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CHAPTER 5

Efficient Deformable 3D Face Model Fitting to
Monocular Images
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Abstract: In this work we present a robust and lightweight approach for the
automatic fitting of deformable 3D face models to facial pictures. Well known
fitting methods, for example those taking into account statistical models of shape
and appearance, need a training stage based on a set of facial landmarks, manually
tagged on facial pictures. In this manner, new pictures in which to fit the model
cannot differ excessively in shape and appearance (including illumination changes,
facial hair, wrinkles, and so on) from those utilized for training. By contrast, our
methodology can fit a generic face model in two stages: (1) the localization of
facial features based on local image gradient analysis and (2) the backprojection of
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a deformable 3D face model through the optimization of its deformation parame-
ters. The proposed methodology preserves the advantages of both learning-free
and learning-based methodologies. Subsequently, we can estimate the position,
orientation, shape and actions of faces, and initialize user-specific face tracking ap-
proaches, such as Online Appearance Models (OAMs), which have demonstrated
to be more robust than generic user tracking methodologies. Experimental results
demonstrate that our strategy outperforms other fitting methods under challeng-
ing illumination conditions and with a computational footprint that permits its
execution in gadgets with reduced computational power, such as cell phones and
tablets. Our proposed methodology fits well with numerous systems addressing
semantic inference in face images and videos.

Keywords: 2D shape landmarks, 3D face model, deformable model backpro-
jection, facial actions, facial expression recognition, facial feature extraction,
facial parts, face gesture analysis, face model fitting, face recognition, face
tracking, gradient maps, head pose estimation, learning-free, Levenberg-
Marquardt, monocular image, online appearance model, shape variations,
sigmoidal filter, weak perspective.

INTRODUCTION

Generic face model fitting has been a hot research topic during the last
decade. It can be seen as an essential part in numerous Human-Computer
Interaction applications since it allows face tracking, head pose estimation,
identification, and face gesture analysis. In general terms, two types of
methods have been proposed: (i) learning-free and (ii) learning-based. The
latter require a training stage with many pictures to construct the model, and
therefore rely on the choice of pictures for a good fitting in unseen pictures.

Learning-free methodologies depend intensely on some radiometric and
geometric properties present in face pictures. These methodologies rely on
generic knowledge about faces, which usually incorporates the position, sym-
metry, and edge profile of facial organs. They can place facial features using
low-level methods (e.g. filtering, gradients), typically relying on recognizing
individual face features (lips, nose, irises, ...) [1–4]. A large portion of the
learning-free methodologies do not produce a full collection of extracted face
features, contrary to learning-based strategies.

For example, in [5], the authors exploit a range facial scan in order to
automatically distinguish the nose tip for both frontal and non frontal poses.
In [7], an incremental certainty methodology regarding the extraction of
facial features over real video frames is explained. The proposed procedure
adapts to large varieties of subject appearances, including frame-to-frame
changes within video sequences. The framework identifies the zones of the
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face that are measurably exceptional and assembles an initial set of regions
that are expected to incorporate data about the features of interest. In this
methodology, core facial features, for example the eyes and the mouth, are
in effect reliably identified. In [6], the authors try to recognize the eyes and
mouth utilizing the separation vector field that is structured by atributing
a vector to every pixel indicating its nearest edge. Separation vector fields
are based on geometrical structure, and consequently can help in evading
illumination issues in the location of the eyes and mouth areas. In [9], the
authors demonstrated that the eyes and mouth in facial pictures can be
robustly identified. They used their locations to normalize the pictures,
assuming affine transformation, which can make up for different viewpoints.
In [10], real-time face detection algorithm for searching faces, eyes and
lips in pictures and videos is explained. The calculation builds upon the
extraction of skin pixels based on rules derived from a straightforward
quadratic polynomial model in a normalized color space. In [8], the authors
separated the facial feature extraction into three core steps. The initial step
is preprocessing. The objective of this step is to get rid of high intensity
noise and to binarize the input picture. The second step incorporates a
labeling procedure and an aggregation procedure. This step tries to create
facial feature candidates block by block. Finally, a geometrical face model is
utilized to detect the face position.

As can be seen, learning-free methodologies have apealing characteristics.
Nonetheless, they present a few deficiencies. Firstly, the majority of them
makes the assumption that a few conditions are met (for instance, that face
pictures are taken in controled conditions and in an upright orientation).
Furthermore, they usually depend on the discovery of few facial features
(primarily the eyes and the mouth). Almost no consideration is given to
the assembly of an extensive collection of facial features. Thirdly, accurate
localization of the detected face features is still faulty.

Learning-based methodologies, on the other hand, aim to overcome these
deficiencies. Three subcategories can be identified: parameterized appear-
ance models, part-based deformable models and discriminative methodolo-
gies.

Parameterized appearance models generate a statistical model of shape
and appearance from a collection of manually marked data [11–15]. In the 2D
data domain, Active Shape Models (ASM) [11, 16], Active Appearance Mod-
els (AAM) [13, 14] and more recently, Active Orientation Models (AOM) [15]
have been proposed. The ASM methodology generates 2D shape models and
relies on motion constraints in conjunction with some image data from the
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regions near the 2D shape landmarks to find features on new pictures. The
AAM uses both the shape and the texture [13, 14]. The AOM approach [15]
takes is similar to AAM, differing in the utilization of gradient orientations
rather than the texture and an enhanced cost function, which generalizes
better to unknown faces. In the 3D data domain, 3D morphable models
(3DMMs) have been proposed [12, 17], which incorporate the 3D shape and
texture models, assembled from 3D scans.

Part-based deformable models maximize the posterior likelihood of part
areas given a picture, so as to adjust the learned model [23–26]. Recently,
the Constrained Local Model (CLM) methodology has attracted interest
since it bypasses a large number of the disadvantages of AAM, for example,
demonstrating robustness to lighting changes. CLM utilizes a set of several
local detectors combined with a statistical shape model, amplifying the ASM
approach. It achieves remarkable fitting results with unseen images [24].
In [25] a part based ASM and a semi-automatic refinement calculation are
proposed, which results in more adaptability for facial pictures with large
variation. In [26], a globally optimized tree shape model was introduced,
which discovers facial points of interest as well as estimates the pose and the
face image region, unlike the mentioned approaches, which all depend on a
preparatory face localization stage [27] and do not assess the head posture
from 2D picture information. In [28] a hybrid discriminative and part-based
methodology is proposed enhancing the outcomes achieved by [24,26] in the
location of feature points.

Finally, discriminative methodologies build a correspondence between
image features and motion parameters or feature point positions [18–21].
Facial landmark detectors usually apply a sliding window-based scanning
throughout various regions in facial images [18]. Nonetheless, this is a time-
consuming procedure, as the scanning time increases proportionally with
the size of the search zone. In recent times, various methodologies have been
proposed that aim at alleviating this, by utilizing local image information and
regression-based techniques applied to the ASM approach [19–21], obtaining
state-of-the-art performance in the field of 2D facial feature detection. In
[22] discriminative techniques and parameterized appearance models are
bound together through the proposed Supervised Descent Method (SDM)
for solving Non-direct Least Squares problems, obtaining significantly quick
and precise fitting results.

On the other hand, Online Appearance Models (OAM) [35, 36] permit a
more effective person-specific face tracking without the need for an earlier
training stage. They compute a quick 3D head posture estimation and facial
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action extraction with sufficient precision for an extensive variety of uses
– for example, live facial puppetry, facial expression recognition, and face
recognition. Nonetheless, this methodology demands an initial head posture
estimation in the first frame so that the person-specific texture can be learned
and subsequently updated. In [32] a holistic technique for the simultaneous
estimation of two sorts of parameters (3D head pose and person-specific
shape parameters that are consistent for a given subject) from a single picture
is proposed, utilizing just a statistical facial texture model and a generic
deformable 3D model. One advantage of the proposed fitting methodology
is that it does not require a precise parameter initialization. Nevertheless,
this methodology needs a training stage, with the same disadvantages as in
the case of statistical shape and appearance models.

In this work, we propose a learning-free approach for identifying facial
features, which can overcome the majority of the inadequacies specified
previously. The proposed system can preserve the positive aspects of both
learning-free and learning-based methodologies. Specifically, the advantages
of learning-based methodologies (i.e., rich sets of facial features, accurate
and real-time estimation) are preserved in our proposed methodology. Addi-
tionally, the proposed methodology will have the two advantages that are
connected with learning-free approaches1. To start with, there is no learning
stage. Second, unlike numerous learning methodologies whose execution
can degrade if imaging conditions change, our proposed methodology is
training free and subsequently free from the influence of training conditions.
Our proposed methodology has two primary parts. The initial step is the
recognition of fiducial facial features using smoothed gradient maps and
some prior knowledge about face geometry. The second part is the 3D fitting
of a deformable 3D model to the detected feature points. In this step, a 3D
fitting method is designed for extracting the 3D pose and its deformable
parameters (facial actions and shape variations) at the same time. A result
of this fitting is that additional facial features can be acquired by basically
projecting the 3D vertices of the adjusted 3D model onto the picture. The de-
formable model used is a generic model with a set of parameters permitting
a 3D fitting to different people and to diverse facial actions. In this way, we
can estimate the position, orientation, shape and facial actions, and initialize
person-specific face tracking procedures, such as OAM, with higher accuracy
than state-of-the-art approaches, under difficult illumination conditions, and
sufficiently low processing power requirements as to permit its execution in

1These are clearly favorable features if the framework is to be utilized on portable
equipment, for example PDAs and tablets.
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gadgets with lesser capabilities, such as cell phones and tablets. The use of
a generic 3D deformable model is vital for having a efficient and adaptable
fitting system.

This chapter is organized as follows. Section 2 explains the proposed
learning-free approach for detecting facial features from an image. Section 3
describes the proposed approach to fit the deformable 3D facial shape to the
detected 2D features. Section 4 presents the obtained experimental results
compared to state-of-the-art techniques. Finally, in section 5, these results
and future work are discussed. In addition, appendix A explains the 3D
deformable face model used in this work.

LIGHTWEIGHT FACIAL FEATURE DETECTION

Our methodology for fitting 3D generic face models comprises two stages:
(1) detect facial features on the picture and (2) adjust the deformable 3D face
model such that the projection of a set of key vertices onto the 2D plane of
the picture matches the positions of the corresponding facial features. In this
work we consider perspectives in which both eyes can be seen, regardless
of the possibility that they are occluded, for instance, by eyeglasses. The
proposed methodology requires an initial step of face detection, which,
depending on the methodology taken, may require a facial training stage, for
example, [38,39]. We can likewise apply the same detection methods (i.e., [38,
39]) for locating facial parts, for example, the eyes, nose and mouth, although
we do not consider their identification as a strict prerequisite because we
also include low resolution facial pictures or partially occluded ones, which
would prevent the detectors to discover the features appropriately.

The entire fitting methodology, step by step, is shown in Fig. 1 and
algorithm 1, where the term ROI alludes to a region of interest (the sought
region) and SROI to a search ROI. Depending on whether they have already
been detected by the corresponding object detector or not, the input data
related to the eyes, nose and mouth can be either ROI or SROI, as specified
previously. Algorithm 1 attempts to identify 32 facial features in the input
monocular image (Fig. 2). These 32 features correspond to a subset of vertices
in the Candide-3m model (index A). Their 2D positions are settled inside
their corresponding regions considering the size of the areas and the in-plane
face rotation (sideways head tilt, or roll angle). This way, by finding the ROI
of a face part and the roll angle, the 2D points of that face part will be quickly
and automatically located. This methodology is adequate to initialize an
OAM tracker, for example [36], to fit the 3D model frame-by-frame with the
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correlation between the model and the face pictures. This is particularly the
case of contour points, which help in the initialization despite not matching
with real landmarks, and thus cannot be located with high confidence on a
face picture even by expert observers. When a face region has been found on
a picture (e.g., utilizing [38, 39]), each of the 32 point positions are calculated,
even if some are occluded.

Figure 1: Proposed fitting approach. From left to right and top to bottom: (1) The detected
face region and the faceROI derived from it (thicker line), (2) faceROI and the
eyeSROIs derived from it (thicker line), (3) faceROI, the estimated eyeROIs and
the eyebrowSROIs and mouthSROI derived from them (thicker lines), (4) faceROI,
the estimated eyeROIs and the noseSROI derived from them (thicker line), (5) the
detected facial features and (6) the fitted 3D face model projection.
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Figure 2: The 32 detected facial points. Note that the words left and right are relative to the
observer rather than the subject.

Algorithm 1 Lightweight facial feature detection algorithm

1: procedure FACIALPOINTDETECTION( faceROI, lEye(S)ROI, rEye(S)ROI,
nose(S)ROI, mouth(S)ROI, peakValX, peakValY, binThresh )

2: for each eye do
3: if ¬ eyeROI then
4: eyeROI← ROIBOUNDDETECTION( eyeSROI, peakValX, peakValY )
5: end if
6: end for
7: θ ← Estimate roll rotation angle derived from eyeROIs
8: eyePoints← Estimate eye point positions in a fixed way derived from (eyeROIs and θ)
9: for each eyebrow do

10: rotEyebrowSROI ← Get the eyebrow search region derived from (faceROI and eyeROI) and rotate it
(−θ)

11: rotEyebrowROI← ROIBOUNDDETECTION(rotEyebrowSROI, NOT_USED, peakValY)
12: eyebrowPoints ← Estimate eyebrow point positions in a fixed way derived from rotEyebrowROI and

apply θ rotation and transform to global image coordinates
13: end for
14: for mouth and nose do
15: if ¬ partROI then
16: rotPartSROI← Rotate partSROI (−θ)
17: rotPartROI← ROIBOUNDDETECTION( rotPartSROI, peakValX, peakValY )
18: else
19: rotPartROI← Rotate partROI (−θ)
20: end if
21: partPoints← Estimate part point positions in a fixed way derived from rotPartROI and apply θ rota-

tion and transform to global image coordinates
22: end for
23: contourPoints ← CONTOURPOINTDETECTION( faceROI, eyeCenters, lEyeLCorner, rEyeRCorner, mouth-

Corners, binThresh )
24: return (eyePoints and eyebrowPoints and mouthPoints and nosePoints and contourPoints)

25: end procedure
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The search regions are estimated from the detected face and eye regions
(Fig. 1). In case external detectors were not used to find the eyeROIs (i.e.,
they have not been input to algorithm 1), we apply algorithms 2, 3 and 4
to estimate their boundaries2. Next, the eye point positions and the face
projection roll angle θ are set, derived in a proportional and fixed way from
the geometry of those ROIs. Particularly, the eyeROI centers correspond to
eye center positions, the eye widths and heights are the same in both sides
relying on the mean ROI sizes, where θ is measured, and the remaining eye
points are located around the centers. Using face detectors, there is a limited
roll angle range, and subsequently the eyes have well-defined search regions.

The corresponding ROI boundaries of eyebrows, mouth and nose are used
as a reference, also in a fixed way, for the estimation of their corresponding
facial features. Algorithms 2, 3 and 4 are also used to obtain these boundaries,
taking into account the influence of the roll angle θ. In the specific case
of eyebrows, we do not calculate the boundaries in the X direction, but
fix them according to the search region width and the expected eyebrow
geometry in the 3D model, as some people have bangs occluding them,
or even lack eyebrows altogether. The parameters peakValX and peakValY
are thresholds for detecting the horizontal and vertical boundaries in the
normalized gradient maps. In our experiments we use peakValX = 20 and
peakValY = 50 in all cases.

We can reduce the influence of directional illumination by applying the
double sigmoidal filtering applied to the search regions (algorithm 2), while
the candidate edges are accentuated through the squared sigmoidal gradient
calculation, which considers only the edge strength and neglects the edge
direction information [40]. The contour point positions are estimated in a
fixed way too, relying on the eye and mouth positions. Algorithm 5 returns
8 contour points: the forehead center, the left and right cheeks, the 4 facial
corners and the chin bottom point. Although none of them are fiducial points,
they are useful for 3D model fitting and tracking. In the case of the facial
side corner estimation, we analyze the image region that goes from the facial
region boundary to its corresponding mouth corner, assuming that in that
region a noticeable X gradient appears only in one of the sides, when the
subject exhibits a non-frontal pose, corresponding to the face side boundary.
The squared sigmoidal gradient in X is calculated, assuming that those side
points lie on it. Then, these side points allow us to better estimate the pitch
angle of the face. Nonetheless, it can occur that both sides have a noticeable

2Note that the ROI boundaries of the eyebrows, nose and mouth are also estimated
through algorithms 2, 3 and 4. Algorithm 2 invokes both algorithms 3 and 4.
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gradient in X, such as in the case of the existence of other features such
as local shadows or a beard. In order to circumvent these conditions, we
assume that the side that should have the gradient applied to estimate the X
positions is the one in which the mean positions are closer to the face region
boundary, while for the other side the X positions correspond to those of the
boundary itself. The parameter binThresh is the binarization threshold for the
normalized gradient map in X. In our experiments we use binThresh = 150.

Algorithm 2 ROI boundary detection algorithm

1: procedure ROIBOUNDDETECTION( SROI, peakValX, peakValY )
2: dsSROI← Apply double sigmoidal filter to SROI
3: ssySROI← Apply squared sigmoidal Y gradient to dsSROI
4: ( bottomY and topY )← YBOUNDDETECTION( ssySROI, peakValY ) .

(ALGORITHM 3)
5: ( leftX and rightX )← XBOUNDDETECTION( ssySROI, peakValX, bottomY,

topY ) . (ALGORITHM 4)
6: return (leftX and rightX and bottomY and topY)
7: end procedure

Algorithm 3 ROI Y boundary detection algorithm

1: procedure YBOUNDDETECTION( ssySROI, peakValY )
2: for each row in ssySROI do
3: w← (ssySROIheight/2− |ssySROIheight/2− y|) · peakValY
4: wVertProjrow ← (w ·∑width

x=1 ssySROIx)

5: end for
6: Normalize wVertProj values from 0 to 100
7: maxLowY ← Locate the local maximum above peakValY with the lowest

position in wVertProj
8: topY← (maxLowY + ssySROIheight/4)
9: bottomY← (maxLowY− ssySROIheight/4)

10: return (bottomY and topY)
11: end procedure
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Algorithm 4 ROI X boundary detection algorithm

1: procedure XBOUNDDETECTION( ssySROI, bottomY, topY, peakValX )
2: for each col in ssySROI do
3: w← (ssySROIwidth/2− |ssySROIwidth/2− x|) · peakValX
4: wHorProjcol ← (w ·∑topY

y=bottomY ssySROIy)

5: end for
6: Normalize wHorProj values from 0 to 100
7: (leftX and rightX)← Locate the first value above peakValX starting from the

left and right sides in wHorProj
8: return ( leftX and rightX )
9: end procedure

Algorithm 5 Contour feature detection algorithm

1: procedure CONTOURPOINTDETECTION( faceROI, eyeCenters, lEyeLCorner,
rEyeRCorner, mouthCorners, binThresh )

2: faceVector← (lEyeCenter + rEyeCenter−mouthLCorner−mouthRCorner)/2
3: foreheadCenter← (lEyeCenter + rEyeCenter + faceVector)/2
4: lCheek← (lEyeLCorner + lEyeCenter− faceVector)/2
5: rCheek← (rEyeRCorner + rEyeCenter− faceVector)/2
6: ssxFaceROI← Apply squared sigmoidal X gradient to faceROI and normalize between 0 and 255
7: for each facial side do
8: ssxFacialCornerROI← Get region between mouthCorner and faceROI outer boundary
9: binFacialCornerROI ← Binarize ssxFacialCornerROI with binThresh and remove clusters (obtained

through [41]) with area < 0.8 · ssxFacialCornerROIheight

10: facialUCornery ← 0.75 · ssxFacialCornerROIheight

11: facialUCornerx ← Get X centroid of white pixels at facialUCornery in binFacialCornerROI
12: facialLCornery ← 0.25 · ssxFacialCornerROIheight

13: facialUCornerx ← Get X centroid of white pixels at facialUCornery in binFacialCornerROI
14: facialCorners← Transform to global image coordinates
15: end for
16: facialCorners ← Check which side from facialCorners mean X position is further from its corresponding

face region boundary, and then set their X positions in the boundary
17: chinBottom← Calculate the intersection between the bottom of faceROI and the line traced by faceVector

18: return ( foreheadCenter and lCheek and rCheek and f acialCorners and chinBottom )

19: end procedure

DEFORMABLE MODEL BACKPROJECTION

The next stage is to determine the position, orientation, shape units (SUs)
and animation units (AUs) (appendix A) which best fit the 32 detected facial
features. In order to make the face model fitting more efficient, we use the
existing correspondence between the 2D facial features and the 3D model
points. The 3D generic model is given by the 3D coordinates of its vertices



88 Advances in Face Image Analysis: Theory and Applications Unzueta et al.

Pi, i = 1, ..., n, where n is the number of vertices. This way, the shape, up
to a global scale, can be fully described by a 3n-vector g, the concatenation
of the 3D coordinates of all vertices (Eq. 1), where g is the standard shape
of the model, the columns of S and A are the shape and animation units,
and τs ∈ Rm and τa ∈ Rk, are the shape and animation control vectors,
respectively.

The 3D generic model configuration is given by the 3D face pose pa-
rameters (rotations and translations in the three axes) and the shape and
animation control vectors, τs and τa. These define the parameter vector b
(Eq. 2).

g = g + Sτs + Aτa (1)

b = [θx, θy, θz, tx, ty, tz, τs, τa]
T (2)

Inter-person parameters, such as the eye width and the eye separation
distance, can be controled through shape units (see appendix A). The term
Sτs accounts for the shape or inter-person variability, while the term Aτa
accounts for the facial or intra-person animation. Thus, in theory, the shape
units would remain constant for face tracking, while the animation units
could vary. Nevertheless, as they are meant to fit any kind of human face,
it is challenging to perfectly separate both kinds of parameters, because the
neutral facial expression can be significantly different from person to person.
Hence, we have to take into account both the shape and animation units
in our initialization process, without an explicit distinction between them.
After the initialization we can assume that the shape units remain constant.
Moreover, in order to reduce the computational burden we consider a subset
of the animation units [36].

The 3D shape in Eq. 1 is expressed in a local coordinate system, but this
should be related to the 2D image coordinate system. Thus, we adopt the
weak perspective projection model. The perspective effects can be neglected
since the depth variation of the face is small, when compared to its absolute
depth from the camera viewpoint. The mapping between the image and the
3D face model is given by a 2× 4 matrix M, encapsulating both the camera
parameters and the 3D face pose. Therefore, as defined in Eq. 3, a 3D vertex
Pi = [Xi, Yi, Zi]

T ⊂ g will be projected onto the image point pi = [ui, vi]
T ⊂ I
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(where I refers to the image).

pi = [ui, vi]
T = M[Xi, Yi, Zi, 1]T (3)

The projection matrix M is given by Eq. 4, where αu and αv are the camera
focal length expressed in vertical and horizontal pixels, respectively. (uc, vc)
represent the principal point 2D coordinates, s is a global scale and rT

1 and rT
2

are the first two rows of the 3D rotation matrix.

M =

[
αu
tz

s rT
1 αu

tx
tz
+ uc

αv
tz

s rT
2 αv

ty
tz
+ vc

]
(4)

The core idea of our approach is to estimate the 3D model parameters by
minimizing the distances between the detected facial points (dj = [xj, yj]

T ⊂
I, where j = 1, ..., q and q ≤ n) and their corresponding projected vertices
from the 3D model. Algorithm 6 shows the procedure, called deformable
model backprojection. The more points are detected on the image (32 with
the proposed learning-free method), the more shape and animation units
can vary in the model. The minimal requirement is that the points to be
matched must not be coplanar. This way, the objective is to minimize Eq. 5,
where pj is the 2D projection of the 3D point Pj. Its 2D coordinates rely on
the model parameters (encapsulated in b). These coordinates are obtained
via equations 1 and 3. The weight elements wj refer to confidence values
(0 ≤ wj ≤ 1) for their corresponding dj, and depend on the approach used
for facial point detection. For our method (section 2), higher weights (e.g, 1)
should correspond to eye points, mouth points, nose top and base points,
and the forehead center point; in a second level (e.g., 0.8) the eyebrow points
and the rest of contour points; and finally in a third level (e.g., 0.2) the left and
right nostrils. In order to get an initial guess of the position and orientation of
the face object, before the optimization procedure starts, the POS algorithm 3

is applied.

b∗ = arg min
b

q

∑
j=1

wj · [({dj}x − {pj(b)}x)
2 + ({dj}y − {pj(b)}y)

2] (5)

The degrees of freedom of the Candide model (to be optimized) are
initially normalized, so that their values are not biased towards any of them

3POS is a pose solver based on a linearization of the perspective projection equations,
which corresponds to a single iteration of POSIT [42].
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in particular. Empirically, we observed that it was recommendable to keep
the translation estimated by POS constant because of the high sensitivity
of the Levenberg-Marquardt (LM) algorithm to these global parameters.
Therefore, we keep the position from POS constant, and optimize the rest of
parameters.

Algorithm 6 Deformable model backprojection algorithm

1: procedure MODELBACKPROJECTION( g, w, S, A, d )
2: (θ0

x and θ0
y and θ0

z and t0
x and t0

y and t0
z) ← Apply POS algorithm [42] to g

with d
3: b ← Starting from (θ0

x and θ0
y and θ0

z and t0
x and t0

y and t0
z and τs =

0 and τa = 0) minimize Eq. 5 through the Levenberg-Marquardt al-
gorithm [43], taking into account equations 1 and 3 for the update
in the iterative optimization process. The position is kept constant
(tx = t0

x, ty = t0
y, tz = t0

z).
4: return b
5: end procedure

EXPERIMENTAL RESULTS AND DISCUSSION

We have used the CMU Pose, Illumination, and Expression (PIE) database
[44], in order to evaluate the suitability of our approach for the initialization
of an OAM-based 3D face tracking. We have used the images where the flash
system was activated, in order to get challenging illumination conditions
while subjects maintained a neutral facial expression. In our context, in
which we expect to fit the face model for a posterior OAM-based tracking,
we can assume that in the first frame the person will have the mouth closed,
which is valid for many applications. For this experiment we have selected
the images where the subject has frontal or near-frontal views. In total, we
have used 7134 images for the test (68 subjects× 5 cameras× 21 flashlights−
6 missing images in the database). We created the ground truth by manually
configuring the Candide-3m model on each of the faces, then applied the
automatic fitting approach (described in sections 2 and 3) and measured the
fitting error with respect to the ground truth as a percentage, in the same
way as [18, 19]. This is described by Eq. 6, where pfit

i and pgt
i correspond to

the fitted and ground truth projections of point i respectively, and lgt and
rgt to the ground truth left and right eye center projections. If no face region
was detected, or one was incorrectly detected, we excluded that image from
the evaluation. All vertices of Candide-3m are used for computing the fitting
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error.

e =
∑n

i=1 ‖pfit
i − pgt

i ‖/n
‖lgt − rgt‖ · 100 (6)

Six alternatives are compared in the test: (1) HA (Holistic Approach) [32],
(2) CLM (Constrained Local Model) [24] with head orientation obtained by
[29] 4, (3) SDM (Supervised Descent Method) [22] with head orientation
obtained by [42], (4) FFBP (Facial Feature Backprojection), our approach
combining both the proposed facial feature detector and the backprojection,
(5) CLMBP, the CLM approach but replacing its estimated orientation by our
full backprojection approach and (6) SDMBP the SDM approach but with
our full backprojection approach.

We used all the Candide-3m points in order to measure the fitting error,
for all approaches. The used weights for the partial backprojection in CLM
and SDM and the full backprojection in CLMBP and SDMBP are all equal to
1, except for the eyebrows and contours, which have 0.8. This challenging
illumination test is unfavorable for the HA approach (fully appearance-based
approach), as it relies on a PCA model obtained from a training stage. Hence,
we train user-specific PCA models from the images in which we want to
fit the face model, in order to obtain the best possible results from this
approach. For the optimization a differential evolution strategy is adopted
with an exponential crossover, a random-to-best vector to be perturbed,
one difference vector for perturbation and the following parameter values:
maximum number of iterations = 10, population size = 300, F = 0.85, and CR
= 1. The random numbers are set to the range [−0.5, 0.5].

We solve the same number of shape and animation units (12 SUs and 3
AUs) in all the methods, maintaining the rest of Candide-3m parameters to
a value of 0. The considered SUs correspond to Eyebrows Vertical Position,
Eyes Vertical Position, Eyes Width, Eyes Height, Eyes Separation Distance, Nose
Vertical Position, Mouth Vertical Position, Mouth Width, Eyebrow Width, Eyebrow
Separation, Nose Width and Lip Thickness, while the selected AUs correspond
to Brow Lowerer, Outer Left Brow Raiser and Outer Right Brow Raiser. This way,

4The implementations of CLM (https://github.com/kylemcdonald/FaceTracker) and
SDM (http://www.humansensing.cs.cmu.edu/intraface) also provide the head orienta-
tion, obtained through [29] for CLM and [42] for SDM. In these two methods, given the 2D
points and the head orientation, we apply the rest of our backprojection approach to place
the 3D object, i.e. we only adjust the head position and the facial deformations to the 2D
detections, not the orientation. The orientation would be that of [29] and [42], respectively.

https://github.com/kylemcdonald/FaceTracker
http://www.humansensing.cs.cmu.edu/intraface
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Table 1: Fitting error comparison obtained in the CMU PIE database illumination variation
images.

C05 C07 C09 C27 C29 GLOBAL
Mean StDev Mean StDev Mean StDev Mean StDev Mean StDev Mean StDev

FFBP 16.02 7.28 12.48 5.84 16.83 7.52 13.57 6.34 15.93 8.58 14.93 7.35
CLMBP 11.55 9.74 8.52 5.12 10.96 7.18 8.73 6.07 11.49 9.72 10.23 7.87
SDMBP 9.13 3.76 8.24 3.05 9.06 4.87 8.23 2.83 9.24 3.63 8.78 3.72
CLM 18.29 8.97 13.44 5.11 12.27 6.82 11.32 5.80 12.11 9.57 13.44 7.82
SDM 9.79 4.10 10.18 3.44 8.03 4.99 7.25 2.67 10.05 4.24 9.05 4.14
HA 37.60 20.20 31.06 16.40 30.26 15.80 32.06 16.54 31.39 15.67 32.42 17.16

Table 2: Fitting errors of facial parts obtained with FFBP in the CMU PIE database illumina-
tion variation images.

C05 C07 C09 C27 C29 GLOBAL
Mean StDev Mean StDev Mean StDev Mean StDev Mean StDev Mean StDev

Eyes 8.62 6.65 7.56 5.46 8.85 6.91 7.14 5.52 8.06 8.67 8.03 6.75
Eyebrows 12.54 6.65 11.53 6.02 13.69 6.41 10.98 5.39 12.40 9.22 12.21 6.91
Nose 12.42 7.42 9.28 6.29 11.00 8.14 8.84 6.21 10.88 8.58 10.46 7.48
Mouth 12.75 10.19 9.97 8.02 11.93 9.40 10.10 9.11 11.02 10.58 11.13 9.54

the LM minimization in algorithm 6 attempts to simultaneously approximate
21 unknowns (3D pose and facial deformations).

The obtained results for the six considered alternatives are shown in Table
1. This comparison allows us to evaluate the not only the relative perfor-
mance of our full approach (i.e., FFBP, which combines the feature detection
and the deformable backprojection), but also the deformable backprojection
itself (i.e., the approaches that include the suffix BP), with respect to other
alternatives. The results we obtain with the full approach (FFBP) have less
error than HA and have similar values to those of CLM, with the advantage
of not being dependent on the quality of a trained model for the fitting.
Moreover, this comparison also shows that our deformable backprojection
approach improves the fitting quality (CLMBP vs CLM and SDMBP vs SDM).
Next we will show that under a face tracking setting FFBP (with OAM)
behaves better than CLM and is computationally less intensive, allowing its
utilization in gadgets with lower computational capabilities.

Table 2 shows the fitting errors obtained with FFBP for the points corre-
sponding to each facial part separately. It can be observed that the lowest
errors correspond to the eyes. This was expected, since eye regions can be
found in a specific area which usually presents significant gradient levels
with similar patterns from face to face. This is in contrast to other facial
regions such as the mouth.

We have also evaluated our approach in combination with OAM (FFBP-
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Table 3: Average computation times (in ms) obtained with FFBP-OAM and CLM [24] on
iPad 2.

Initialization Frame-to-Frame Tracking
FFBP-OAM 60 42
CLM [24] 250 88

OAM) in a tracking scenario using the camera of the iPad 2. We have only
integrated in the device FFBP-OAM and CLM in its original form (i.e., with
its own model, without transferring its tracked points and orientations to
Candide-3m). The computation power required by HA was too high com-
pared to the others and the code of SDM was implemented exclusively for
desktop computers, which prevented us to integrate it in the device. In
this test, the faces have severe occlusions at certain times, and they adopt
different positions, orientations and expressions. We evaluate how the full
system (initialization + tracking) behaves in these circumstances, where it
has to (1) detect and fit the 3D model when a new face appears, (2) track
the face while it is visible and (3) detect when the tracking is lost and reini-
tialize the tracking when a face becomes visible again. Fig. 3 shows how
both approaches behave under severe occlusion. In this case, CLM does not
detect the occlusion correctly, does not restart the face detection process until
the face is visible again, and repeatedly fits the graphical model to neigh-
boring regions not corresponding to the face. On the contrary, FFBP-OAM
properly detects the occlusion time and stops tracking, and then restarts
the tracking once the face is visible again. The metrics inherently available
in model-based tracking approaches, such as OAM, to better evaluate the
current observation’s divergence from the reference model, present a clear
advantage over other alternatives for this kind of situations.

Table 3 shows the computation times obtained in this test. CLM needs an
average time of 250 ms for the initial fitting with a detected face region of
about 200× 200, whereas our approach needs an average time of about 60
ms. During the tracking stage, CLM needs an average of 88 ms whereas the
OAM tracking [36] requires only about 42 ms to fit the model. Table 4 shows
the computation times obtained for the proposed facial feature detection
and model backprojection separately, on the iPad 2. Fig. 4 shows images
of our full system running on an iPhone 5. These results demonstrate the
better suitability of our approach when compared to other state-of-the-art
alternatives for 3D deformable face model fitting.

Finally, we analyze the suitability of our approach for the estimation of
facial actions (intra-person variability) in a video sequence in which a face
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Table 4: Average computation times (in ms) obtained with FFBP in the facial feature detec-
tion and model backprojection stages on iPad 2.

Facial Feature Detection Model Backprojection
FFBP 22 38

performs exaggerated facial expressions. In this experiment, the observed
face starts with a neutral face, which allows our full approach combined with
OAM (FFBP-OAM) to be used. It is compared to other two alternatives that
involve the use of our backprojection, applied to every frame of the sequence,
and that can infer facial actions in the lower face region by estimating the
positions of sufficient mouth contour points, i.e., CLMBP and SDMBP. We
estimate 26 variables (6 pose parameters, 12 SUs and 8 AUs) in the Candide-
3m mode with these three approaches. The considered SUs are those used
in the test with the CMU database, while the AUs correspond to Jaw Drop,
Lip Stretcher, Brow Lowerer, Lip Corner Depressor, Outer Left Brow Raiser, Outer
Right Brow Raiser, Left Eye Closed and Right Eye Closed.

Figure 3: Comparison between CLM and FFBP-OAM on an iPad 2 under a severe occlusion.

Figure 4: The full system running on an iPhone 5 at 24 FPS.
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Some samples of this comparison are shown in Fig. 5, while Fig. 6 shows
the Jaw Drop AU and upper/lower lip distance variations. In the three cases,
images with a resolution of 320×240 are used for processing, and the results
are visualized in images of size 640×480. It can be seen how exaggerated
AUs can be estimated from the sequence by the three alternatives. The
trained CLM in CLMBP includes contour facial points, while the trained
SDM from SDMBP does not, and therefore, when those contour points are
well adjusted, the Candide-3m model adjusts better to the real contour of the
person in the former. Nevertheless, the CLM was trained with limited mouth
variations, and therefore, especially when the mouth is fully open, the point
adjustment is not accurate around the mouth. Nevertheless, the AU variation
is distinguishable with the three alternatives and therefore action activation
moments can be detected with appropriate thresholds. The frame-to-frame
transition in the case of FFBP-OAM is better suited for video sequences as it
is much smoother than in the other two cases.

Figure 5: Comparison between CLMBP, SDMBP and FFBP-OAM in a video sequence with
exaggerated facial expressions.
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Figure 6: The Jaw Drop AU and upper/lower lip distance variations with CLMBP, SDMBP
and FFBP-OAM.

CONCLUSIONS

In this work, we proposed a robust and lightweight procedure for the auto-
matic fitting of 3D face models on facial pictures. Our approach is divided
in two stages: (1) the detection of facial features on the picture and (2) the
adjustment of the deformable 3D face model. The adjustment is performed
by projecting its vertices into the 2D plane of the picture, and assessing the
matching accuracy between the projected locations and the points of the
detected facial features. For the first step, we propose a gradient analysis
using filtered local image regions instead of popular techniques such as those
based on statistical models of shape and appearance. This approach has the
following benefits: (1) lower computational cost (2) non-reliance on a prelim-
inary training stage, which avoidis the biased result provided by pre-trained
statistical databases, (3) efficient matching as the 32 detection points are
directly related to a subset of the generic 3D face model and (4) robust han-
dling of challenging illumination. For the second step, we propose to use the
detected facial points to estimate the 3D model configuration by minimizing
the distances between the paired points across both point sets: those in the
detected facial point set and their counterparts in the projected model. This
approach assumes a camera with weak perspective, and uses a lightweight
iterative approach to estimate the considered face model variations.

We have demonstrated the capability of our learning-free facial point
detection and of our deformable backprojection approaches, by contrasting
their performance with respect to state-of-the-art approaches. The challeng-
ing CMU PIE database was used for testing due to its illumination variation
images. Similarly, videos captured with the camera of an iPad2 were used
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to test tracking scenarios. Furthermore, we also have tested the integration
of our method in low hardware capacity devices such as smartphones and
tablets, with similar accuracy than in state-of-the-art methods but with an
improved performance when compared to other recent alternatives.

Our proposed approach only needs an input snapshot image combined
with the detected face features. Accordingly, it gets rid of tedious learning
processes and also of the dependency on the related learning conditions.
The current limitations of the proposed strategy are only related to the face
pose. Although the method does not need a frontal face, the 3D orientation
of the face should not be arbitrary. We estimate that the working ranges of
the proposed method are around (−20◦, +20◦) for the roll angle and around
(−30◦, +30◦) for the out-of-plane rotations.

Future work may concentrate on increasing the head orientation angle
ranges, using lower image resolutions, and also the inclusion of other types
of deformable objects apart from human faces. The management of the
partial occlusions is another possible improovement for this method.

APPENDIX A: MODIFICATIONS TO CANDIDE-3

Our fundamental interest for this work is to fit a 3D generic face model on a
facial picture under uncontrolled light conditions utilizing a computationally
lightweight system, and avoiding previous learning phases. The objective of
a computationally light processing is to permit the last application to run in
gadgets with low computational capacities, for example, smart-phones and
tablets. We are using an adaptation of Candide-3 [34] as a 3D generic face
model. We call to this modification Candide-3m. This new Candide version
is more simple is streamlined model so as to improve the fitting and tracking
abilities of the original one.

The Candide-3m model has the following modifications with respect to
Candide-3:

• Some vertices were removed from the geometry around the eyes to
simplify the shape of the eyelids.

• The mesh around the eyes and mouth is more uniform. This is made
tweaking the triangulation in those areas.

• The SUs have been changed to adapt them for the proposed initial-
ization procedure:(1) Cheeks Z, Chin Width and Eyes Vertical Difference
SUs have been removed, and (2) three more have been added, called
Eyebrow Width, Eyebrow Separation and Nose Width.
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• The AUs have been changed to increase the expressiveness of the
tracking through an OAM approach such as [36]: (1) All MPEG-4 FAPs
have been deleted, (2) the Upper Lip Raiser, Lid Tightener, Nose Wrinkler,
Lip Presser and Upper Lid Raiser animation unit vectors (AUVs) have
been deleted, and (3) the Outer Brow Raiser AUV has been split two
different AUs (one for each eyebrow), and (4) the Eyes Closed AUV has
been split in two different AUVs (one for each eye).
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