13). Thus,
the users evaluated each video from 1 to 5, being
1 the worse quality and 5 the best one. Figure 10
shows the answers that were recorded, which exhibit
a tendency. All the users increased the score when
more optimizations where incorporated. This is be-
cause the original algorithm and the first optimiza-
tions (vVOP and vOPD) recalculate all the patches ev-
ery frame, so correspondences can change in consec-
utive frames even when there are almost no changes
in the scene (for example, due to small light varia-
tions). This generates a different image reconstruc-
tion in each frame, which is perceived negatively by
the user. vOP scores better than vO because it uses
a bounded patch search, which favors the stability of
the correspondences over time. vOPD, by contrast,
has worse results because correspondences are calcu-
lated in a low scale, which can introduce some inac-
curacies. VFC and vFOF introduce temporal coher-
ence and maintain stable the correspondences along
the video sequence, which improves the visual per-
ception considerably and explains their high score.
As vFOF is able to maintain the motion estimation for
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4.3 Discussion

The time cvaluation that has been conducted shows
that each proposed optimization decreases the com-
putaiionad wme, vOP and vOPD opimizations ¢an
be apphed o a sngle wage directly, while vFC and
WPOF explodn temporal coherence wdeas and are osi-
ented o video applications.

Ciiven the results of the guality experiment. the
proposed optimizations do ot harm the quality of the
visuil perception. Even vFC and vFOF obtain bet-
ter visual perception for a complete video sequence.
Monetheless, this guoality cvaluation has been per-
formed for a video sequence. For a single static im-
age, the visual resulls with or without optimizations
are similar {see Figures 5, 11, 12 and 133 [n this
case, what we do get is a noficeabie reduction in the
computntional cosi
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Figure 11: Frame samples for the rotation sequence in simple (top), medium (middle) and complex (bottom) scenarios.

Source vO vOP vOPD vFC vFOF

Figure 12: Frame samples for the translation sequence in simple (top), medium (middle) and complex (bottom) scenarios.
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Figure 13: Frame samples for the scaling sequence in simple (top), medium (middle) and complex (bottom) scenarios.
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5 CONCLUSIONS

In this article, some optimizations have been pro-
posed to get a DR system that preserves structures
and works near real-time. Patch search reduction
and downsampling optimizations are valid for a sin-
gle static image, while the global system is mainly
oriented to video applications, where the temporal
coherence let us using tracking techniques to main-
tain the reconstrunction of the image stable along the
video sequence. Two different tracking methods have
been considered to study their influence in the final
image reconstruction and to obtain a robust DR sys-
tem. A battery of experiments has demosntrated a
substantial saving in the computational cost (several
orders of magnitude), while maintaining the visual
perception quality at acceptable levels. The use of
parallel computing techniques is an issue that will be
addressed in the future.
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