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Abstract—The process of transcoding videos apart from being
intensive, can also be a rather complex procedure. The complexity
refers to the choice of appropriate parameters at the transcoding
engine, towards decreasing video sizes, transcoding times and
network bandwidth without degrading video quality beyond some
threshold that event detectors lose their accuracy. The paper
explains the need for transcoding, and then studies different
video quality metrics. Commonly used algorithms for motion
and person detection are briefly described, with emphasis in
investigating the optimum transcoding configuration parameters.
The analysis of the experimental results reveals that the existing
video quality metrics are not suitable for automated systems, and
that the detection of persons is affected by the reduction of bit
rate (more blockiness effect) and resolution (less information),
while motion detection is more sensitive to frame rate.

I. INTRODUCTION

The existing Closed-Circuit Television (CCTV) infrastruc-
tures and surveillance video systems are not actually fully
exploited. Scanning massive amounts of recorded video of
different formats in order to locate a specific segment based on
semantic descriptions remains a non-automated task, mainly
performed by humans. For example, the Chicago’s video
surveillance camera system has more than ten thousand cam-
eras [1] connected to a common storage system. The SAVASA
project [2] aims to develop a standard-based video archive
search platform that allows authorised users to query over
various remote and non-interoperable video archives of CCTV
footage from geographically diverse locations. At the core
of the search interface is the application of algorithms for
person/object detection and tracking, activity detection and
scenario recognition.

In most platforms that aim to the decoupling of CCTV and
Video Archive installations, video transcoding performs two
fundamental operations: a) provide video format conversion to
enable a unified data interface, and b) perform compression
to facilitate the video annotation and storage. Video analysis
and watermarking can be performed more easily when videos
are compressed beforehand. In this paper, conversions between
MPEG-2 coding standard [3] to H264/MPEG-4 Advanced
Video Coding (AVC) [4] standard are performed.

The key disadvantage of transcoding is that more frequently
it is a lossy process, introducing image artifacts (e.g., twisted

or deformed images) and resulting in decreased video qual-
ity output. However, for large scale CCTV installations, the
transcoding process is inevitable due to the diversity of CCTV
cameras and their recording capabilities. In fact, since typical
End-Users do not constantly observe all video streams but
only rare suspicious events [5], they do not have high-quality
video requirements. In future surveillance systems, the videos
will be mainly transmitted for the automated video analysis
algorithms, with the minimum acceptable quality for increasing
the scalability of the CCTV systems.

Nevertheless, the video quality should not be degraded
beyond some threshold so that event detectors do not lose their
accuracy. In this direction, we measure the video quality de-
terioration in terms of Peak Signal to Noise Ratio (PSNR) [6]
and Frame Rate Structural SIMularity (SSIM) [7] full reference
metrics. Although these metrics have been widely used as
video quality indicators, this paper brings out that they are
not suitable to demonstrate the degree that event detectors are
affected by the compression. In some cases it is observed that
the apparently reduced video quality gives better results for
the cases of motion and person detection. Even though this is
initially somewhat strange, it can be explained by the fact that
the existing video quality metrics simulate human perception
that may be different from computer vision.

The main contribution of this paper is the study of the
accuracy of common event detectors in relation to the in-
put video quality. The adopted motion detection algorithm
is based on descriptors for motion trajectories, which are
calculated using salience points identified by Harris Corner
detectors [8] and tracked using the Kanade-Lucas-Tomasi
(KLT) algorithm [9], [10]. Trajectories are described using four
descriptors, and then they are classified via a trained Support
Vector Machine (SVM). Persons are detected using Histogram
of Oriented Gradients (HOG) descriptors [11] and tracked via
Rao-Blackwellized Data Association Particle Filter [12]. Other
event detection algorithms, used in SAVASA project, can be
found in [13].

The lowest video quality allowing humans to perform
recognition of natural image contents is studied in [14].
From computer vision perspective, the most relevant work to
ours is [15] which demonstrates also that the face detection



algorithms show almost no decrease in accuracy until the
input video is reduced to a certain critical quality. Our work
investigates the critical quality for full-body person detection
and pointing detection using an open data set.

The rest of the paper is organized as follows: Section II
presents the transcoding parameters under investigation, while
Section III briefly reviews common video quality metrics.
The adopted event detection methodology is described in
Section IV. The input video quality measurements and the
evaluation of detectors in relation to the transcoding parameters
are included in Section V. Section VI concludes the paper.

II. TRANSCODING PARAMETERS

The following transcoding parameters affect input video
quality and they need to be considered for automated event
detection.

A. Bit Rate

In computer vision area, bit rate refers to the amount of
detail that is processed in a predefined time duration. Bit
rates can be classified into two main categories: Variable Bit
Rate (VBR) and Constant Bit Rate (CBR) encodings. VBR
permits a higher bit rate to be allocated to the more high
motion scenes and to the complex segments of videos, and
a less rate to be allocated to less complex segments. More
specifically, when there is little or no motion on the scene, the
encoder decreases the bit rate to minimum bit rate, while when
the motion is prevalent it is increased to the maximum allowed.
This flexibility allows smaller overall file sizes without serious
compromises in the quality of the video. Averaging the instant
rates, the mean video bit rate value is calculated.

Resource allocation is easier with CBR, since bit rate is flat
and thus predictable. This characteristic comes at the price of
encoding efficiency; usually resulting in a larger file. CBR is
suitable for streaming multimedia content on limited capacity
networks, where multiplexing gain is limited. In contrast, CBR
would not be the optimal choice for minimum storage space
as it would not produce enough data for complex segments
(leading to low quality), while sacrificing data on simple
sections. In order to have a broad picture of bit rates in
CCTV systems, note that one camera might produce between
100 kbps and 2 Mbps.

B. Video Resolution

Resolution is a measurement of the number of pixels in
a frame. Each pixel is a piece of a puzzle which by itself
it might not mean much, but when combined with other
pixels it becomes a critical piece of information that helps
to comprehend a larger visual story. As more pixels exist to
the frame (thereby increasing its resolution), the image gets
sharper and more detailed.

Typically, the resolution is expressed as frame length times
height (both in pixels). Common resolutions for CCTV IP
cameras are the CIF (640x480), the 4CIF (704x480) and
the D1(720x480). The resolution 1280x720 is the minimum
that is called High Definition (HD). There is also 1920x1080
resolution, which is sometimes referred to as full HD.

C. Frame Rate

This parameter specifies the number of frames that are
generated/transmitted during a time unit – the higher frame
rate, the smoother video is. Due to bandwidth and storage
restrictions, CCTV systems use in practice frame rates between
5-15 frames per second (fps), which are sufficient in general.
Lower frame rates are used in premises with little movement
and in applications like crowd control, while higher rates (e.g.,
25 fps) to monitor the behaviour of individuals in a realistic
manner.

III. VIDEO QUALITY ASSESSMENT

Simultaneously with the transcoding, a lossy video en-
coding technique can be applied to reduce the bandwidth
needed to transmit or store video data, having as result the
degradation of the quality. For this reason, it is crucial for an
automated event detection surveillance system to be able to
realize and quantify the video quality degradations, so that it
can maintain and control the quality of the video data. Over
the last years, emphasis has been put on developing various
methods and techniques for evaluating the perceived quality
of video content by human observers. These methods have not
been designed for CCTV task-based applications, but mainly
for entertainment. From the computer vision perspective, the
fundamental measure of video quality is the success rate of
recognition tasks. In this context, new initiatives are trying to
address the lack of suitable metrics [16]. Since all these works
are in a very early stage, we review here only well established
video quality metrics, categorized into two broad classes: the
subjective and the objective ones.

A. Subjective quality

The subjective test methods involve an audience of peo-
ple, who watch a video sequence and score its quality as
perceived by them, under specific and controlled watching
conditions. The Mean Opinion Score (MOS) is regarded as
the most reliable method of quality measurement and it has
been applied on the most known subjective techniques: the
Single Stimulus Continue Quality Evaluation (SSCQE) and
the Double Stimulus Continue Quality Evaluation (DSCQE)
[17]–[19]. However, the MOS method is usually inconvenient
due to the fact that the preparation and execution of subjective
tests is costly and time consuming.

Subjective test methods are also described in International
Telecommunication Union-Radio (ITU-R) Rec. T.500-11 [20]
and ITU-T Rec. P.910 [21], suggesting specific viewing condi-
tions, criteria for observers and test material selection, assess-
ment procedure description and statistical analysis methods.
The ITU Rec. T.500-11 described subjective methods that are
specialized for television applications, whereas ITU-T Rec.
P.910 is intended for multimedia applications.

B. Objective quality

Since subjective tests are costly and time consuming, a
lot of effort has been focused on developing cheaper, faster
and easier applicable objective evaluation methods. These tech-
niques successfully emulate the subjective quality assessment
results, based on criteria and metrics that can be measured
objectively. The objective methods are classified, according to



Quality Metric Mathematical Complexity Correlation with Subj. Methods
PSNR Simple Poor
SSIM Complex Fairly good

TABLE I. COMPARISON OF OBJECTIVE METRICS.

the availability of the original video signal, which is considered
to be of high quality.

The majority of the proposed objective methods in the
literature require the undistorted source video sequence as
a reference entity in the quality evaluation process, and due
to this are characterized as Full Reference Methods (see,
e.g., [22], [23]). These methods are based on an Error Sensitiv-
ity framework with most widely used metrics the Peak Signal
to Noise Ratio (PSNR) and the Mean Square Error (MSE).

Despite several objective video quality models have been
developed in the past two decades, PSNR continues to be
the most popular evaluation of the quality difference among
videos, i.e.,

PSNR = 10 log10
L2

MSE
, (1)

where L denotes the dynamic range of pixel values (equal
to 255 for 8 bits/pixel monotonic signal). The MSE is defined
by

MSE =

∑N
i=1(xi − yi)

2

N
, (2)

where N denotes the number of pixels, and xi, yi the ith pixel
in original, distorted frame, respectively.

The Frame Rate Structural SIMularity (SSIM) metric is
an other objective metric which benchmarks the encoding
efficiency of different block sizes in relevance to the spatio
temporal activity level of the video content. SSIM is a Frame
Rate metric for measuring the structural similarity between
two image sequences, exploiting the general principle that the
main function of the human visual system is the extraction
of structural information from the viewing field and it is not
specialized in extracting the errors. If x and y are two video
frames,

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (3)

where µx, µy are the mean value of x and y, σx, σy , σxy are the
variances of x, y and the covariance of x and y, respectively.
The constants C1 and C2 are defined as C1 = (K1L)

2 and
C2 = (K2L)

2, where L is the dynamic pixel range and K1 =
0.01 and K2 = 0.03, respectively [24]. The value of SSIM
ranges between −1 and 1, and gets the best value of 1 if
xi = yi for all values of i.

A comparison of the objective metrics PSNR and SSIM is
presented in Table I. It can be seen that the SSIM gives the
most reliable result. However, the computational complexity
of PSNR makes it ideal to apply in real-time applications. For
these reasons, PSNR and SSIM are both used as baseline video
quality metrics for the transcoding procedure.

IV. PERSON AND MOTION DETECTION

This section outlines the two classifiers used to identify
video segments that show one of the two following events:
a) Pointing and b) Person-Walks.

A. Pointing Recognition Using Motion Trajectory

To represent motion, we have used salience points for
capturing the motion trajectory. This low-level feature is then
described by four different descriptors. Firstly, in order to fa-
cilitate motion trajectory extraction, a background subtraction
algorithm [25] to detect foreground regions has been applied.
This stage reduces computational complexity and increases
the accuracy of point tracking by reducing the searchable
area. Salience points are located within the foreground regions
by Harris Corner Detector [8] and are tracked over video
sequences using Kanade-Lucas-Tomasi (KLT) algorithm [9],
[10]. In the experiments, we have observed that longer salience
points trajectories are likely to be erroneous. Therefore, we
have empirically set the maximum trajectory length to be
fifteen frames.

For the motion trajectory description, we adopted the ap-
proach in [26] to describe the trajectory features. For each tra-
jectory, we calculated four descriptors to capture the different
aspects of motion trajectory. Among the existing descriptors,
HOG/HOF [27] has shown to give excellent results on a variety
of datasets [28]. Therefore, HOG/HOF is computed along
our trajectories. HOG (Histogram of Oriented Gradient) [11]
captures the local appearance around the trajectories, whereas
HOF (Histogram of Optical Flow) captures the local mo-
tion [26]. Additionally, MBH (Motion Boundary Histogram),
proposed in [29], and TD (Trajectory Descriptor) [26] are com-
puted in order to represent the relative motion and trajectory
shape.

In order to represent the video scene, we have built a Bag-
of-Features (BoF) model based on the four descriptors. This
step requires the construction of a visual vocabulary. In this
direction, we clustered a subset of 250,000 descriptors sampled
from the training videos with the k-means algorithm applied
for each descriptor. The number of clusters is set to k=4000,
which has shown empirically to give good results in [27]. The
BoF representation then assigns each descriptor to the closest
vocabulary word in Euclidean distance and computes the co-
occurrence histogram over the video sub-sequence.

Finally, we have used a non-linear Support Vector Ma-
chine (SVM) with a Radial Basis Function (RBF) kernel
for the classification. Using the cross-validation technique,
we have empirically found the parameters of cost (32) and
gamma (10−5) of the kernel. In order to represent the video
frame, we have utilized a temporal sliding window approach.
In the experiments, we set the window size to twenty five
frames and the sliding step size to eight frames.

B. Person Detection and Tracking

For the detection of persons, we have used HOG de-
scriptors [11] and a pre-trained, publicly available full-body
person detector [30] which yields a sparse set of detections
in time, i.e. there are a lot of misdetections. False negatives
can be solved using tracking approaches, which are anyway
needed to provide time coherence to detections, so that we
can reconstruct the trajectory of objects.

For the tracking, we have implemented a Rao-
Blackwellized Data Association Particle Filter (RB-
DAPF) [12]. This type of filter has been proven to provide



good multiple object tracking results even in the presence of
sparse detections as the ones we have in these sequences, and
can be tuned to handle occlusions. The Rao-Blackwellization
can be understood as splitting the problem into linear/Gaussian
and non-linear/non-Gaussian parts. The linear part can be
solved with Kalman Filters, while the non-linear one must be
solved with approximation methods like particle filters. In our
case, the linear part is the position and size of a bounding
box that models the persons. The non-linear part refers to the
data association that is the process of generating a matrix that
links detections (the HOG ones, for instance), with objects or
clutter. The association process can be strongly non-linear,
thus sampling approaches can be used. In our case we have
implemented ancestral sampling [31].

The experimental results have shown that this approach is
able to detect and track persons whose full body is clearly
seen in the scene, up to four or five simultaneous persons.
When more than five persons exist, we have found that multiple
occlusions happen and the full-body detector does not provide
good detection results.

The control of input/output of new persons is handled
thanks to the use of the data association filter that classifies
detections according to the existing objects, removes objects
that have no detection for a too long period of time, and creates
new objects when detections not associated to previous objects
appear repeatedly.

V. VIDEO QUALITY MEASUREMENTS AND
PERFORMANCE EVALUATION OF DETECTORS

In this section, experimental results about the accuracy of
the event detectors in relation to the input video quality are
presented. Firstly, video quality metrics (i.e., PSNR and SSIM)
are demonstrated for videos after transcoding. Afterwards, the
effect of video transformations to the performance of detectors
is investigated. Video quality metrics for experiments with
different frame rates are not demonstrated, since both adopted
quality metrics are frame-based and frame synchronization
cannot be achieved.

The original videos have been selected from TREC
Video Retrieval Evaluation (TRECVID) collection [32]. The
TRECVID database is sponsored by the National Institute
of Standards and Technology (NIST), with additional support
from other U.S. government agencies. The goal of this database
is to encourage research in information retrieval by providing
a large test collection, uniform scoring procedures, and a
benchmark for organizations interested in comparing their
results.

The transcoding experiments have been performed with
three videos of origin (i.e., LGW 20071101 E1 CAM1.mpeg,
LGW 20071101 E1 CAM3.mpeg, LGW 20071101 E1 -
CAM5.mpeg) selected from TRECVID videos collection.
All videos have the same initial format (MPEG-2) and the
same encoding details. The full details of the input videos are
included in Table II. The FFmpeg command line application
was used for the video transcoding operation [33].

A. CCTV video quality measurements.

Trying to avoid unpredictable spikes in bit rate, constant
bit rate encoding is used. The flat bit rate allows a smoother

$ mediainfo LGW 20071101 E1 CAM1.mpeg

Complete name: LGW 20071101 E1 CAM1.mpeg
Format: MPEG-PS
File size: 5.34 GiB
Duration: 2h 4mn
Overall bit rate mode: Variable
Overall bit rate: 6124 Kbps
VideoID: 224 (0xE0)
Format: MPEG Video
Format version: Version 2
Format profile: Main@Main
Format settings, BVOP: Yes
Format settings, Matrix: Default
Format settings, GOP: M=3, N=12
Bit rate mode: Variable
Bit rate: 6002 kbps
Maximum bit rate: 9000 kbps
Width: 720 pixels
Height: 576 pixels
Display aspect ratio: 4:3
Frame rate: 25 fps
Standard: PAL
Color space: YUV
Chroma subsampling: 4:2:0
Bit depth: 8 bit
Scan type: Progressive
Compression mode: Lossy
Bits/(Pixel*Frame): 0.579
Stream size: 5.24 GiB (98%)

TABLE II. VIDEO FILE INPUT DETAILS.

Fig. 1. CAM1: PSNR measure over time as a function of bit rate.

playback with the drawback of a larger file. Figures 1, 3, and
5 demonstrate the PSNR metric (calculated from (1) and (2))
for the three videos of reference, while Figures 2, 4, 6 present
the SSIM metric (computed though (3)) of the aforementioned
videos. As it is expected, the videos with smaller bit rates have
a downgraded video quality. In all cases, the curves of different
bit rates follow the same trend over time in the three videos.

For saving on bit rate, videos can be scaled down to a
smaller size by simply lowering the video resolution. Note that
it is desirable to maintain the image aspect ratio when resizing.
The three original videos have been captures in 4:3 ratio, and
changing this ratio can lead to a squishing or stretching effect
that is non observable. Figures 7, 9, and 11 present the PSNR
metric for the three videos of reference, while Figures 8, 10,
12 present the SSIM metric of the aforementioned videos.
The videos with smaller resolution have a downgraded video
quality as it is anticipated. The curves of different resolutions
follow the same trend over time in the three videos.



Fig. 2. CAM1: SSIM measure over time as a function of bit rate.

Fig. 3. CAM3: PSNR measure over time as a function of bit rate.

Fig. 4. CAM3: SSIM measure over time as a function of bit rate.

Fig. 5. CAM5: PSNR measure over time as a function of bit rate.

Fig. 6. CAM5: SSIM measure over time as a function of bit rate.

Fig. 7. CAM1: PSNR measure over time for different resolutions.

Fig. 8. CAM1: SSIM measure over time for different resolutions.

Fig. 9. CAM3: PSNR measure over time for different resolutions.



Fig. 10. CAM3: SSIM measure over time for different resolutions.

Fig. 11. CAM5: PSNR measure over time for different resolutions.

Regarding the video quality measurements, the three videos
demonstrated comparable behaviour in both PSNR and SSIM
metrics. Therefore, the same performance is anticipated for a
larger collection of CCTV security videos.

B. Evaluation of event detection performance with respect to
the degradation in video quality.

In order to check how the video quality affects the CCTV
video analysis tasks, we performed person and motion detec-
tion tests on the videos obtained using the aforementioned
encoder parameters.

At first, we tried to detect persons in the three selected
TRECVid videos and then we compared the original results
with those obtained from the set of transformed sequences.
We have used a subjective metric to define False Positive
(FP), False Negative (FN) and True Positive (TP) events,
considering that detections from HOG-SVM will be followed
by tracking algorithms based on tracklets [30]. For this reason,

Fig. 12. CAM5: SSIM measure over time for different resolutions.

Fig. 13. Example frames of the three cameras used with detections of persons
using the HOG-SVM detector [11].

we have defined these events as inter-frame rates, i.e., TP: a
sufficient number of detections of a person along its path on
the sequence (> 50% of frames in the sequence); FN: not
enough detections along its path (< 50%); FP: a persistent
(more than 3 consecutive frames) set of false detections in the
same region.

Tables III-V summarize the obtained values of Recall
R , TP/(TP + FN) and Precision P , TP/(TP + FP )
for the different videos, considering the reduction of bit rate,
resolution and frame rate. High recall means that an algorithm
returned most of the relevant results, while high precision
means that an algorithm returned substantially more relevant
results than irrelevant [34].

LGW 20071101 E1 CAM1.mpeg

True Positives False Positives False Negatives Recall Precision

bit rate 128k 39 17 9 0.81 0.7

256k 39 13 9 0.81 0.75

512k 40 12 8 0.83 0.77

frame per sec 5fps 38 4 10 0.79 0.9

10fps 38 7 10 0.79 0.84

15fps 38 9 10 0.79 0.81

20fps 39 10 9 0.81 0.8

25fps 40 12 8 0.83 0.77

resolution 160x120 40 26 8 0.83 0.61

320x240 40 20 8 0.83 0.67

640x480 40 14 8 0.83 0.74

TABLE III. PERSON DETECTION RESULTS FROM CAM1.

LGW 20071101 E1 CAM2.mpeg

True Positives False Positives False Negatives Recall Precision

bit rate 128k 37 69 112 0.25 0.35

256k 43 64 106 0.29 0.4

512k 48 60 101 0.32 0.44

frame per sec 5fps 34 4 115 0.23 0.89

10fps 37 7 112 0.25 0.84

15fps 40 9 109 0.27 0.82

20fps 44 10 105 0.3 0.81

25fps 49 12 100 0.33 0.8

resolution 160x120 40 69 109 0.27 0.37

320x240 43 66 106 0.29 0.39

640x480 47 59 102 0.32 0.44

TABLE IV. PERSON DETECTION RESULTS FROM CAM2.

The analysis of the results reveals that the detection of
objects is affected negatively by the reduction of bit rate (more
blockiness effect) and resolution (less information), in both
recall and precision. However, the reduction of frame rate
increases unexpectedly the precision values; the lower frame



LGW 20071101 E1 CAM3.mpeg

True Positives False Positives False Negatives Recall Precision

bit rate 128k 86 39 36 0.7 0.69

256k 88 37 34 0.72 0.7

512k 88 34 34 0.72 0.72

frame per sec 5fps 63 8 59 0.52 0.89

10fps 66 12 56 0.54 0.85

15fps 70 14 52 0.57 0.83

20fps 80 25 42 0.66 0.76

25fps 90 28 32 0.74 0.76

resolution 160x120 66 37 56 0.54 0.64

320x240 69 36 53 0.57 0.66

640x480 81 31 41 0.66 0.72

TABLE V. PERSON DETECTION RESULTS FROM CAM3.

rates affect negatively the True Positives and False Negatives,
but also decrease False Positives and consequently increase the
precision values.

In the experiments using different frame rates, we have
observed that the apparently worsen video quality gives higher
precision results for the case of human detection. This can
be explained by the fact that the basic principle in applying
detection by classifiers consists of the use of classifiers trained
upon sets that contain thousands of examples of human full-
bodies. Each classifier obtains a descriptor that fits the best
to the largest subset of the training set. For this reason the
descriptors tend to simplify the details of particular figures
(full-bodies) and characterize their coarse visual features or
appearance. One can think about this process as an averaging,
although classifiers can be much more complex than that. With
reduced image quality, the details of the video are lost but the
image appears smoother than the original (at least in the case
of the applied H.264 codec).

As regarding the motion detection experiments, our classi-
fier has been trained to identify ‘Pointing Events’. The video
entitled LGW 20071101 E1 CAM1 contains six segments
with pointing events. In this case, precision is the percentage
of the six samples that were correctly identified. The mean
confidence is defined as the mean of the normalized (min/max)
confidence value and it is a measure of the confidence of
classification decision. Note that the classifier has been trained
on samples with the same bit rate, frame rate, and resolution
as the original video.

LGW 20071101 E1 CAM1.mpeg

Correct Precision Mean Confidence

bit rate 128k 3 0.5 0.71

256k 5 0.83 0.8

512k 4 0.66 0.8

frame per sec 5fps 1 0.16 0.62

10fps 0 0 0.63

15fps 2 0.33 0.69

20fps 3 0.5 0.73

25fps 2 0.33 0.76

resolution 160x120 0 0 0.16

320x240 0 0 0.48

640x480 2 0.33 0.7

TABLE VI. POINTING DETECTION RESULTS FROM CAM1.

The poor performance of pointing detector in videos of
higher quality is not surprising and it can be explained as
before. Therefore, PSNR and SSIM (and more general the
legacy video quality metrics) are not suitable to demonstrate
the degree (positive or negative) that event detectors are
affected by the compression. Video quality metrics directly
targeting to computer vision applications would be required in
this case.

VI. CONCLUSIONS

The performance of human and motion detection algo-
rithms, like the ones analyzed in this paper, is highly affected
(either positive or negative) by reductions of bit rate, frame
rate and resolution. However, the widely used video quality
metrics PSNR and SSIM cannot provide any information or
intuition about the change of the precision metrics.

In this work, we estimate the critical video quality for
person and motion detection using TRECVID open data set
and two common event detectors. In a future work, emphasis
will be given in defining novel video quality metrics that
are appropriate for CCTV video analysis tasks and computer
vision applications, in general.
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