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Abstract—In this paper, we present a novel low-cost compu-
tationally efficient method to accurately assess human Gait by
monitoring the 3D trajectory of the lower limb, both left and
right legs outside the lab in any unconstrained environment.
Our method utilises a network of miniaturized wireless inertial
sensors, coupled with a suite of real-time analysis algorithms and
can operate in any unconstrained environment. Firstly, we adopt
a modified computationally-efficient, highly accurate and near
real-time gradient descent algorithm to compute the direction of
the gyroscope measurement error as a quaternion derivative in
order to obtain the 3D orientation of each of the 6 segments.
Secondly, by utilising the foot sensor, we successfully detect the
stance phase of the human gait cycle, which allows us to obtain
drift-free velocity and the 3D position of the left and right feet
during functional phases of a gait cycle. Thirdly, by setting the
foot segment as the root node we calculate the 3D orientation
and position of the other 2 segments as well as the left and
right ankle, knee and hip joints. We then employ a customised
kinematic model adjustment technique to ensure that the motion
is coherent with human biomechanical behaviour of the leg.
Pearson’s correlation coefficient (r) and significant difference
test results (P) were used to quantify the relationship between
the calculated and measured movements for all joints in the
sagittal plane. The correlation between the calculated and the
reference was found to have similar trends for all six joints
(r > 0.94, p < 0.005).

Index Terms—Kinematic model, wearable inertial sensors, 3D
trajectory, human gait.

I. INTRODUCTION

THE advancement of sensor manufacturing, or computer
microminiaturisation, in recent times is a continuing

driver of research into a wide variety of scientific fields
including the Internet-of-Things. The Internet-of-Things is an
area where a network of interconnected sensors, electronics
and software can transfer data and has mainly come about
through the availability of new low-cost sensors that may be
embedded into everyday items. This increasing availability of
low-cost sensors is also having a major influence on the field
of biomechanical gait analysis [1], [2].

We can define gait analysis as the systematic study of human
walking or running (locomotion) [3]. An accurate gait analysis
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is extremely useful for athletes, both professional and amateur,
and also for the general population in order to assess and
treat individuals with (pathological) conditions that affect their
ability to walk and their entire muscular skeletal system [4],
[5], [6]. Traditionally, gait analysis involved a human observer
monitoring a subject but this was subsequently augmented
with video recording, where the recording could be reviewed
in slow motion to allow a more accurate assessment of the
gait cycle. This approach of qualitative analysis is still widely
used today. However, this method is labour intensive, requires
a highly trained sports-scientist or clinician, and is not as
accurate as methods that quantify movement.

The capture and analysis of human movements (e.g. walk-
ing, jumping and running) is common in a number of domains,
including: sport science, musculoskeletal injury management,
rehabilitation, clinical biomechanics and the gaming/movie
industry. The analysis of joint/body segment position, angles
and angular velocities, requires highly accurate motion capture
or MoCap. Real-time MoCap technology used alongside video
analysis can produce more accurate data and allow for a more
in depth analysis of gait [3]. This can provide the clinician with
a large amount of quantitative biomechanical data, important in
assessing joint orientation, acceleration and relative position.

MoCap is a field of science that primarily deals with the
recording, reconstruction and analysis of motion, and is a
well-studied and broad area of research [7]. MopCap can
be segmented into two separate camps: (1) Marker-based
motion capture systems, (2) Markerless-based systems [8].
Marker based Vicon MoCap offers excellent results but carries
a restrictively high price tag and requires complex post-
processing, leaving it out of reach for the general public. For
this reason, significant research is being performed into the
area of low-cost alternatives [9], [10], using either marker-
less based methods such computer vision [11], [12], [13], [1]
based analysis, or body worn devices [2], [14], [15], [16], or
by using depth cameras like the Microsoft Kinect [17], [18].
However, many of these systems suffer from tracking errors
due to marker occlusions and inaccuracies in transverse plane
rotations.

Inertial Measurement Units (IMU) potentially offer an ac-
curate MoCap alternative [19], [20] and these kinds of sensors
are now widely available. Previous research [20] carried out
by the authors investigated a low-cost platform that utilises
three readily available IMU sensors together with advanced
analysis algorithms for detecting the stance phase of the gait
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cycle, multiple IMU calibration and inverse kinematics. This
allows for the reduction in the integration drift error of the
velocity in the IMU system and enabling the creation of an
accurate 3-D gait analysis platform for the lower limbs.

Among the wide variety of possible options, inertial sensors
offer the most attractive capabilities, particularly in light of re-
cent advancements in MicroElectroMechanical Systems tech-
nology resulting in cheap unobtrusive (small) sensors. It has
been shown how body limb positions can be directly inferred
from wearable accelerometer data streams [21]. Combining
an accelerometer with a magnetometer and a gyroscope into
a single Wireless Inertial Measurement Unit (WIMU) device,
allows sensor yaw to be determined and can help increase
robustness. WIMUs have been incorporated into commercial
products, such as XSens [22]. However, they are still prone
to drift in accuracy over time, which constitutes a common
limitation of inertial sensing. Incorporating further sensors,
such as ultrasonic time-of-flight devices, on the body can
reduce the negative impact of this drift [23]. In addition, they
require low power, are light-weight, and offer high sample
rates. However, many of these systems are prone to drift in
accuracy over time, a common limitation of inertial sensors,
making them susceptible to orientation and position errors.
This is extremely important if there is to be a move away from
laboratory-based assessment of gait, which lacks ecological
validity due to the low number of steps being analysed
(possibly <5) under very artificial and controlled conditions,
to a more free-living assessment [24]; which is in line with
the concept of the Internet-of-Things. Extended assessment
of gait (over tens of minutes or even hours) during free-
living, especially if longitudinal in nature, may provide a yet
to be realized insight into neural-musculoskeletal injuries and
cognitive decline. Furthermore, commercially available IMU
MoCap solution are still relatively high in price, approx. 50K.

Unfortunately, the more accurate motion capture systems
tend to be expensive, whether camera based (e.g. Vicon) or
inertia sensor based (e.g. XSens). This places highly accurate
motion capture outside the reach of most users. During the
last few years, a number of different methodologies have
been proposed to address this issue. The majority of these
approaches are based upon fusing data received from different
cheap sensor modalities (e.g. fusion of Kinect & wearables)
[25], [26] to provide inexpensive yet accurate systems.

In this paper we present a truly low-cost platform that
is comprised of 3 low-cost, readily available IMU sensors
together with advanced analysis algorithms, multiple IMU
automatic calibration algorithms and inverse kinematics anal-
ysis. Furthermore, our system contains stance-phase detection,
which reduces the integration drift error of the velocity in the
IMUs. We compare our results to a gold standard marker based
MoCap gait analysis system (Vicon, UK).

This paper represents a substantive extension to our previous
experimental work [20]. In particular, it extends our work by
increasing the number of sensors from 3 to 7 and enhancing
the model to generate the entire lower body (i.e. both left and
right legs).

Fig. 1: The main components of the proposed framework.

II. PROPOSED FRAMEWORK

The main components of our framework are illustrated in
Fig. 1. It consists of four main components, which are: (1)
orientation estimation; (2) foot position estimation; (3) 3D
reconstruction; and (4) kinematic model adjustment. Each
component is presented and discussed in Section III.

III. METHODOLOGY

A. Experimental Setup

Data was collected using seven wearable inertial sensors (x-
IMU, x-io Technologies, UK) positioned on the participants’
feet, tibias, thighs and pelvis, as seen in Fig. 2. Each inertial
sensor-based device contained one tri-axis accelerometer and
one tri-axis gyroscope. x, y and z axes of the 3D accelerometer
and 3D gyroscope attached on a right thigh is depicted in
Fig. 2. The x-axes were aligned with the longitudinal axes of
the body segments. An internal SD card was used to store data
from each sensor at 256Hz. A physical event (5 stiff jumps)
was used to temporally synchronize the sensors at the start and
end of the walking trial. The initial rise in the fifth peak was
used for synchronisation. Pilot work demonstrated an accuracy
of 0.010± 0.002ms (mean± std).

In addition, the Vicon motion-capturing system using the
standard Plug-in Gait model was used to validate the results,
and optical markers were attached on the lower body of the
participant. The placement of markers, with respect to the
standard Plug-in Gait model, is shown in Fig. 2. Twelve
cameras were used to record the data at 200 frames per
second. Once the inertial sensors and the Vicon markers were
attached on the subject, and he performed the stiff jumps,
he was then asked to pause for 3 seconds with his legs in
parallel and aligned with the y-axis of the Vicon coordinate
system. Next, the subject was asked to start walking freely on
a straight line and then ascending/descending the steps inside
the Vicon capturing volume. Six trials were captured to be
used to validate the outcome of our system. The experimental
procedures involving human subjects described in this paper
were approved by the Institutional Review Board.

B. Orientation Estimation

Although there are different technologies to monitor human
body orientation, wearable inertial sensors have the advantage
of being self-contained in a way that measurement is inde-
pendent of motion and environment. It is feasible to measure
accurate orientation in three-dimensional space by utilizing
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Fig. 2: Placement of wireless inertial sensor units and Vicon
markers

tri-axial accelerometers, gyroscopes and a proper filter. In this
paper, we employed a gradient descent optimization algorithm,
which has been shown to provide effective performance at low
computational expense over an extended period of time [27].
The algorithm [27] employs a quaternion representation of
orientation and is not subject to the problematic singularities
associated with Euler angles. A tri-axis gyroscope will mea-
sure the angular rate about the x, y and z axes of the sensor
frame, termed ωx , ωy and ωz respectively. If these parameters
are arranged into the vector Sω defined below, the quaternion
derivative describing rate of change of the earth frame relative
to the sensor frame S

Eq can be calculated using the following
equation. The ⊗ operate denotes a quaternion product and the
accent ˆdenotes a normalised vector of unit length.{

Sω = [0, ωx, ωy, ωz]

S
E q̇ =

1
2

S

E
q̂ ⊗ Sω

(1)

The estimated orientation rate is defined in the following
equations [27]:

{ S
Eqt =

S
E qt−1 +

S
E q̇t∆t

S
E q̇t =

S
E q̇ω,t − β ∇f

||∇f ||

(2)

where
∇f(SEq, Eg, Sa) = JT (SEq, Eg)f(

S
EqEg, Sa)

Sa = [0, ax, ay, az]

Eg = [0, 0, 0, 1]

(3)

In this formulation, S
Eqt and S

Eqt−1 are the orientation of
the Earth frame relative to the sensor frame at time t and
t − 1 respectively. S

E q̇ω,t is the rate of change of orientation
measured by the gyroscopes. Sa is the acceleration in the x, y
and z axes of the sensor frame, termed ax, ay , az respectively.
This acceleration vector is generated using the data obtained
directly from the 3D accelerometers and hence contain both
static and dynamic acceleration in the 3D space. The algorithm
calculates the orientation S

Eqt by integrating the estimated rate
of change of orientation measured by the gyroscope. Then
gyroscope measurement error, β, was removed in a direction

based on accelerometer measurements. We chose the value of
β to be high enough to minimize errors associated with integral
drift but also low enough to avoid noise due to large steps
of gradient descent iterations. This algorithm uses a gradient
descent optimization technique to measure only one solution
for the sensor orientation by knowing the direction of the
gravity in the Earth frame. f is the objective function and
J is its Jacobean (JT is transpose of J) and they are defined
by the following equations:

f(q, Sa) =

 2(q2q4 − q1q3)− ax
2(q1q2 + q3q4)− ay
2(0.5− q22 − q23)− az

 (4)

J(q) =

 −2q3 2q4 −2q1 2q2
2q2 2q1 2q4 2q3
0 −4q2 −4q3 0

 (5)

This algorithm is capable of computing an error based on
an analytically derived Jacobean that results in a significant
reduction in the computation load [27], [28]. This technique
was developed to estimate the sensor orientation with respect
to the earth frame during the entire gait cycle. The static and
dynamic RMS errors of the orientation estimation algorithm
are < 0.8◦ and < 1.7◦ respectively, thus achieving an accuracy
level matching that of the Kalman based algorithm [27], [28].

C. Position Estimation

Human gait motion is a cyclic motion consisting of two
main phases, the stance phase where the foot is in contact with
the ground and the swing phase where the foot is traversing
from one stance phase to the next. With precisely accurate
IMUs a double integration of the acceleration data yields
accurate 3D position. However, IMUs have small errors in
acceleration and thus the position estimates based upon a
double integration technique can only be valid for a short
period of time as these errors are accumulative and lead to 3D
position drift. To overcome such a problem and avoid this
accumulated error, we detect the stance and swing phases
automatically during the entire gait cycle. Therefore, the error
produced when velocity and position estimation are calculated
for one cycle does not accumulate and influence those on
consecutive gait cycles.

The overview of the 3D foot position estimation is illus-
trated in Fig. 4. This method obtains accurate 3D position
while using the double integration technique by correcting the
drift error at each stance phase [29], [28], [30], [31]. During
each gait cycle, 3D orientation, velocity, and trajectory of foot
were estimated from inertial signals. Practically, this involves
the temporal detection of cycles, the knowledge of initial
conditions of position and orientation, the gravity cancellation
of measured acceleration, and the de-drifted integration of g-
free acceleration. Moreover, kinematics measured by sensors
in local frame should be expressed in global frame to be
compared with reference using the following equation.

E
S q =

S
E q ⊗ Sa ⊗S

E q (6)
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Fig. 3: Total acceleration along with filtered signals and
stance phases (bottom) as well as corrected velocity (top) are
illustrated.

In this notation, ⊗ denotes the quaternion multiplication, E
S q

is the orientation of the sensor frame relative to the earth frame
and q denotes the quaternion conjugate. Temporal detection
of gait cycles was done using absolute value of the total
acceleration of foot to identify stance phase using the sensor
attached on the foot. For each stance phase, foot-flat was
defined as the continuous period where total acceleration norm
was below certain threshold (it is non-zero but it is lower than
an experimentally obtained threshold). Initial conditions were
updated for each cycle at each stance phase, where the foot
was considered motion-less.

It is necessary to filter the signals in order to eliminate
small fluctuations. Butterworth filters are one of the most
commonly used digital filters in motion analysis. We opted
for digital Butterworth filters as they are fast, simple to use
and characterized by a magnitude response that is maximally
flat in the passband and monotonic overall. These are all
required features to ensure a system generates accurate results
in near real-time. We utilized a first order high-pass digital
Butterworth filter (cutoff frequency = 0.001Hz) and then a
first order low-pass digital Butterworth filter (cutoff frequency
= 5Hz) to remove noise and hence to accurately identify
the stance phase throughout the entire gait cycle. The total
acceleration signal along with the filtered signal and stance
phases as well as corrected velocity during stance phase are
depicted in Fig.3.

Once the stance phase is successfully detected, the velocity
can be corrected during that phase (i.e. initial velocity is set to
zero) and subsequently the 3D position of the foot during the
swing phase can be calculated [32]. Calculated 3D position of
the foot sensor with respect to the global frame during walking
and ascending steps are illustrated in Fig. 5.

In addition, Fig. 6 illustrates a similar trend and close
relationship between the foot trajectory obtained from the
sensor attached on the foot with that measured using the
Vicon system (reference) in the sagittal plane (longitudinal
axis) while subject is walking on a straight line and ascending
stairs.

Fig. 4: Overview of the foot position estimation process.

Fig. 5: Calculated 3D position of the foot sensor with respect
to the global frame during walking (top) and ascending steps
(bottom) are illustrated.

D. 3D Reconstruction

We aim to animate a skeletal model only from the
estimation of the ankle position and the changes in local
orientation from each sensor. In order to synthesize a skeletal
model of the subject’s bones, taking into account that we
only estimate the position of an ankle we first need to create
a fixed skeleton of reference. This skeleton is modelled by
a stick figure, see Fig. 8(a). In our current implementation,
we are using both legs and we added another sensor on
the lower-back of the subject, see Fig. 7. This additional

Fig. 6: The calculated and measured foot position in a sagittal
plane (longitudinal axis) traversed by a subject (a) walking on
a straight line and (b) ascending stairs are shown.
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sensor added to our method allows the reconstruction of
another bone, showing it’s flexibility, and it permits to
compute the hips 3D joint angles as a difference of two
3D segment angles. In the following, we will describe the
3D reconstruction of one leg, as the extension to another
limbs follow the same technical scheme and as such is
straightforward. The skeleton of reference assumes a perfect
standing pose at the beginning: the legs are vertical and the
feet are pointing in front of the model. Relative to our specific
sensor placement (see Fig. 2), the front direction is aligned
with the direction X : {1, 0, 0} of our global coordinates
system. This consideration is useful in order to facilitate
the calibration of several coordinate systems, e.g. Vicon or
Kinect motion capture systems. Considering one leg, this
geometrical reference is then animated using only the position
of the foot sensor and the rotational estimations of the three
sensors in a hierarchical manner as depicted in Fig. 8(b-e).
This 3D reconstruction approach uses a very similar method
presented in [25], using here the lower part of the subject’s
body only. In this previous work, we compared the precision
of the joint angle reconstruction against the motion capture
standard Vicon, it achieves a mean RMS accuracy error of 7
degrees and a normalized cross correlation (NCC) of 8.3.

1) Initial Skeleton of Reference: In this section, the
reconstruction of one leg (right leg) is explained. The same
technique can be utilized to reconstruct the other limb. We
consider for one leg the set of joints positions for a sequence
frame t as pt : {ptf , pta, ptk, pth}, respectively the position
of the foot, the ankle, the knee and the hip. The virtual
ankle position can be calculated using the computed 3D foot
position described in section III-C. Let the initial position of
each skeleton joint to be p0 : {p0f , p0a, p0k, p0h}. Also the length
of the foot lf , tibia lk and thigh lt need to be accurately
measured prior to reconstructing the leg in order to be able to
evaluate our system by comparing it to other motion capture
frameworks. In our experiments, we measured the subject’s
segments length. lf = 20cm, lk = 42cm, lt = 35cm and
ls = 20cm where lf , lk, lt and ls are the length of his foot,
the displacements between his ankle and the knee, his knee
and his thigh and his legs spacing, respectively. During the
whole animation process, the length of each bone remains
constant.

Fig. 9: A knee
flexion along the

direction X implies
a rotation along the

Z axis.

2) Calibration of the Orientation:
Prior to animate the reconstructed
skeleton a calibration step is required
to effectively use the estimated
orientations qt : {qft , qat , qkt }, of all
the sensors placed on the subject’s
foot, tibia and thigh. Firstly, the
local coordinate systems of each
sensor has to be mapped to the
global coordinate system {X,Y, Z}.
Secondly, as can be seen in Fig. 9,
a spatial displacement of the foot
along the X axis, implying a knee
flexion, does not indicate a sensor

rotational variation along the same
axis. This calibration step is required to ensure the consistency
of each local coordinate system with respect to the global one.

3) Animation of the Reconstruction over Time: The first
step of the animation algorithm at frame t is to update the
foot joint position by using the previous frame pt−1

f . All the
remaining joint positions are then translated from their initial
positions to the new ones relative to the new ankle joint
position. In the next step, the ankle position is updated utilizing
the estimated 3D orientation of the foot sensor, inducing new
position for all the other joints. Then the tibia segment is
rotated using the estimated orientation of the tibia sensor.
This results in generating new positions for the knee and hip
joints. Finally the thigh segment orientation is updated using
the estimated orientation of the thigh sensor and leads to the
final position of the hip joint, see Fig. 8. The reconstructed
skeleton is evaluated for a frame t using:

pta = ptf + qtf ⊗ ( lfX )⊗ qtf

ptk = pta + qta ⊗ ( lkY )⊗ qta

pth = ptk + qtk ⊗ ( ltY )⊗ qtk

, (7)

In this notation, ⊗ denotes the quaternion multiplication, q
denotes the quaternion conjugate and X : {1, 0, 0} (left)
and Y : {0, 1, 0} (up) are oriented considering the global
coordinate system of our scene. Position and trajectory of both
legs (i.e. left and right feet, tibias and thighs) during multiple
gait cycles are depicted in Fig. 7.

E. Kinematic Model Adjustment

Once the positions and orientations of the lower limb joints
have been estimated by the sensors, it is still necessary to apply
another procedure to ensure that the motion is coherent with
their biomechanical behaviour, which might not occur if the
sensor data is applied directly to the body joints of a kinematic
model that would represent the lower limbs. Furthermore, the
positional uncertainty of the sensors can lead to errors, despite
the initial calibration, especially during motion. This effect
can be diminished by adjusting a kinematic model to the
measured data, taking into account biomechanical constraints
and the level of confidence of the measured data. Thus, the
final motion will be a combination of measured data and
biomechanical constraints that will correct unnatural poses.

Inverse Kinematics (IK) allows to estimate the full con-
figuration, i.e., degrees of freedom (DoF), of multi-body
kinematic structures, such as the lower body limbs, having
only some measured data available (normally, the end-effector
positions). There are different IK strategies that could be
applied. In general, IK approaches can be distinguished as: an-
alytical [33], [34], [35], numerical [36], [37], [38] and hybrid
methods [39], [40], [41]. Analytical methods allow to find all
possible solutions based on the mechanism segment lengths,
its starting posture and the rotation constraints. Compared to
other strategies, lower computational cost can be obtained and
good accuracy. However, they can only be used for simple
mechanisms with few DoF and they are not feasible when
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(a) (b)

Fig. 7: Reconstruction of both legs and the lower back additional bone showing that our method can potentially be extended
to reconstruct upper body as well. (a) The subject is walking and then ascending 2 stairs, (b) the subject is only walking 3
regular steps inside. The blue lines depict the estimated position of the foot (see Fig. 5) while the red lines depict the trajectory
of each joint over time.

(a) (b) (c) (d) (e)

Fig. 8: Diagram of the 3D gait reconstruction method: (a) We start from the first frame of the sequence, the first one being
our fixed reference. (b) All the joints are translated relative to our evaluation of the foot displacement. (c) We then rotate the
foot segment relative to the foot sensor orientation. In a hierarchical manner, we then rotate the tibia (d) inducing a new thigh
position. (e) Lastly we rotate the thigh segment with respect to the orientation of the thigh sensor, inducing the final hip joint
position.

the system is ill-posed. On the contrary, numerical methods
can be applied to complex mechanisms. These methods cover
those that require a set of iterations to achieve a satisfactory
solution. One important advantage of numerical approaches
is that their results can be enhanced by enforcing priorities
to arbitrate the fulfillment of conflicting constraints. Finally,
hybrid methods are those that combine both analytical and
numerical algorithms with the objective of taking advantage of
the pros of each kind of strategy, by adopting local and global
reconstruction procedures in a coherent way. In this work,
we propose a hybrid method that subdivides the lower-limb
kinematic model into three main substructures, i.e., pelvis,
left leg and right leg, enforcing priorities according to the
measured data features that are more trustworthy.

Thus, each leg has 3 DoF for the hip and ankle joints and 1
DoF for the knee, with boundaries such as those shown in
Fig. 10. These complex boundaries can be obtained if the
rotations are modelled using the circumduction-swing-twist
parameterization proposed in [40].

The modeling of these boundaries is based on a spherical

Fig. 10: Biomechanical constraints of the leg joints

parametrization of orientations, ignoring variations in the
radius direction, as the body segment has a constant size.
Only the other two angles are considered; the circumduction
angle θ, and swing amplitude or ψ, are considered. The
range of θ goes from −π to +π, and for each value there
is a corresponding biomechanical limit of ψ. A set of n
biomechanical limits are measured in the subject, such as the
hips flexion, extension, abduction and adduction. Then, the
rest are obtained by applying a cubic spline, with the first
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Fig. 11: A set of iterations of the CCD IK procedure applied
to the leg, in order to make the ankle joint (Pa) match the
measured goal (Pg).

derivative at its starting and ending points (θ = −π and θ = π,
respectively) estimated as shown in Eq. 8, in order to get a
smooth boundary over the entire circumduction movement.

∂ψ

∂θ

∣∣∣∣
1

=
∂ψ

∂θ

∣∣∣∣
n

=
1

2

(
ψ2 − ψ1

θ2 − θ1
+
ψn − ψn−1

θn − θn−1

)
. (8)

The twist rotation needs a reference to which the current
orientation is compared. This is obtained by considering the
orientation of the parent joint as the neutral orientation of
the current joint, and then rotating it with the θ and ψ
values corresponding to the current orientation. This way the
reference orientation differs from the current one only on the
twist rotation.

Thus, in order to apply the IK strategy appropriately, it is
necessary to prioritize some of the measured data that are
more trustworthy. In this case, we give more importance to
the measured positions of the pelvis and the ankles, based
on experimental observations. The positions of the ankles are
closer to the reality, compared to the rest of the leg joints,
as they are the ones that are deduced more directly from
the sensors, and hence, accumulate less error. Regarding the
pelvis position, it can be deduced from the left and right leg
chains and therefore, taking into account the symmetry of
the mechanism, the accumulated errors can be compensated.
These features are enough to adjust the kinematic model, by
assuming that the person is walking in a straight line, as
follows:

1) Initialize the pose, by applying the measured pelvis
position to the pelvis joint.

2) Apply the Cyclic Coordinate Descent (CCD) Inverse
Kinematics (IK) procedure described in [36] to adjust
the hip and knee orientations, so that the ankle joint
matches its measured position.

3) 3. Set the measured ankle orientation to the ankle joint
of each leg.

The CCD IK procedure is fast and allows to check and
correct the biomechanical configuration with respect to the
modeled boundaries at each iteration, if required. Therefore,
this additional procedure allows to satisfactorily infer the non-
prioritized motion of the subject, preserving the biomechanical
constraints. Fig. 11 shows how CCD works in the case of
the leg, applied in the plane perpendicular to the knee joint
rotation axis, with rotation angles and directions calculated at
each iteration as shown in Eq. 8 and 9.
Considering a joint J situated at the position pJ ∈ R3, we

(a) (b) (c)

Fig. 12: 3D reconstructed leg before (left) and after applying
the IK module (right) from (a) back view and (b) and (c) side
views are shown.

apply our segment rotations by defining both the angles θJ
and the axis rJ as following, θJ = pA−pJ

||pA−pJ || .
pG−pJ

||pG−pJ ||

rJ = pA−pJ

||pA−pJ || ×
pG−pJ

||pG−pJ ||

. (9)

An angle and it’s corresponding axis (θJ , rJ) can then define
the quaternion qJ orienting the associated bone segment. The
termination criteria of this process depends on the considered
error between Pg and Pa, and the maximum number of
iterations. As the leg is a simple multi-body mechanism it
normally converges after a few iterations, in less than 1ms.
The obtained accuracy is higher in the hip and ankle joints,
than in the knee, as the measured hip and ankle positions are
explicitly considered in the adjustment. In the general case,
according to the experiments done in [40], in a similar context
but considering the whole body structure, the RMS accuracy
error of CCD, per joint, when partial measurements are used is
approximately of 0.03 for a displacement normalized by the
height of the person. Finally, Fig. 12 shows the differences
between the reconstructed leg with and without this additional
procedure. It can be observed, especially in the knee joint, how
applying this kinematic model adjustment helps to preserve the
biomechanical characteristics of the lower limb joints’ motion.

The RMS error position estimation obtained from our
method for the right ankle, right knee and right hip are
1.15m, 1.26m and 1.46m, respectively. As can be seen, RMS
error associated with the hip and knee joints are higher than
that of the ankle joint. Therefore, if we want to extend this
work and generate the entire body (i.e. both upper body and
lower body) we need to customise the described Kinematic
Model to minimise the error on the upper body joints. In
addition, since the subjects were asked to walk on a straight
line, Pearson’s correlation coefficient (r) and significant dif-
ference test results (P) were used to quantify the relationship
between the calculated and measured (reference) movements
for all joints in the sagittal plane. The correlation between
the calculated and the reference was found to have similar
trends (right ankle (r = 0.9426, p < 0.005), right knee
(r = 0.9612, p < 0.005), right hip (r = 0.9682, p < 0.005),
left ankle (r = 0.9467, p < 0.005), left knee (r = 0.9749, p <
0.005), left hip (r = 0.9683, p < 0.005)).
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IV. CONCLUSION

In this paper we have presented a novel low-cost computa-
tionally efficient method to accurately reconstruct and monitor
the lower limbs. Our system uses body-worn inertial sensors
on both left and right thighs, tibias and feet and by utilising a
gradient descent-based filter together with the local orientation
of each sensor to estimate the associated body segment 3D
orientations and 3D positions. In addition, we distinguish
between stance and swing phases to obtain drift-free linear
velocity from accelerometer signals to calculate accurate 3D
position of each foot during the entire gait cycle. Utilising the
calculated feet positions along with the estimated orientation
of the thighs and tibias, 3D reconstruction of the entire legs
was developed via a series of quaternion based geometrical
transformations. Finally, it was shown that applying the cus-
tomised kinematic model increased the accuracy of the system.
This system can be extended to reconstruct the entire body
and It is envisaged that the proposed method can be used as
a lightweight, low-cost system to monitor gait in real-time in
non-constrained real-world environments.
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