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Abstract. This paper presents a single camera vehicle detection tech-
nique for forward collision warning systems suitable to be integrated in
embedded platforms. It combines the robustness of detectors based on
classification methods with an innovative perspective multi-scale proce-
dure to scan the images that dramatically reduces the computational
cost associated with robust detectors. In our experiments we compare
different implementation classifiers in search for a trade-off between the
real-time constraint of embedded platforms and the high detection rates
required by safety applications.
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1 Introduction

Problems concerning traffic mobility, safety, and energy consumption have be-
come more serious during the past decades as the number of vehicles in the roads
has increased. Particularly, a large emphasis has been given to develop Advanced
Driver Assistance Systems (ADAS) incorporated to vehicles to try to help the
driver reduce his workload while driving, preventing accidents and its associated
societal and economical impact. Services like Lane Departure Warning, Blind
Spot Detection and Forward Collision Warning had grown mature, just to men-
tion a few, mainly due to the research in computer vision and the reduced costs
of cameras and embedded processors.

Considering the challenges of extracting information about the environment
of the vehicle with video processing techniques, vehicle detection is one of the
more complex, mainly because of i) the varying appearance of objects of the
same class, ii) the process of image acquisition (variable illumination, rotations,
translations, scales, distortions, etc.), iii) the moving background induced by the
motion of the vehicle, and iv) the real-time requirement of most applications.

Many approaches in the field of Forward Collision Warning Systems combine
radar and vision (using supervised machine learning) technologies for detecting
vehicles [3]. However, radar-based systems only work relatively well with metal-
lic and reflectant objects and are very expensive. This makes vision-based a very
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Fig. 1. Proposed approach of the system

interesting alternative due to its cost-effectiveness and ability to detect any ob-
ject without relying on the object material’s properties. Nevertheless, an existing
drawback in vision-based approaches is the limited computational capabilities
of embedded processors and the computationally demanding nature of vision
systems.

The trend in vision-based systems applied to object detection is to use detection-
by-classification approaches, combined with an exhaustive scanning of the whole
image at different scales, looking for posible locations of the object. Such multiscale
approaches are not practical for embedded platforms due to the elevated compu-
tational cost and the application real-time requirements. Hypothesis generation
(HG) algorithms [2] are, therefore, normally used as a previous step to the hypothe-
sis verification (HV) which usually involve using statistical classifiers. HG usually
rely on simple techniques such as color segmentation, edge detection, symmetry
and shadows, etc [12]. However, these are likely to be less robust than detection-
by-classification and can throw a large number of undesirable false positives and
false negatives, which within safety systems is not acceptable.

In this paper we propose to combine the use of detection-by-classification
methods with calibration information of the scene to find a trade-off between the
robustness of these detectors with the real-time requirements of vehicle detection
in embedded platforms. We propose to exploit the known perspective of the
scene, which can be computed with a calibration stage, to generate a perspective
multi-scale scan grid of the image. Such perspective-based grid dramatically
enhance the HG stage which is much more efficient focusing on positions in the
image likely containing vehicles and decreasing the computational cost associated
to traditional detection-by-classification.

The detection stage was carried out using a linear Adaboost classifier trained
with Histograms of Oriented Gradient (HOG) [5] of the training images. It
is common to combine HOG descriptors with linear Support Vector Machine
(SVM) classifiers. Nonetheless, in this paper we show that it is possible to get
similar results with Adaboost-HOG classifiers with lower classification time.
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Fig. 2. Posible scanning aproaches: (a) Brute-force and (b) Perspective multi-scale
(please note that we have used a very reduced amount of rectangles in this figure
for a better understanding; the actual configuration of the grid is governed by two
parameters defining the distances between 3D parallelepipeds)

An analysis of the training and testing errors of these statistical classifiers is
shown in order to validate our results.

The detection of vehicles in our system consists in an initial phase of classifi-
cation of perspective-related positions using an Adaboost classifier trained with
HOG features. A posterior grouping of the detection is carried out to reduce
the number of candidates which are finally verified using an SVM classifier, also
trained with HOG features.

The proposed detection strategy in this paper can be easily used in com-
bination with tracking strategies for applications like robust real-time forward
collision avoidance systems. Our experiments hold our decisions and show that
this is actually a good way to proceed, compared to other options or combi-
nation of methods. To understand the framework proposed, the entire system
is depicted in figure 1. Besides, we show detailed performance numbers of our
system in real conditions, using a hand labeled ground truth reference.

2 Perspective Analysis of the Scene

The calibration of the camera and the computation of its relative pose with re-
spect to the ground plane offers valuable information for the detection of vehicles
in images. In this work we propose to formalize the exploitation of the perspec-
tive of the scene by means of computing the projection matrix and defining a
multi-scale detection approach according to it.

Figure 2 illustrates the proposed approach: (a) the simplest way to proceed
once a detector has been trained is to run a multi-scale scanning of the image
evaluating each image patch with the classifier in order to determine the presence
of objects in the image, we have called this method brute-force multiscale; (b)
when the projection matrix is known, we can determine a grid of positions in
the 3D world in front of the camera where vehicles might appear, and project
them into the image. The main difference between these alternatives is that the
perspective analysis of the scene focuses significantly the effort of the classifier
resulting in a much more efficient scan of the image.
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2.1 Ground Plane Calibration

The calibration of the scene required to apply the proposed perspective multi-
scale approach can be obtained in a two-steps process: (i) obtain the intrinsic
parameters K of the camera using well known calibration methods [8]; (ii) de-
termine the relative rotation R and translation t between the camera coordinate
system, and a coordinate system on the ground plane (we assume the ground
plane to be planar since it is a common practice by many authors [9]). For
simplicity in terms of computational cost, the above extrinsic parameters are
computed offline and keep constant.

The second step can be done in a variety of ways, although we propose to
use a homography between the image and the ground plane. The world or road
coordinate system can be selected such that the road plane is defined by Z = 0.
In such situation, the projection of a point X = (X,Y, Z, 1)� into a image point
x yields:

x = K(R|t)X = K(r1 r2 r3 t )
(
X Y 0 1

)� (1)

and therefore x = K(r1 r2 t )
(
X Y 1

)�, which is a 3× 3 homography between
the image and world plane points: H = K(r1 r2 t ).

If we calibrate the homography matrix, we have K−1H = (p1 p2 p3 ).
This way, once we have computed and calibrated the homography we can

extract the rotation and traslation from the columns of the resulting matrix.
Note that since these are homogeneous matrices it is necessary to normalize the
columns of the matrix in order to get the vectors: r1 = p1

‖p1‖ , r3 = p2

‖p2‖ and
r2 = r1 × r3.

The homography H can be computed using a variety of methods, although the
simplest one is to use the Direct Linear Transform (DLT [8]) which computes the
homography from four point correspondences. Figure 3 illustrates the concept
of point correspondences between the image plane, and the world plane (e.g. a
road plane in this example).
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Fig. 4. (a) Grid of 3D vehicle positions: ΔT is the distance between positions in the
transversal axis; and ΔL the distance in the longitudinal axis. These values can be
defined to have overlaping parallelepipeds. (b) Parallepipeds projections in the image
plane (light blue) and bounding boxes (dark blue). For seek of clarity only a few intances
are drawn.

2.2 Vehicle Position Generation

Once knowing the camera calibration matrix K and the extrinsic parameters, the
projection matrix can be constructed as P = K[R|t]. It can be used to project
3D points into the image. Therefore, we can model a vehicle as a parallelepiped
and create a grid of interest positions on the ground plane. The grid can be
defined with two parameters, ΔL and ΔT , as the longitudinal and transversal
distances between positions in the grid respectively in the directions of the plane.
Figure 4 (a) depicts the composition of the grid.

The projection of a parallelepiped in an image is a convex polygon whose
bounding box can be easily computed and used to determine the region of the
image that will be evaluated with the classifier. Figure 4 (b) shows the set of
projections of the grid into an image and the corresponding bounding boxes.

This parameterization makes the system very flexible and adaptable to the
computational resources available. The higher values of ΔL and ΔT the lower
processing cost of the algorithm, although at the cost of having more sparse
detections.

3 Detection Stage

Supervised learning is commonly employed in detection-by-classification tasks
in computer vision. The goal of supervised learning is to learn the function
y = f(x), where x is an unseen input feature vector and y is the output variable.
In classification problems the output variable is the label to which the input
feature vector belongs to (in our case, “vehicle” or “non-vehicle”).

Discriminative learning methods have been used in the majority of works
referred to object and vehicle detection [10]. Within this kind of methods, varia-
tions of SVM and Adaboost algorithms stand out in the literature[2]. The main
idea underlying the training of classifiers is to find a model which could map
the input feature vector to a set of output labels. The training stage involves
the application of supervised training algorithms to a set of feature vectors
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extracted from the image database. This database must have positive images
(e.g. “vehicles”) and negative images (e.g. “non-vehicles”). In this work we have
used a public available database of rear-view vehicle images (GTI-UPM vehi-
cle database [1]), which consists of 3425 positive and 3900 negative images.
The result of the training is a statistical model used in the detection stage.
Both Adaboost and SVM implementations of the training algorithms have been
evaluated.

An important decision in pattern recognition and machine learning is the set
of image features with which the images will be represented. This is, feature ex-
traction process is carried out before classifier training. Different combinations
of classfiers and feature decriptors have been reported in the literature such as
Haar-like features and a cascade of boosted classifiers [13], Gabor Filters and
SVM [11] or HOG and SVM [5]. In this paper we propose a combination of Ad-
aboost and SVM classifiers trained with HOG descriptors due to its outstanding
capabilities to visually describe objects.

3.1 HOG Feature Vector

The HOG method [5] consists on evaluating well-normalized local histograms of
image gradient orientations in a dense grid. The basic idea is that local object
appearance and shape can often be characterized by the distribution of local
intensity gradients or edge directions, even without precise knowledge of the
corresponding gradient or edge position. It captures edge or gradient structure
that is very characteristic of local shape, upholding invariance to geometric and
photometric transformations, except for object orientation. Therefore, it makes
this method an interesting alternative to use in our task of vehicle detection.

In our system, four configurations of HOG decriptors were tested in combina-
tion with the learning algorithms. These configurations result in different feature
decriptors which vary in length depending on the parameters chosen to compute
the HOG. The proposed configurations are presented in table 1.

Table 1. HOG descriptor configurations used for training vehicle classifiers

HOG-1 HOG-2 HOG-3 HOG-4
Image size (pixels) 64× 64 64× 64 32× 32 32× 32

Cell size (pixels) 8 8 4 4
Block size (pixels) 16 16 8 8
Num. of bins, β 9 18 9 18
Block stride (pixels) 8 8 4 4
Descriptor length 1764 3528 1764 3528

Note that the image size used for computing the descriptors restricts the
minimum size of an object to be detectable. Therefore, this restriction could
determine the HOG configuration to use in a practical problem.
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3.2 Adaboost Classifiers

Binary classifiers are obtained using the Dicrete Adaboost algorithm described
in [7]. Adaboost, which stands for Adaptive Boosting produces an additive clas-
sifier which is a linear combination of several weighted weak classifiers. We de-
note the set of N training points as (x1, y1) , . . . , (xN , yN), where each xi is an
n−dimensional input vector such that xi ∈ Rn, i = 1, . . . , N and yi ∈ {−1,+1},
indicates the class to which the point xi belongs.

The goal of Adaboost learning algorithm is to estimate a function:

f : xi ∈ R
n �→ yi ∈ {−1,+1} (2)

Moreover, it can be interpreted as a procedure for iteratively fitting an additive
model using a set of basic functions or weak learners, ht, repeatedly over a series
of rounds t = 1, . . . , T , [6]. The final model is a linear combination of the weak
learners weighted by a set of values, αt, t = 1, . . . , T . The final strong model,
thus, has the form:

f(x) =

T∑
t=1

αtht(x), (3)

Hence, the decision function is given by equation (4):

f(x) = sign

(
T∑

t=1

αtht(x)

)
(4)

For our application, decision trees were selected as weak learners since they
are the most popular weak classifiers used in boosting schemes. Additionally,
their simplicity makes the training of Adaboost classifiers an easy and quick
task.

3.3 SVM Classifiers

The SVM algorithm [4] finds the hyperplane defined in (5) which best separates
the training examples by maximizing the distance between the closest elements
of the two classes and the hyperplane. This distance is called margin.

(w · x) + b = 0, w ∈ R
N , b ∈ R (5)

where · is the dot product and w is a normal vector to the hyperplane and b is
the classification threshold of the model. Thus, the decision function yields:

f(x) = sign (w · x+ b) (6)

To simplify the training, linear SVM were used in conjuction with the four
configurations of HOG decriptors of table 1. SVM parameters where chosen
taking the recommendation of Dalal and Triggs [5]; where a soft linear SVM was
used for training their classifiers. However, a trial and error study was done to
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Fig. 5. Training and testing errors: (a) Adaboost-HOG, (b) SVM-HOG classifiers

tune the parameters so that a better performance is obtained for our application.
As stated in the decription of our system, SVM classifiers are used to verify the
hypothesis generated by the Adaboost classifier. In this way, computation time
will be reduced.

3.4 Classifiers Training and Testing

The vehicle detection strategy proposed in this paper establishes the use of
Adaboost as a first stage and a SVM classification as a verification stage. Both
classifiers were trained using HOG features. The GTI-UPM vehicle database was
used for training, although we have tested our classifiers with two additional
testing databases, denoted as “Vicomtech-IK4 (T1)” and “Caltech (T2)”. The
former contains 155 positive and 115 negative images, which were obtained from
video sequences in roads in San Sebastian. The latter is a public available image
database of vehicles [14] and consists of 126 positive and 115 negative high-
resolution images.

Results of the training and testing errors for Adaboost and SVM are shown in
figure 5. For our study, these errors were defined as the proportion of missclas-
sified images over the total number of images in the database. To calculate the
errors, the image sets undergo a classification process. The results of the clas-
sification are then compared with the labeled data, resulting in an error rate.
The final error comprises the resultant misclassification rate. For training error
the image database was the one used for training while for testing error the
databases used where completely unkown by the classsifier.

The global training error gives some notions of how well the learning algo-
rithm could separate the feature space used for training. Regarding the global
testing error, the process is analogous but using a totally unseen set of images. In
this matter, the global testing error comprises the generalization capacity of the
statistical classifier. Notice that, in most of the cases, SVM classifiers achieved
lower testing errors than Adaboost. However, SVM requiere much more time
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Fig. 6. Execution times between Adaboost and SVM classifiers for: (a) Vicomtech-T1
and (b) Caltech-T2 databases

for training the classifiers, namely, an average of 62% more time is needed for
training an SVM. The difference in training time is likely to be due to the in-
trinsic properties of each of the learning algorithms used for learning. Adaboosts
splits the data to generate the best decision trees while SVM solves a quadratic
programming optimization problem [4].

The difference in behaviour was also evidenced in execution time. Time for
processing each image in the database was also computed and compared. The
improvement in time using Adaboost classification ranges between 30% to 70%
when comparing the time for classifying an image with SVM (times per image
are depicted in figure 6).

Thus, our detection strategy uses an Adaboost classifier to classify the candi-
date position retrieved by the perspective multiscale calibration. Then, a group-
ing process is carried out in order to reduce the number of hypothesis to be
verified in the next stage. The latter will group in one candidate hypothesis all
those bounding boxes which overlap each other. Finally, these candidates are
verified using a SVM classifier.

4 System Test and Discussion

The proposed algorithm has been tested using image sequences of highways
captured under different ilumination and weather conditions so that robustness
could be verified. Additionally, a sample two minutes ground truth video contain-
ing several challenging situations (entering and exiting a tunnel, heterogeneous
pavement color, casted shadows, overtaking maneouvres, etc) was annotated and
has been used to extract values of true positives (TP) and false positives (FP)
by applying a bounding box overlapping criterion.

For the sake of completeness we have applied a simple tracking algorithm which
joins detections in time attending to their coherency in position and appearance,



654 J.D. Ortega et al.

and uses a Kalman Filter to predict the position of given tracks in the absence of
detections (which tends to happen using detection-by-classification).

The objective of this section is to compare our system with the default brute-
force multiscale detection strategy normally used with classifiers. This method
consists on scanning the entire image at different positions and scales. In each
position an SVM classifier is executed, which imply the extraction of the HOG
features. Three parameters define the total number of evaluating windows in the
brute-force multiscale method: the scale at which the searching window changes
in size, s, the number of levels each window is resized, nLevels, and the stride at
which the window moves across the image frame. For this comparison, we fixed
the scale and window stride to 1.05 for the former and the cell size for the latter.
In this way, only the nLevels is involved.

On the other hand, our method is dependant of the number of longitudinal and
transversal level used for creating the perspective grid. Different configurations
of perspective multiscale and brute-force multiscale were tested for comparison
and compared in terms of execution time and values of TP and FP.

The feature descriptor vector used for testing was the HOG-3. This is, the
minimum window size is 32×32 pixels and hence, the minimimum vehicle size de-
tectable. We have chosen this feature descriptor because our video size, 320×240
pixels, has vehicle instances which are very small. Depending on the frame reso-
lution it is possible to use a different configuration of HOG descriptor, achieving
similar results.

In table 2 are presented the results from applying perspective multiscale
and brute-force multiscale to our ground truth video. Tests were done in an
IntelÂő CoreâĎć i5-3330 CPU 3.00 GHz, 8.00 GB RAM.

Table 2. Results of Perspective Multiscale and Brute-force multiscale

Perspective Multiscale Brute-force Multiscale
# Hypotheses ΔL ΔT T(ms) TP FP # Hypotheses nLevels T(ms) TP FP

10 3000 1000 2.3 153 155 3869 1 11.2 95 263
18 3000 600 3.8 214 204 7613 2 11.4 114 492
20 1500 1000 4.5 236 189 11357 3 11.7 137 661
29 1000 1000 4.4 207 201 35746 10 30.6 264 844
34 3000 333 4.9 308 391 51156 15 32.7 332 878
37 1500 600 5.2 300 318 64287 20 33.9 320 1275
54 1000 600 6.3 279 329 74941 25 34.6 288 1513
70 1500 333 8.2 368 455 82787 30 36.8 283 1262
104 1000 333 10.4 352 512 87630 35 40.7 284 1238

As expected, the execution time of the brute-force multiscale increases con-
siderably as the number of levels increase. The raise in the number of evaluation
windows produce an increase in the value of TP; however more FP are also
encountered. Moreover, tests had proven that brute-force multiscale could not
process the video at real-time when the number of scales is greater than 10.
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Fig. 7. Examples of detections in real videos

On the other hand, our method is able to process the image in much less pro-
cessing time without reduction in detection performance. Brute-force multiscale
generates more false positives as the number of levels increases. The advantange
of using the knowledge of the perspective scene allows our classifiers to focus in
regions where vehicles are more likely to appear. Then, no time is wasted scan-
ning absurd hypothesis (very large and very small vehicles) or out the relevant
regions of the image.

The use of Adaboost as a first classification stage provides the best perfor-
mance. Adaboost was trained using decision threes as weak learners, which are
very fast structures to be accesed. Hence, the classification time is very low
comparing to SVM. The combination of Adaboost and SVM makes the algo-
rithm robust and fast. SVM reduces the ammount of false positives that were
generated by Adaboost classification without increasing significantly the com-
putational cost of the algorithm.

Some results of the detection system are illustrated in figure 7. As can be
observed, very different vehicles, in terms of size, colour or aspect-ratio are suc-
cessfully detected, highly accurately delimiting their contour.

As a reference, we have shown the feasibility of our approach for embedded
platforms implementing an instance of the algorithm in an ARM processor. The
computing limitation of an ARM device are well-known, hence a fast and reliable
system is required. Tests were carried out using the perspective multiscale in an
ARM� dual-core CortexTM-A9 MPCoreTM / 800 MHz, 512 MB DDR3 using 10
longitudinal positions and 3 transverse positions (i.e. 20 hypothesis positions).
An approximate procesing time of 40ms (25fps) was obtained.

5 Conclusions

We have presented an efficient way of detecting vehicles in videos using the
knowledge of the perspective of the scene in combination with machine learning
classifiers. This approach has reduced processing times by detecting vehicles
in two stages. First, a fast yet robust Adaboost-HOG classifier is applied on
regions of the image defined by a perspective-based scan process, which allows
to focus the attention in the regions where vehicle appearance is most likely
neglecting uninteresting or absurd hypotheses. Then, an intermediate grouping
phase is done to reduce the number of detections. Finally, an SVM classifier
validates the hypotheses. The proposed detector can be combined with any kind
of tracking system. In this work, a simple tracking system is proposed which will
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be extended in future publications. Our perspective multiscale system has proved
to achieve better execution times than using a regular brute-force multiscale,
getting reductions in time of more than 50%. The results show that our approach
is suitable to be integrated in embedded platforms achieved a trafe-off between
robustness and accuracy, while keeping real-time operation.
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