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Abstract

In Robot-Assisted Rehabilitation (RAR) the accurate estimation of the

patient limb joint angles is critical to assess therapy efficacy. In RAR, the

use of classic motion capture systems (MOCAPs) (e.g., optical and electro-

magnetic) to estimate the Gleno-Humeral (GH) joint angles is hindered by

the exoskeleton body, which causes occlusions and magnetic disturbances.

Moreover, the exoskeleton posture does not accurately reflect limb posture,

as their kinematic models differ. To address said limitations in posture esti-

mation, we propose installing the cameras of an optical marker-based MO-
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CAP in the rehabilitation exoskeleton. Then, the GH joint angles are esti-

mated by combining the estimated marker poses and exoskeleton Forward

Kinematics. Such a hybrid system prevents problems related to marker oc-

clusions, reduced camera detection volume and imprecise joint angle estima-

tion due to the kinematic mismatch of the patient and exoskeleton models.

This paper presents the formulation, simulation and accuracy quantification

of the proposed method with simulated human movements. In addition, a

sensitivity analysis of the method accuracy to marker position estimation er-

rors, due to system calibration errors and marker drifts, has been carried out.

The results show that, even with significant errors in the marker position

estimation, method accuracy is adequate for RAR.
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Glossary

Acromion Region of the scapula bone above the GH joint.
Clavicle Bone of the shoulder girdle located at the root of the neck.
CS(s) Coordinate System(s).
COMB Combination of movements of the GH joint (SAbAd, SFE and SIR).
DOF(s) Degree(s) of Freedom.
GH Gleno-Humeral.
Humerus Upper arm bone.
MOCAP(s) Motion Capture System(s).
mts meters.
RAR Robot-Assisted Rehabilitation.
RMS Root Mean Square.
Scapula Bone that connects the humerus to the clavicle.
SAbAd Shoulder Horizontal Abduction-Adduction.
SFE Shoulder Flexion-Extension.
SIR Shoulder Internal Rotation.
VR Virtual Reality.
V-REP Virtual Robot Experimentation Platform.
w.r.t. With respect to.
E Exoskeleton Kinematic Model.
H Human Upper Body Kinematic Model.
M = {m0,m1}. Set of planar markers mounted on the patient.
pEG Position of the GH joint w.r.t. the E CS.
pEelw Position of the Elbow joint w.r.t. the E CS.
R = {r0, r1}. Set of vision sensors that compose the optical MOCAP.
vHG (t) 3-tuple of joint angles of the GH joint at instant t.
vE(t) Tuple of joint angles of the exoskeleton kinematic model at instant t.
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TE
mi

Transformation matrix of marker mi w.r.t. the E base CS.
T ri
mi

Transformation matrix of marker mi w.r.t. the ri CS.
Tm0
G Transformation matrix of the GH joint w.r.t. the m0 marker.
Tm1
elw Transformation matrix of the elbow joint w.r.t. the m1 marker.

Notation xyz x can be a position, transformation, etc., of object z w.r.t. object y
CS.

1 Introduction

The application of Robotics and Virtual Reality (VR) to motor Neuro-Rehabilitation
(Fig. 1) has been beneficial for patients, as they receive intensive, repetitive, task-
specific and interactive treatment ([1–4]).

Rehabilitation
Robot

Patient movement 
and task feedback

Patient movement 
mapped to the VR 
avatar

VR game

Figure 1: Robotic and VR-based Rehabilitation.

The assessment of: (a) patient movement compliance with the prescribed ex-
ercises and (b) patient long-term improvement is critical when planning and eval-
uating the efficacy of RAR therapies. In order to obtain the patient motion data to
conduct said assessments, one has to estimate patient posture (i.e. the joint angles
of the limbs). Patient posture estimation methods need to be practical and easy to
set up for the physician, so that said assessments can indeed be an integral part of
the therapy.

Current methods for estimating patient posture are either cumbersome or not
accurate enough in exoskeleton-based therapies. In order to overcome such lim-
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itations, we propose a method where low-cost RGB-D cameras (which render
color and depth images) are directly installed in the exoskeleton and colored pla-
nar markers are attached to the patient’s limb to estimate the angles of the GH
joint, thereby overcoming the individual limitations of each of these systems.

2 Literature Review

Optical, electromagnetic and inertial MOCAPs have been used in many rehabil-
itation scenarios for accurate posture estimation ([5]). However, the use of said
MOCAPs in exoskeleton-based rehabilitation is limited by the factors discussed
below:

1. Optical marker-based systems (e.g. Optotrack, CODA, Vicon) are con-
sidered the most accurate for human motion capture ([5]). Ref. [6] re-
ports Optotrack errors of 0.1 - 0.15 mm. However, in the specific case
of exoskeleton-based therapy, these systems require redundant sensors and
markers to cope with occlusions caused by the exoskeletal body. Therefore,
their specific usage for therapy is limited. Besides, the cost of these systems
is high (50K - 300K USD [7]) compared to non-optical MOCAPs.

2. Electromagnetic systems do not suffer from optical occlusions. However,
they are easily perturbed by surrounding metallic objects (e.g. exoskele-
tal body) and electric / magnetic fields ([5]). An additional drawback of
these systems is their limited detection volume when compared to optical
systems.

3. Inertial and Magnetic Measurement Systems are robust, handy, and eco-
nomical for full-body human motion detection (upper limb tracking in [8,
9]). With the use of advanced filtering techniques, inertial sensor drift er-
rors are reduced and a dynamic accuracy of 3 deg. RMS ([5]) is achieved.
However, these systems require patients to perform calibration motions /
postures, which may not be suitable for those with neuromotor impairments.
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In exoskeleton-based rehabilitation, the prevailing approach to estimate hu-
man limb joint angles (e.g. [10–13]), is to approximate them with the angles of the
exoskeleton joints. However, misalignment between the axes of the exoskeleton
and human joints may produce large estimation errors ([14, 15]). Accurate esti-
mation of GH joint angles is hard to achieve using this approach, since it requires
an exoskeleton with a complex kinematic structure that considers the concurrent
motion of the sternoclavicular and acromioclavicular joints.

Recognizing the differences in the kinematic structures of the limb and ex-
oskeleton, Ref. [16] presents a computational method which considers the Limb
and Exoskeleton as parallel kinematic chains related by the cuff constraints join-
ing them together. Then, the IK problem of the parallel kinematic chain can be
solved to find the limb joint angles. A limitation of this method is that its per-
formance has been demonstrated solely for analytic (1-DOF) movements of the
elbow and wrist joints. The estimation accuracy of the GH joint angles has yet to
be determined.

Ref. [17] presents a computational method based on the estimation of the
arm swivel angle (which parametrizes arm posture) for exoskeleton-based ther-
apy. The arm IK is solved with a redundancy resolution criterion that chooses
a swivel angle that allows the subject to retract the palm to the head efficiently.
The approach in [17] extends their previous work in [18, 19] by considering the
influence of the wrist orientation on the swivel angle estimation. Although the
error of the swivel angle estimation (mean error ≈ 4 deg.) has been reported for
compound movements ([17]), individual errors in the wrist, elbow, and GH joint
angles are not indicated.

Ref. [20] extends the method in [17] to estimate the wrist angles and assesses
its performance for compound movements (mean RMSE ≈ 10 deg. in the swivel
angle estimation). Ref. [20] reports the individual errors of the arm joint angles
solely for the movement task where the swivel angle was best estimated (mean
RMSE ≈ 5 deg. in the swivel angle estimation). No errors of the arm joint angles
were discussed for the other cases. A limitation of the work in Ref. [20] is that the
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MOCAP used to obtain the reference angles to assess their method performance
is a custom-made inertial system with no reported measurement accuracy.

2.1 Conclusions of the Literature Review

We remind the reader that the general context of this article is the estimation of
the GH joint angles.

1. As per our Literature Review, no MOCAPs have been developed for the spe-
cific scenario of exoskeleton-based rehabilitation. Even if current MOCAPs
and the exoskeleton could be set up for simultaneous use (e.g. [15,16]), the
setup protocol and operation is intricate and conflicting with the usual time
and resources available for patient treatment.

2. Exoskeleton-based posture estimations present limitations in their accuracy
due to kinematic mismatch of the limb and exoskeleton ([15, 16]).

3. The accuracy of the GH joint angle estimations provided by computational
methods in [16, 17] is unknown. Ref. [20] extends the work in [17] by
estimating the wrist angles. Ref. [20] solely reports the estimation accuracy
of the GH angles for the best-case scenario and the precision of its ground -
truth is not indicated.

2.2 Contributions of this Article

In response to the limitations discussed in the estimation of patient joint angles
in exoskeleton-based therapy (sections 2 and 2.1), this article introduces a hybrid
approach to estimate, in real-time, the GH joint angles. This hybrid system is
composed of a low - cost marker-based vision system and the rehabilitation robot,
overcoming the individual limitations of its constitutive subsystems:

(a) Occlusions are minimized, which are a major limitation of optical systems.
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(b) Accuracy of joint angle estimation is improved, which is a major limitation of
exoskeleton-based systems.

This article presents the implementation and assessment of our method using
simulated human motion data. In addition, a sensitivity analysis of our method
accuracy to marker position estimation errors is carried out.

We have considered the following scenarios of application for the proposed
method in the RAR domain:

(A) Precise estimation of GH joint angles during rehabilitation or evaluation ses-
sions of GH joint analytic movements.

(B) Acquisition of GH joint movement data enabling validation and improve-
ment of other posture estimation methods without using expensive redundant
optical MOCAPs.

3 Methods

3.1 Problem Definition

This section presents the problem of estimating the patient limb GH joint angles
during the GH joint RAR using the proposed hybrid motion capture system (a de-
tailed version of the problem definition is presented in Appendix A). This problem
can be stated as follows:

Given:

1. Patient: (a) The kinematic model (e.g., the Denavit-Hartenberg parameters
[21]) of the human upper limb (H) (Fig. 2(a)).

2. Exoskeleton: (a) The kinematic model of the exoskeleton (E) and (b) the
exoskeleton joint angles at any instant of the therapy (vE(t)) (Fig. 2(b)).
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3. Marker-based optical motion capture system (R): (a) Color and depth infor-
mation captured by the RGB-D cameras installed in the exoskeleton links
and (b) Geometry and color of the markers attached to the patient upper
limb (Fig. 2(c)).

Goal:
To estimate the patient GH joint angles (vHG (t)) with minimum error during

the GH joint rehabilitation exercises.

3.2 Kinematic Models

This section discusses the main features of the kinematic models of the human
limb and exoskeleton used for the posture estimation method.

3.2.1 Kinematic Model of the Human Upper Body

The human kinematic model is denoted by H(LH , JH), where LH and JH are the
sets of links and joints, respectively. We use the human upper body model pre-
sented in [16] (Fig. 2 (a)), which includes joints of the spine, scapulo-clavicular
system and arm. The upper limb is modeled with 9-DOF: 2-DOF of the scapulo-
clavicular system, 3-DOF of the GH joint (spherical joint), 2-DOF of the elbow
and 2-DOF of the wrist (see further details in Appendix A). This model presents
the following advantages:

(a) It can be easily implemented in robotic simulators and similar tools.

(b) It is suitable for simulating human-robot interaction in real-time ([16]).

(c) The spherical model of the GH joint avoids limitations of other representa-
tions of such joint, like the Gimbal lock that occurs when using the three
concurrent and orthogonal 1-DOF revolute joints model ([22]).
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(a) (b)

(c) (d)

Elbow joint

Wrist joint

1. Patient kinematic model H

Scapulo-Clavicular
system

Humerus

GH joint

Acromion

Camera r0

Camera r1

Marker m0

3. Marker-based optical motion 
capture system R

r1 attachment   
to E 

r0 attachment to E 

Marker m1

Camera  detection 
volume

+

lE

Link lE

Hand 
grip

8

0

Arm
fixation

Forearm
fixation

2. Exoskeleton kinematic model E
Base link

Hybrid GH joint angles estimation
system

m1 attachment 
to the upper arm

m0 is attached to 
the acromion 

Marker 
m1

Marker m0

Figure 2: Components of the GH joint angles estimation system: (a) Human kine-
matic model, (b) Exoskeleton kinematic model, (c) Marker-based optical motion
capture system, and (d) Hybrid GH joint angles estimation system.
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3.2.2 Kinematic Model of the Exoskeleton

The exoskeleton kinematic model is denoted by E(LE, JE), where LE and JE

are the sets of links and joints, respectively. In this research, the rehabilitation
exoskeleton used is the Armeo Spring (Fig. 2(b)), which is a passive system that
supports the weight of the patient’s arm ([23]) with springs. The Armeo kinematic
structure includes rotational joints (equipped with encoders [24,25]) and prismatic
joints (enabling exoskeleton adjustment to the size of each patient). We use the
Armeo Spring kinematic model presented in [16], which includes both types of
joints (see further details in Appendix A).

3.3 GH Joint Angles Estimation Method

GHdjoint

Humerus

Acromion

Elbow
joint

Armd
fixation

Edlink

Edlink

Cameradr0

Camera
dr1

m0

m1

2.dExoskeletondE

3.dMarkervbasedd
opticaldmotiond

capturedsystemdR

Kinematicd
modeld

HJLHgJH)
1.dPatientdH

Posedofd
acromiond

andd
humerusd

w.r.t.d
cameras

Posedofd
cameras

w.r.t.
Exoskeleton

GH
Joint

angles

vG
HJt)GHdjointd

anglesd
estimation

Ja) Jb)

1. Human
kinematic
model H

2. Exoskeleton
kinematic 
model E

3. Motion
capture

system R

Figure 3: (a) Schematic diagram of the hybrid GH joint angles estimation system
and (b) high-level operation of the system.

The aim of the method is to estimate the GH joint angles with respect to (w.r.t.)
a coordinate system (CS) attached to the scapulo-clavicular system. Fig. 2(d)
shows the proposed system for the GH joint angle estimation. Our approach is

11



based on the estimation of the upper arm orientation w.r.t. the acromion (Fig.
3(a)). According to such requirements, the rationale to install the markers of the
optical MOCAP R is as follows:

(a) Marker m0 is rigidly installed in the acromion, so the estimated upper arm
orientation can be expressed w.r.t. them0 CS (and therefore w.r.t. the scapulo-
clavicular system).

(b) Marker m1 is rigidly installed in the upper arm, so that all the rotations of the
upper arm are captured by m1. The region that was chosen to attach m1 to the
upper arm by using a custom-made fixation (Fig. 2 (d)) is the distal part of
the humerus (near the elbow). Elbow rotations do not affect the orientation of
m1.

Ref. [26] reports a five-marker installation procedure. This reference explic-
itly mentions five markers as an acceptable number for clinical upper limb track-
ing. In this paper, we report the usage of two markers for upper arm tracking.
It is not possible to compare the performance of the marker placement protocol
proposed here with the one in [26] because the work in [26] addresses: (a) non-
RAR scenarios, (b) tracking of the entire upper limb and (c) protocol sensitivity
w.r.t. its application on the dominant / non-dominant arm and w.r.t. the age of
test subjects. However, the work in [26] helps to establish the number of markers
compatible with the clinical application of upper limb tracking.

The cameras of the optical motion capture systemR are rigidly attached (using
custom-made supports) to exoskeleton links so that camera r0 detects marker m0

and camera r1 detects marker m1 during the GH joint training. Camera r0 is
mounted on link lE0 and camera r1 is mounted on link lE8 (Fig. 3(a)).

The cameras used in our system are low-cost. Commercial cameras that present
similar specifications to the ones simulated here (Table 1) are: Intel R© SR300 (99
USD) [27, 28], DepthSense R© 525 (164 USD) [29, 30] and CamBoard picoS (690
USD) [28, 31].
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Fig. 3(b) shows an overview of the operation of the estimation method. In
order to estimate the upper arm pose, the poses of the markers need to be expressed
w.r.t. a common CS. A suitable CS to conduct such estimation is the exoskeleton
base.

A summary of the steps to estimate the GH joint angles is as follows:

1. Estimate the pose of the markers w.r.t. the cameras.

2. Estimate the pose of the cameras w.r.t. the exoskeleton.

3. Estimate the pose of the markers w.r.t. the exoskeleton.

4. Estimate the upper arm pose w.r.t. the exoskeleton.

5. Refer the GH joint angles w.r.t. the acromion (marker m0 CS).

The details of the mentioned steps are presented in the following sections.

3.3.1 Estimation the Pose of the Markers w.r.t. the Cameras

The purpose of this step is to estimate the position and orientation of the markers
(Fig. 4) w.r.t. the CSs of the cameras using the color and depth images provided
by each camera ri:

(A) The RGB image is Ici (A×B pixels). The pixel coordinates (u, v) take values:
0 ≤ u ≤ A− 1 and 0 ≤ v ≤ B− 1. Ci (1× 3*A*B) contains the RGB color
associated to each pixel (u, v) ∈ Ici .

(B) The depth image associated to the scene in Ici is Idi (L×N pixels). L ≤ A and
N ≤ B. The pixel coordinates (u, v) in Idi take values: 0 ≤ u ≤ L − 1 and
0 ≤ v ≤ N − 1. The CS of images Ici and Idi is coincident. Di (1 × L*N*3)
contains the (X, Y, Z) coordinates of the object in each pixel (u, v) ∈ Idi w.r.t.
the ri CS.
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Figure 4: Schematic diagram of the iterative estimation of the pose of the markers.

The pose estimation of the markers w.r.t. the cameras is based on the recon-
struction of the 3-D position of the colored disks on the markers. The following
steps are taken to estimate the marker pose:

(1) Estimation of disk coordinates in color image (Fig. 5): The purpose of this
step is to find the approximate (u, v) coordinates of the centers of the marker
disks in image Ici . The following steps are carried out:

(a) Color segmentation in image Ici : Image regions containing the colors
of the marker disks are preserved and the other regions are colored in
white. The resulting image is defined as Isci .

(b) Blob extraction on image Isci : Blob extraction consists of finding the
connected regions in the image Isci sharing the same color and labeling
them according to their color.

(c) Disk center coordinates estimation: For each j (j = 0, . . . , n) blob ex-
tracted from Ici , the position p̃I

c
i
j ∈ Z2 of the center of a bounding box

for the blob is obtained. This point approximates the actual center of
disk pI

c
i
j (Fig. 5). The resulting set of the approximate coordinates of

disk centers in Ici is P̃ Ici =
{
p̃
Ici
0 , . . . , p̃

Ici
j , . . . , p̃

Ici
n

}
. The Z2 center coor-

dinates are referenced w.r.t. the internal image CS. Blobs are extracted
with standard connected-component labeling algorithms.
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(a) (b) (c)

0

1
2

3

Figure 5: Estimation of disk coordinates in color image. (a) Simulated RBG
image, (b) result of the color segmentation (zoomed image) and (c) result of the
blob extraction (zoomed image).

(2) Estimation of disk coordinates in the camera ri CS: This step converts disk
coordinates in the internal image CS into the R3 ones w.r.t. the ri sensor CS,
as follows:

(a) Convert the positions (u, v) of the disk centers in set P̃ Ici into the image
Idi CS. The CSs of images Ici and Idi match. Hence:

p̃
Idi
j =

(
L−1
A−1

0

0 N−1
B−1

)
p̃
Ici
j . (1)

(b) Compute the indices aI
d
i
j of the (X, Y, Z) coordinates of point p̃I

d
i
j in array

Di, as follows:

a
Idi
j (x) = 3 ∗ (p̃

Idi
j (u)) + L ∗ (p̃

Idi
j (v))

a
Idi
j (y) = 3 ∗ (p̃

Idi
j (u)) + L ∗ (p̃

Idi
j (v)) + 1

a
Idi
j (z) = 3 ∗ (p̃

Idi
j (u)) + L ∗ (p̃

Idi
j (v)) + 2.

(2)

The point p̃rij contains the (X, Y, Z) coordinates of point p̃I
d
i
j w.r.t. the ri

CS. The coordinates of point p̃rij are obtained as follows:
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p̃rij (x) = Di[a
Idi
j (x)]

p̃rij (y) = Di[a
Idi
j (y)]

p̃rij (z) = Di[a
Idi
j (z)].

(3)

The approximate marker disk centers detected by camera ri form the set
P̃ ri =

{
p̃ri0 , . . . , p̃

ri
j , . . . , p̃

ri
n

}
.

(3) Computation of the marker mi CS in the ri camera CS: An SO(3) coordinate
frame T ri

mi
=
[
V̂xV̂yV̂zOmi

]
is attached to each marker.

(a) Make

Omi
= ( 1

n+1
)
∑n

j=0(p̃
ri
j ). (4)

(b) Use the four disk centers in the marker (Fig. 5) as follows:

~Vx = (1
2
)((p̃ri0 − p̃

ri
1 ) + (p̃ri2 − p̃

ri
3 ))

~Vy = (1
2
)((p̃ri2 − p̃

ri
0 ) + (p̃ri3 − p̃

ri
1 ))

V̂z = V̂x × V̂y.
(5)

The sub-matrix
[
V̂xV̂yV̂z

]
is normalized to guarantee its SO(3) nature.

The frame T̃ ri
mi

describes the estimated pose of marker mi w.r.t. the CS
of the camera ri.

3.3.2 Estimation of the Pose of the Cameras w.r.t. the Exoskeleton

The goal of this step is to find the transformation TE
ri

, which expresses the pose of
the camera ri w.r.t. the base of the exoskeleton (Fig. 6).

The rigid transformation matrices T lE0
r0 and T lE8

r1 ∈ R4×4, which describe the
pose of the cameras ri w.r.t. the CS of the link where they are installed, are
estimated during system calibration (the calibration matrix can be obtained by
camera detection of a 2-D / 3-D calibration object mounted on a known location
of the exoskeleton). The poses TE

lE0
and TE

lE8
of the exoskeleton links lE0 and lE8
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Figure 6: Schematic diagram of the iterative estimation of the pose of the cameras.

w.r.t. to the exoskeleton base CS are computed using the Forward Kinematics of
exoskeleton E. Then, TE

r0
and TE

r1
are estimated as:

T̃E
r0

= T̃E
lE0
∗ T̃ lE0

r0

T̃E
r1

= T̃E
lE8
∗ T̃ lE8

r1 .
(6)

3.3.3 Estimation of the Pose of the Markers w.r.t. the Exoskeleton

Estimation 
of the pose 
of markers 

w.r.t. 
exoskeleton 

Pose of 
markers 

TE
mi

(t)

Pose of cameras TE
ri

(t)

Pose of markers T
ri
mi

(t)

Figure 7: Schematic diagram of the iterative estimation of the pose of the markers
w.r.t. the Exoskeleton CS.

The objective of this step is to estimate the transformation (TE
mi

) that describes
the pose of marker mi w.r.t. the exoskeleton base CS (Fig. 7). Transformations
TE
mi

are estimated as follows:

T̃E
m0

= T̃E
r0
∗ T̃ r0

m0

T̃E
m1

= T̃E
r1
∗ T̃ r1

m1
.

(7)
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3.3.4 Estimation of the Upper Arm Pose w.r.t. the Exoskeleton

GHJandJelbowJ
jointsJposeJ

w.r.t.JmarkersJ
{JJJJJJJ,JJJJJJ}JTG

m0 Telw
m1

1.JPatientJH

KinematicJ
modelJH(LH,JH)

UpperJarmJpose
estimation

JJJGHJJoint
anglesJJJJJJvG

H

PoseJofJmarkersJTE
mi

(t)

(t)

Figure 8: Schematic diagram of the iterative estimation of the upper arm pose.

The purpose of this step is to estimate the upper arm pose (TE
arm) w.r.t. the

exoskeleton base CS using the marker poses TE
mi

(Fig. 8). The upper arm direction
vector is computed from the estimated position of the end-points of the upper arm
(GH and elbow joint centers) as follows (CSs in Fig. 9):

(1) Estimate the position of the GH joint center: The rigid transformation ma-
trix Tm0

G , which expresses the pose of the GH joint CS w.r.t. the m0 CS, is
estimated during the calibration process of the system. Hence, the GH joint
center is estimated as follows:

(a) Estimate TE
G , which is the pose of the GH joint CS w.r.t. the exoskeleton

E base CS (Eq. 8).

(b) Extract pEG from TE
G . The point pEG is the position of the center of the GH

joint seen from the E CS.

T̃E
G = T̃E

m0
∗ T̃m0

G . (8)

18



(2) Estimate the position of the elbow joint center: The rigid transformation ma-
trix Tm1

elw (elbow joint CS w.r.t. the m1 CS) is estimated during the calibration
process of the system. Hence, the elbow joint center is computed as follows:

(a) Estimate TE
elw, which is the pose of the elbow joint CS w.r.t. the ex-

oskeleton E base CS (Eq. 9).

(b) Extract pEelw from TE
elw. The point pEelw is the position of the center of the

elbow joint seen from the E CS.

T̃E
elw = T̃E

m1
∗ T̃m1

elw . (9)

(3) Estimate the upper arm position:

(a) Estimate the arm direction vector as: V̂arm = (p̃EG− p̃Eelw)/
∥∥p̃EG − p̃Eelw∥∥.

(b) Estimate the origin of the upper arm CS as: p̃Earm = 1/2 ∗
∥∥∥~Varm∥∥∥ ∗

V̂arm + p̃Eelw.

(4) Estimate the upper arm orientation: The estimated orientation of the upper
arm is computed using Euler angle YXZ decomposition w.r.t. the base CS of
exoskeleton E:

(a) Estimate the rotation of the arm around the Y-axis of the E CS using the
projection of V̂arm on the X-Z plane of the fixed E CS.

(b) Compute the rotation of the arm around the mobile X-axis of E CS from
the inner product of V̂arm with the mobile Z-axis of E CS.

(c) Estimate the rotation of the upper arm around its longitudinal axis ~Varm
as the rotation of the marker m1 around vector V̂arm. This angle is the
one between (i) the mobile X-axis of E CS and (ii) the projection of
X-axis of marker m1 CS onto the X-Y plane of E CS.

(5) Express the pose of the upper arm w.r.t. the E base CS as the 4x4 rigid
transformation TE

arm.
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Figure 9: Coordinate Systems for the Upper Arm Pose Estimation.

3.3.5 Refer the Angles of the GH joint w.r.t. the Acromion

Since m0 is rigidly attached to the acromion, the upper arm orientation can be
expressed w.r.t. the acromion by using the inverse of TE

m0
:

T̃m0
arm = T̃m0

E ∗ T̃E
arm. (10)

3.4 Implementation and Simulation

The arm posture estimation method was implemented by using the V-REP robotics
simulator ([32]). In the simulator, the scene in Fig. 2(d) is created, which includes
the models of: (a) a human patient, (b) an Armeo Spring, (c) the RGB-D vision
sensors with the couplings to attach them to the exoskeleton and (d) the planar
markers with the couplings to attach them to the human arm. The configuration
of the simulated vision sensors is summarized in Table 1.
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Table 1: Vision Sensor Features.

Color camera resolution (px): 128×128
Depth camera resolution (px): 128×128

Field of view (deg.): Horizontal= 45; Vertical= 45
Minimum sensing distance (meters): 0.05
Maximum sensing distance (meters): 0.3

(a) (b) (c)

Figure 10: GH joint movements: (a) flexion-extension (SFE), (b) horizontal
abduction-adduction (SAbAd) and (c) internal rotation (SIR).

For the estimation of the coordinates of disk centers P Ici in the image Ici , color
segmentation and blob detection algorithms available in the simulator were used.
Additional code was written to sort blob centers by color. All additional code was
written in LUA (Lightweight embeddable scripting language) scripts.

3.4.1 Generation of the Ground-Truth Poses of the Patient Upper Limb
during RAR

The accuracy of the proposed method is determined by comparing its estimations
of the upper arm poses with the ones of the simulated human patient (ground-truth
values of Tm0

arm). To generate movements of the simulated patient that resemble the
ones of therapy, we performed the next steps:

1. Armeo movement generation: We recorded 4 time sequence datasets of the
actual Armeo joint measurements (sampled at 66.6 Hz) while performing
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the following shoulder movements (Fig. 10): (a) horizontal abduction-
adduction (SAbAd), (b) flexion-extension (SFE), (c) internal rotation (SIR)
and (d) a combination of all the mentioned movements (COMB). These
movement history datasets are used to guide a simulation of the Armeo
model.

2. Patient movement generation: The movements of the patient upper limb
that correspond to the recorded movements of the Armeo, are computer-
generated with the method in [16]. Said method provides an estimation of
the patient posture given the joint angles of the exoskeleton by using an
inverse kinematics approach.

In this way, four sets (one per movement dataset) of known poses of the upper
arm are obtained by simulating patient movement and compared here against those
estimated with our method. Our method accuracy is assessed without compensat-
ing any time offsets between the reference and estimated angles. In this way,
real-time accuracy of the method is assessed. Table 2 presents the approximate
amplitudes of the YXZ Euler angle decomposition of the GH joint movements of
the simulated patient w.r.t. its local CS.

Table 2: Movement Dataset Features.

Movement Dataset: Amplitude (deg) Samples
SAbAd (6◦, 31◦, 10◦) 1000

SFE (31◦, 8◦, 1◦) 1000
SIR (3◦, 3◦, 34◦) 1000

COMB (40◦, 90◦, 60◦) 2000

3.4.2 Measurement of the Estimation Performance

1. Error in the estimation of the markers position: The error in the position
estimation of markers mi is computed as the RMS of expression emi

pos =∥∥pEmi
− p̃Emi

∥∥, where i ∈ {0, 1}.
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2. Error in the estimation of the arm pose: The error in the arm position esti-
mation for a GH joint movement dataset (earmpos ) is computed as the RMS of
‖pm0

arm − p̃m0
arm‖ for all samples in the movement dataset.

To quantify the error in the arm orientation estimation (earmori ), the next steps
are carried out:

(a) Compute the matrix of rotation errorRoterror = Rotm0
arm∗

(
R̃ot

m0

arm

)−1

where Rotm0
arm and R̃ot

m0

arm are the rotation submatrices of transforma-
tion matrices Tm0

arm and T̃m0
arm, respectively.

(b) Express Roterror in exponential map notation ([22]) as ~earmori ∈ R3.

(c) Compute earmori as the RMS of
∥∥ ~earmori

∥∥ for all samples in the movement
dataset.

3.5 Sensitivity Analysis

A sensitivity analysis is carried out to study the influence of relevant parameters
on the method accuracy. Formally, the sensitivity analysis determines the effect of
the perturbation of the parameter Q on the objective function F (Q). The relative
sensitivity of F (Q) w.r.t. Q, SF

Q , is given by Eq. 11 ([33]). The value of SF
Q is the

ratio (dimensionless) between the percentual changes in F and Q.

SF
Q =

∂F/F

∂Q/Q
=
∂ln(F )

∂ln(Q)
. (11)

The upper arm pose accuracy (and therefore, that of the GH joint angles) re-
lies on the precise estimation of the position of the centers of the elbow and GH
joints (p̃Eelw and p̃EG) (section 3.3.4), which ultimately depend on the following
transformations involving the markers:

(a) T̃E
m0

and T̃E
m1

(markers w.r.t. exoskeleton).

(b) Tm0
G and Tm1

elw (GH and elbow joints w.r.t. markers).
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Figure 11: Sensitivity analysis steps.
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The conducted sensitivity analysis focuses on errors in Tm0
G and Tm1

elw , given
that errors in the estimation of T̃E

m0
and T̃E

m1
(section 4.2) are small. Possible

causes of errors in Tm0
G and Tm1

elw are:

1. Inaccurate computation of Tm0
G and Tm1

elw during the system calibration.

2. Relative displacement of the markers w.r.t. the GH and elbow joints due to
skin movement.

In the sensitivity analysis, translations errors in matrices Tm0
G and Tm1

elw are
induced by disturbing the location of the markers mk (k = [0, 1]) w.r.t. the CSs
of the GH and elbow joints. Since orientation information in Tm0

G and Tm1
elw is not

used to estimate the upper arm pose, it is excluded from the sensitivity analysis.
For the sensitivity analysis (Eq. 11), the vector-valued function F (q) quan-

tifies the estimation error of the arm position and orientation (Eq. 12) and the
parameter set q represents the marker translation errors. The parameter set q is
defined as q = {q1, q2, q3, q4, q5, q6}, where each qj ∈ q is a scalar representing
the magnitude of a translation of a specific marker along a prescribed direction.
Table 3 describes the meaning of each parameter in set q.

F (q) =
(
earmpos (q), earmori (q)

)
;F (q) : R6 → R2. (12)

The sensitivity analysis procedure (Fig. 11) entails the following steps:

1. Load the movement dataset of the GH joint to test (SFE, SAbAd, SIR,
COMB).

2. Select the parameter qj ∈ q to perturb (selection of a marker and a direction
of translation). Markerm0 translates along axes of the GH joint CS. Marker
m1 translates along axes of the elbow joint CS (Fig.12).

3. Apply the translation indicated by qj to the corresponding marker. The
marker perturbation qj is applied for the complete movement dataset.
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Table 3: Parameters of function F (q) (error in the position and orientation esti-
mation of the upper arm (Eq.12)) to study in the sensitivity analysis.

Parameter: Meaning CS of refer-
ence

q1 Translation with magnitude ‖q1‖ of m0 along X
axis

GH joint

q2 Translation with magnitude ‖q2‖ of m0 along
-Y axis

GH joint

q3 Translation with magnitude ‖q3‖ of m0 along Z
axis

GH joint

q4 Translation with magnitude ‖q4‖ of m1 along
-X axis

Elbow joint

q5 Translation with magnitude ‖q5‖ of m1 along Y
axis

Elbow joint

q6 Translation with magnitude ‖q6‖ of m1 along
-Z axis

Elbow joint

4. Compute the estimation errors of the upper arm position and orientation
Fi(q) = (earmpos i

(q), earmori i(q)) as the simulated patient moves according to
the chosen GH joint movement dataset. The current iteration of the process
is indicated by index i.

5. Compute the position and orientation components of SF
qj

as per Eq. 11. The
derivative of F (q) w.r.t. qj is given by Eq. 13. The required derivatives are
computed numerically ([34, 35]).

∂F (q)/∂qj = (∂earmpos (q)/∂qj, ∂e
arm
ori (q)/∂qj). (13)

6. Increment qj by ∆q and go to step 3. Repeat the process until the desired
number of iterations i of the procedure are reached.

The complete sensitivity analysis was performed for each movement dataset
(SFE, SAbAd, SIR, COMB). The directions in which marker translations occur
(Table 3) are chosen so that the markers do not leave the detection volume of the
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cameras. Table 4 summarizes the parameters of the sensitivity analysis. Transla-
tion units are in meters (mts).

GH joint 
CSm0

m1

x

y

z

x

y

z

Elbow joint
CS

Upper
arm

(a) (b)

Figure 12: Sensitivity Analysis. Coordinate systems of reference for the transla-
tions of (a) marker m0 and (b) marker m1.

Table 4: Parameters of the sensitivity analysis.

Minimum marker translation qmin (mts) 0
Maximum iterations of the sensitivity analysis imax 10
Increment of marker translation in each iteration ∆q (mts) 0.002
Movement datasets evaluated 4

4 Results and Discussion

This section presents and discusses the results of: (a) estimation accuracy of the
marker 3D position, (b) estimation accuracy of the upper arm pose, and (c) sensi-
tivity analysis of the estimation accuracy of the upper arm pose w.r.t. translation
errors in Tm0

G and Tm1
elw .
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4.1 Results of Marker Position Estimation

Table 5 presents the RMS of the estimation errors of the position of the markers
mi per movement dataset. The mean RMS errors of the position estimation of m0

and m1 for all movement datasets are 0.00083 and 0.00208 mts, respectively.
Fig. 13 shows the box plots of the estimation errors in the marker positions

for all movement datasets. A greater variation in the position estimation accuracy
of marker m1, in comparison to that of m0, is observed. We have attributed this
to (a) the higher linear and rotational velocities likewise (b) the larger translations
and rotations that m1 undergoes compared to m0.

Table 5: RMS of errors (and standard deviation in parentheses) in the position
estimation of markers mi in the datasets of GH joint movements.

Movement: m0 [mts] m1 [mts]
SAbAd 0.00089 (0.0001) 0.00175 (0.001)

SFE 0.00060 (0.0002) 0.00197 (0.0008)
SIR 0.00088 (0.0001) 0.00135 (0.0007)

COMB 0.00097 (0.0003) 0.00324 (0.002)

4.2 Results of Upper Arm Pose Estimation

The RMS of errors in the upper arm pose estimation are presented in Table 6.
By averaging the results of all movement datasets, errors of 0.00110 mts. and
0.88921 deg. in the upper arm position and orientation estimation are obtained.
Fig. 13 shows the box plots of the estimation errors in the upper arm position and
orientation for all movement datasets.

In motor rehabilitation, angular errors in the range of 3 − 5 degrees are con-
sidered acceptable for mobility evaluation of patients ([6, 36, 37]). Fig. 13 shows
that our arm orientation estimation accuracy is adequate for exoskeleton-assisted
rehabilitation.
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Table 6: RMS (and standard deviation in parentheses) of errors in the upper arm
position and orientation estimation in the assessed movement datasets.

Movement: Position [mts] Orientation [deg]
SAbAd 0.00109 (0.0005) 0.92039 (0.4842)

SFE 0.00094 (0.0004) 0.83796 (0.3763)
SIR 0.00091 (0.0002) 0.73465 (0.4156)

COMB 0.00145 (0.0008) 1.0638 (0.5238)
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Figure 13: Box plots of estimation errors in: markers position and upper arm
position and orientation for all movement datasets.

4.3 Results of the Sensitivity Analysis

The results of the sensitivity analysis per movement dataset of the shoulder are
presented in Figs. 14, 15, 16 and 17. In each figure, the following sub-figures are
presented:

(a) Error in upper arm position estimation (earmpos ) vs. total marker translation (qj).
This figure shows the evolution of the absolute error in the upper arm position
estimation as the error in the translation components of matrices Tm0

G and Tm1
elw

increases.

(b) Error in upper arm orientation estimation (earmori ) vs. total marker translation
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Figure 14: Results of the sensitivity analysis with the SAdAd movement dataset
(qj: m0 X movement / m0 -Y movement / m0 Z movement / m1 -X movement /
m1 Y movement / m1 -Z movement).

(qj). This figure shows the evolution of the absolute error in the upper arm
orientation estimation as the error in the translation components of matrices
Tm0
G and Tm1

elw increases.

(c) Position component of SF
qj

vs. total marker translation (qj). This figure shows
the evolution of the relative sensitivity metric corresponding to the error in
the upper arm position estimation as the error in the translation components
of matrices Tm0

G and Tm1
elw increases.

(d) Orientation components of SF
qj

vs. total marker translation (qj). This fig-
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Figure 15: Results of the sensitivity analysis with the SFE movement dataset (qj:
m0 X movement / m0 -Y movement / m0 Z movement / m1 -X movement / m1 Y
movement / m1 -Z movement).

ure shows the evolution of the relative sensitivity metric corresponding to the
error in the upper arm orientation estimation as the error in the translation
components of matrices Tm0

G and Tm1
elw increases.

4.3.1 Sensitivity in Arm Position Estimation

Regarding the arm position estimation, one can observe that translations of marker
m0 produce larger absolute errors than translations of marker m1. This difference
is due to the fact that the translations of m0 produce a larger change in

∥∥∥~Varm∥∥∥
when compared to the one produced by translations ofm1. Note that, since p̃Earm is

31



computed by using ~Varm, any modification in
∥∥∥~Varm∥∥∥ directly affects the accuracy

of p̃Earm.
Observing the behavior of the position component of SF

qj
, one can conclude

that all translations of the markers m0 and m1 contribute similarly to the error
in the arm position estimation. The curves obtained for the position component
of SF

qj
resemble a logarithmic function with an asymptote along the value 1 of

the ordinate axis. A value of 1 in the magnitude of the position component of
SF
qj

means that a percentage change in the magnitude of the marker translation
produced the same percentage change (also matching the sign) in the magnitude
of the error in the arm position estimation.

4.3.2 Sensitivity in Arm Orientation Estimation

In Figs. 14, 15, 16 and 17, one can observe that the translations of marker m1

produce larger absolute errors in the upper arm orientation estimation when com-
pared to those produced by translations of marker m0. Notice that the X and
Z axes of the elbow joint CS are always perpendicular to the upper arm vector
(~Varm) (Fig. 12 (b)). When the position of m1 is perturbed along said axes, the
angle between (i) the actual upper arm vector (~Varm) and (ii) the estimated up-
per arm vector (Ṽarm) (which is inaccurate due to the perturbation of the marker
position) is maximal.

A side effect of the marker position perturbation is that the marker mi suffers
modifications of scale and changes in the level of perspective distortion in the
images of camera ri, affecting the accuracy of the system. This situation can be
observed in Figs. 14(b), 15(b), 16(b) and 17(b), where translations of m1 along
the Y axis of the elbow joint CS should not produce variations in the orientation
estimation error. However, on the contrary, slight variations in the accuracy of the
orientation estimation are indeed present in the mentioned figures.
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Figure 16: Results of the sensitivity analysis with the SIR movement dataset (qj:
m0 X movement / m0 -Y movement / m0 Z movement / m1 -X movement / m1 Y
movement / m1 -Z movement).

4.3.3 Robustness of the Upper Arm Pose Estimation Method

In Figs. 14(c) and (d), 15(c) and (d), 16(c) and (d) and 17(c) and (d) one can
observe that the position component of SF

qj
increases faster than the orientation

component of SF
qj

. The behavior of SF
qj

observed remains across the datasets used.
Hence, the orientation estimation of the upper arm is more robust than the position
estimation w.r.t. errors in the translational components of matrices Tm0

G and Tm1
elw .

The results of the sensitivity analysis show that the assumption that transfor-
mations Tm0

G and Tm1
elw are rigid is reasonable. Even with marker drifts of 0.02

mts, the GH joint angles can be estimated with an accuracy (RMSE 3.6 deg.)
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Figure 17: Results of the sensitivity analysis with the COMB movement dataset
(qj: m0 X movement / m0 -Y movement / m0 Z movement / m1 -X movement /
m1 Y movement / m1 -Z movement).

appropriate for the mobility evaluation of patients (in the range of 3 - 5 deg.).
Marker drifts must be mitigated by the marker attachments to the human body.

Furthermore, marker attachments should be designed to minimize the effect of
errors in Tm0

G and Tm1
elw on the method accuracy. For example, notice how the

attachment of marker m1 (Fig. 12(b)) locates marker m1 with an offset w.r.t. the
elbow joint center along the direction which least affects the upper arm orientation
estimation.

The results presented suggest the method we implemented is a feasible alter-
native for estimating the GH joint angles in a RAR scenario.
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4.4 Comparison to Related Works

The literature review provided no other references than [16–20] for upper limb
posture estimation (including the GH joint) in exoskeleton-based rehabilitation
using computational methods. Among the mentioned works, only Ref. [20] re-
ports the errors (mean RMSE 4.8 deg.) in the GH joint angles estimation. Ref.
[20] reports RMSE values of the GH joint angles only for the best-case scenario
(swivel angle mean RMSE 5 deg.). For all the movement tasks tested, the method
in [20] presents a mean RMSE of 10 deg. for the swivel angle estimations. Given
that global errors of the swivel angle double those of the best-case scenario, a
report of global errors of GH joint angle estimations of the method in [20] is re-
quired to reach a conclusion regarding its suitability for clinical use.

Table 7 summarizes the comparison of our contributions w.r.t. comparable
works (i.e. Ref. [20]).

5 Conclusions and Future Work

In the context of RAR, this article presents the formulation, implementation, and
assessment, in silico, of a novel accurate method to estimate the patient GH joint
angles during therapy. Our method does not require redundant markers or cameras
and relies on simple geometric relationships and tools of standard robotics and
computer vision libraries. These characteristics make it economical and readily
applicable in RAR.

The accuracy and the robustness of our method are evaluated using computer-
generated human movement data corresponding to actual movement datasets of
the Armeo Spring. We present a formal sensitivity analysis of the pose estimation
accuracy w.r.t. marker position estimation errors produced by (a) system calibra-
tion errors and (b) marker drifts (due to skin artifacts). This analysis indicates
that even in the presence of large marker position errors our method presents an
accuracy that is acceptable for patient mobility appraisal.

Future work includes: (a) implementation of the method using commercially
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Table 7: Contributions of this article w.r.t. comparable works.

Work Method Method Evaluation Accuracy of GH joint
angles

[20] IK-based
swivel
angle
estimation.

(1) Studied angles: Swivel angle plus the shoulder,
elbow and wrist joint angles.

(2) Reference angles: Obtained from custom-made
inertial MOCAP. Homologation - Calibration of
the readings is not reported.

(3) Movements: Compound movements.

(4) Sensitivity Analysis: No.

mean RMSE: 4.8 deg
(best-case scenario).

This
article

Hybrid
exoskeleton-
optical
MOCAP

(1) Studied angles: Shoulder angles.

(2) Reference angles: Simulated.

(3) Movements: 1-DOF and multi-DOF shoulder
movements.

(4) Sensitivity Analysis: Method accuracy w.r.t.
marker position errors produced by marker drift
or calibration errors.

(a) mean RMSE:
0.9 deg. (as-
suming no
marker drift
or calibration
errors).

(b) mean RMSE:
3.6 deg. (with
marker drift
or calibration
errors up to 20
mm).

available RGB-D vision sensors, (b) evaluation of the method accuracy with actual
human movement data, (c) adaptation of the method using solely RGB cameras,
and (d) extension of our method to address other limbs.
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Appendix A Problem Statement

Given:

1. A human patient upper body with a kinematic model H(LH , JH) (Fig.
2(a)). Remarks:

(a) The model is a simplified version of the spine, arm and scapulo-clavicular
systems. However, since we focus on the study of the upper limb, we
only describe in detail the kinematic model of said limb.

(b) The set of Links is LH =
{
lH0 , . . . , l

H
g+1

}
, containing the sternum,

clavicle, upper arm, forearm and hand (g = 4).

(c) The set of Joints is JH =
{
jH0 , . . . , j

H
g

}
, containing the sternoclavic-

ular, GH, elbow, and wrist joints.

i. Xi denotes the number of DOF of jHi . Xi = 1, 2 or 3 (i =

0, 1, . . . , g).

ii. vHi = (θ1, . . . , θXi
) is an Xi-tuple whose k-th component is the

angle of the k-th DOF of joint i-th, jHi (i = 0, 1, . . . , g).

iii. G is the index of the GH joint (0 ≤ G ≤ g). XG = 3 since the
GH joint has 3 DOF. vHG is the 3-tuple containing the values of the
DOF of the G (GH) joint.

iv. vHG (t) registers the status, at time t, of the DOF of the GH joint.

(d) H is an open Kinematic Chain, and therefore, lHi and lHi+1 are con-
nected by joint jHi (i = 0, 1, . . . , g).

2. An exoskeleton with a kinematic model E(LE, JE) E, which is attached to
the patient’s limb H and assists the patient when performing rehabilitation
exercises (Fig. 2(b)). Remarks:

(a) The sets of Links is LE =
{
lE0 , . . . , l

E
f+1

}
.

(b) The sets of Joints is JE =
{
jE0 , . . . , j

E
f

}
.
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i. Yi denotes the number of DOF of jEi .

ii. vEi = (θ1, . . . , θYi
) is a Yi-tuple whose k-th component is the an-

gle of the k-th DOF of joint i-th, jEi (i = 0, 1, . . . , f).

(c) E is modeled as an open Kinematic Chain, and therefore, lEi and lEi+1

are connected by joint jEi (i = 0, 1, . . . , f).

(d) The vE b-tuple (b =
∑f

i=0 Yi) contains the set of independent coordi-
nates which uniquely defines a configuration of E.

i. vE =
(
vE0 , . . . , v

E
i , . . . , v

E
f

)
.

ii. vE(t) registers the state, at time t, of the DOF of E, which is
known ∀t.

(e) The exoskeleton may be configured to impose specific motion con-
straints on the patient by blocking specific joints of the JE set.

3. A marker-based optical tracking system R composed by two RGB-D cam-
eras and two planar markers (Fig. 2(c)). Remarks:

(a) A set M = {m0,m1} of planar markers that are detected by the cam-
eras of R and are installed on the patient upper limb.

i. All mi present the same 2D square geometry, with a disk in each
corner. The position of each disk w.r.t. the marker CS is known.
The set of disks is K = {k0, . . . , kj, . . . , kn}.
A. kj presents a color sj ∈ S that can be detected byR (Fig.2(c)).

B. The set of colors of the disks mounted on in each mi is S =

{s0, . . . , sj, . . . , sn}. Each sj ∈ R3 is represented with a
RGB color code.

C. sj 6= si∀i, j ∈ [0, n] ∧ i 6= j.

ii. m0 is mounted on the acromion with a 0-DOF coupling (Fig.
2(d)). A rigid transformation matrix Tm0

G defines the relative po-
sition and orientation of the GH joint CS w.r.t. the CS of m0.

43



iii. m1 is mounted on the upper arm with a 0-DOF coupling (Fig.
2(d)). A rigid transformation matrix Tm1

elw defines the relative po-
sition and orientation of the elbow joint CS w.r.t. the CS of m1.
Note that to compute the GH joint angles, the calculation of the
elbow joint angles is not necessary with this setup.

iv. The rigid transformation matrices Tm0
G and Tm1

elw ∈ R4×4 are esti-
mated during the calibration of the system.

(b) A set R = {r0, r1} of low-cost cameras is installed in the exoskeleton.

i. r0 is mounted on exoskeleton link lE0 with a 0-DOF coupling, such
that the disks on m0 are inside its detection volume during the
rehabilitation exercises. The rigid transformation matrix T lE0

r0 de-
fines the relative position and orientation of the CS of r0 w.r.t. the
lE0 CS.

ii. r1 is mounted on the exoskeleton link lE8 with a 0-DOF coupling,
such that it can detect the disks on m1 (see Fig.2(c)). The rigid
transformation matrix T lE8

r1 defines the relative position and orien-
tation of the CS of r1 w.r.t. the lE8 CS.

iii. The rigid transformation matrices T lE0
r0 and T lE8

r1 ∈ R4×4 are esti-
mated during system calibration.

iv. Remarks on each camera ri:

A. ri renders a RGB image Ici of A×B pixels. The pixel coordi-
nates (u, v) take values: 0 ≤ u ≤ A− 1 and 0 ≤ v ≤ B − 1.

B. ri renders a depth image associated to the scene in Ici , defined
as Idi , of L × N pixels. L ≤ A and N ≤ B. The pixel
coordinates (u, v) in Idi take values: 0 ≤ u ≤ L − 1 and
0 ≤ v ≤ N − 1. The CS of images Ici and Idi is coincident.

C. ri presents a truncated square pyramid detection volume parametrized
by: the minimum and maximum detection distances, and the
horizontal and vertical field of view of ri. Table 1 presents
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the model features of the vision sensors that have been used
for the simulations.

v. The system of cameras R produces the following array sequence
of each ri:

A. Ci (1 × 3*A*B) contains the RGB color associated to each
pixel (u, v) ∈ Ici .

B. Di (1 × L*N*3) contains the (X,Y,Z) coordinates of the ob-
ject in each pixel (u, v) ∈ Idi w.r.t. the ri CS.

Goal:

1. Find the values of ṽHG (t) ∈ R3, which approximates vHG (t) such that e =∥∥vHG (t)− ṽHG (t)
∥∥2 be minimum ∀t.

(a) ‖x‖ is the Euclidean norm of vector x.
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