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Abstract. Online learning of dialogue managers is a desirable but
often costly property to obtain. Probabilistic Finite State Bi-Automata
(PFSBA) have shown to provide a flexible and adaptive framework to
achieve this goal. In this paper, an Attributed PFSBA (A-PSFBA) is
implemented and experimentally compared with previous non-attributed
PFSBA proposals. Then, a simple yet effective online learning algorithm
that adapts the probabilistic structure of the Bi-Automata on the run is
presented and evaluated. To this end, the User Model is also represented
by an A-PFSBA and the impact of different user behaviors is tested. The
proposed approaches are evaluated on the Let’s Go corpus, showing sig-
nificant improvements on the dialogue success rates reported in previous
works.

Keywords: Spoken Dialogue Systems · Online learning · Attributed
Bi-Automata · Dialogue management

1 Introduction

Spoken Dialogue Systems (SDS) enable people to interact with computers, using
spoken language in a natural way [1]. A key task that every SDS has to carry out
is controlling the logic structure of the interaction, usually done by the Dialogue
Manager (DM). Several approaches have been proposed to model the DM sta-
tistically: Bayesian networks [3], Stochastic Finite-State models [4,10], Partially
Observable Markov Decision Processes [8] and Deep Learning approaches which
are capable of building end-to-end dialogue systems [5,18,19].

In this work, we deal with the Interactive Pattern Recognition (IPR) frame-
work [13] that has also been proposed to represent SDS [11]; this formulation
needs to estimate the joint probability distribution over the set of semantic
units provided by the SU and the set of actions to be provided by the DM.
In [10], such joint probability distribution was modeled by stochastic regular
bi-languages. These languages had also been successfully proposed to deal with
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Machine Translation [12]. To this end, a Probabilistic Finite State Bi-Automata
(PFSBA) was defined in [10]. Because dialog management also requires keep-
ing the values of all relevant internal variables that can be updated after each
user turn, an attributed model that allows dealing with task attribute values was
also proposed. So far, only the PFSBA has been experimentally validated in [11],
thus, the potential of the A-PFSBA remains unexplored. On the other hand, a
turn-by-turn online learning procedure was proposed in [6] aimed at adapting
the PFSBA’s structure and parameters at each new interaction with an user.
Although the capability and flexibility of the PFSBA to learn new edges and
nodes was demonstrated, there was no dialogue success rate improvement.

The first goal of this paper is to validate the A-PFSBA framework showing
that attributes can contribute to a significant increase of the dialogue success
rate. The second goal is to propose a novel online learning algorithm capable
of improving the dialogue success rate by learning on a dialogue basis, exploit-
ing a criterion similar to the reward functions used in reinforcement learning
[15]. Because the learning procedure requires a user model to interact with the
DM, an additional contribution is the proposal of a User Model that exploits
the prior probabilities modeled under the A-PFSBA framework. The proposed
approaches have been evaluated through various dialog generation tasks over
the Let’s Go corpus [7], allowing direct comparison with previous works and
resulting in significant dialogue task success rate improvements.

The paper is structured as follows: Sect. 2 explains spoken dialogue interac-
tion as an IPR framework and describes the PFSBA and A-PFSBA formulations,
detailing how the Dialogue Manager and the User can be modeled. The proposed
online dialogue learning procedure is then described in Sect. 3. Section 4 presents
the evaluation experiments carried out and their results. Finally, the main con-
clusions are summarized in Sect. 5, where future guidelines are set.

2 Attributed Probabilistic Finite State Bi-Automata as
Dialogue Manager

This section describes spoken dialogue interaction in terms of the Interactive
Pattern Recognition (IPR) framework and how Probabilistic Finite State Bi-
Automata can be used to model these interactions. At the end, the definition of
a Dialog Manager and a User Model over the structure of the Attributed PFSBA
is presented.

2.1 Interactive Pattern Recognition Framework

Human-machine interaction can be seen as a pattern recognition process, where
both interact under an unknown distribution of states in order to complete
some objectives. Within the IPR framework, the user provides feedback signals
f . As a response, the system will provide an hypothesis or system action a to
disambiguate the user’s intention through the dialogue.
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Ignoring the user feedback except for the last interaction and assuming a clas-
sical minimum-error criterion, the Bayes decision rule is simplified to maximize
the posterior P (at | qt−1, ft−1) where at is the system action at current turn,
ft−1 is the last user feedback and qt−1 the previous state. The interpretation of
the decoding d of the user feedback f ∈ F cannot be considered a deterministic
process due to Automatic Speech Recognition (ASR) errors. Thus, the space of
decoded feedback is the input to the SDS from the user, usually achieved by fil-
tering the ASR output through some Spoken Language Understanding module.
Then, the best hypothesis or system action â can be obtained as follows [11]:

ât = arg maxa P (a | qt−1, ft−1) = arg maxa

∑

d

P (a, d | qt−1, ft−1 )

As considering every possibility for the joint probability of the action and the
decoding is computationally expensive, a sub-optimal approach can be per-
formed:

d̂t−1 = arg maxdP (ft−1 | d)P (d | qt−1 )

ât ≈ arg maxaP ( a | d̂t−1, qt−1 )

Similarly, the user feedback ft depends on the previous state qt−1 and sys-
tem action, through an unknown distribution P (ft|qt−1, at−1). In this case, as
the feedback produced by the system is known, there is no noisy channel that
corrupts the signal ft and no decoding procedure is needed.

2.2 Probabilistic Finite State Bi-Automata

Probabilistic Finite State Bi-Automata are suitable to model both probabilities:
P (at| qt−1, ft−1) and P (ft| qt−1, at−1). Their goal is to maximize the probability
of model M to generate a given sample of dialogues Z, being z the dialogues
that compose sample Z.

M̂ = arg maxM PM (Z) = arg maxM

∏

z∈Z

PM (z)

As the model learns its structure by maximizing the likelihood to fit the samples,
it can also generate dialogue samples, as done by end-to-end neural networks [20].

The PSFBA model can then be defined as M̂ = (Σ,Δ, Γ, δq0, Pf , P ) where

– Σ is the alphabet of user’s decoded feedbacks, d ∈ Σ.
– Δ is the alphabet of system actions, a ∈ Δ.
– Γ is an extended alphabet Γ ⊆ (Σ≥m ×Δ≥n) that contains the combinations

of user’s decoded feedbacks and system actions.
– Q = QS ∪ QU is the set of states labeled by bi-strings: (d̃i : ãi) ∈ Γ .
– δ ⊆ Q × Γ × Q is the union of two sets of transitions δ = δS ∪ δU as follows:

• δS ⊆ QS ×Γ ×QU is a set of system transitions of the form (q, (ε : ãi), q′)
where q ∈ QS , q′ ∈ QU and (ε : ãi) ∈ Γ .
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• δU ⊆ QU × Γ × QS is a set of user transitions of the form (q, (d̃i : ε), q′)
where q ∈ QU , q′ ∈ QS and (d̃i : ε) ∈ Γ .

– q0 ∈ QS is the unique initial state: (ε : ε) where ε is the empty symbol.
– Pf : Q → [0, 1] is the final-state probability distribution.
– P : δ → [0, 1] defines the transition probability distributions P (q, b, q′) ≡

P (q′, b | q) ∀b ∈ Γ and q, q′ ∈ Q such that:

Pf (q) +
∑

b∈Γ,q′∈Q

P (q, b, q′) = 1 ∀q ∈ Q

where transition (q, b, q′) is completely defined by the initial state q and the
transition state b. Thus, ∀q ∈ Q, ∀b ∈ Γ, |{q′ : {(q, b, q′)}| ≤ 1.

Taking advantage of the structural flexibility provided by the PFSBA formula-
tion presented above, dialogue attributes can be easily incorporated to repre-
sent the transcendent variables of the dialogue as discrete values that are kept
from one dialogue turn to another (e.g. specified bus number, current departure
place etc.) through the inclusion of an additional alphabet Ω, which includes
the discrete valued dialogue attributes seen in the sample set Z. As a result, the
elements of the state alphabet Q are enhanced to [(d̃i : ãi), ω̃i] ∈ Γ × Ω.

2.3 Dealing with Unseen Situations

Field-deployed SDS have to deal with unseen situations, so each time the user
gives feedback that leads to a state q′ 
∈ Q the system state q has to be approx-
imated using a smoothing strategy [11] as shown in Fig. 1:

q =
{

q′, if q′ ∈ Q
minq∈Q G(q′, q), otherwise (1)

where G is some function that defines the distance between the nodes. This
smoothing procedure ensures that the DM can estimate unseen states. The Dis-
tance Function (G) used in the paper is defined as follows:

G(q, q′) = dist((d̃q : ãq), (d̃q′ : ãq′)) + λ(|ω̃q ∩ ω̃q′ | − |ω̃q ∪ ω̃q′ |)

Fig. 1. Creation of candidate states and transitions through smoothing
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where dist corresponds to the Levenshtein distance and λ is a parameter which
penalizes the distance by the amount of attributes that both states differ.

Figure 1 shows how candidate states and transitions are created through the
smoothing procedure. Unknown nodes such as qx 
∈ Q are generated through the
user decoded feedback dx and the most similar node q′ is used to determine the
system action a1 ∈ Δ. In this process, two new states qx and qx+1 are estimated.

2.4 Modeling the Dialogue Manager

Given the A-PFSBA model M̂ , a DM can be defined as a function whose goal
is to return the best system action given an user feedback decoding and the
state at the current turn under a policy ΠDM and a smoothing strategy with a
distance function G:

DMΠ : Q × Σ → Δ × Q

ΠDM (qt, dt, M̂ ,G) → at+1, qt+1

where the policy ΠDM can be any function that decides which action to perform.
The policy used for the DM in the experimental section of the paper is the
Maximum Probability (MP); in which the system action to be done is the one
that maximizes P (at | ft−1, qt−1). This is equivalent to choosing the edge of the
current state with the highest transition probability at each system turn:

ãt = arg maxat−1,j∈Δ(qt−1) P (qt−1, ( ε : at−1, j), q′
j)

2.5 Modeling the User

As data gathering and evaluation is very expensive, the most common approach
to train and evaluate stochastic dialogue managers is to model a simulated user
from the available data. These User Models UM interact with the DM generating
synthetic dialogues, for evaluation purposes [16,17].

Since the A-PFSBA paradigm is a generative model, it captures user behavior
over the intercourse of the dialogue. Thus, an structure similar to that of the
Dialog Manager can be used to design an User Model, whose goal is to return
some user feedback given a system hypothesis and the current state under a
certain policy ΠUM :

UMΠ : Q × Δ → F × Q

ΠUM (qt, at, Û , G) → ft+1, qt+1

where Û is the A-PFSBA used to model the user dialogue samples and G is
the distance function used in the smoothing procedure for the UM . The main
advantage is that its implementation is straightforward, as the same methodology
can be applied both for the DM and the UM. It is important to note that the
UM’s policy ΠUM has to be non-deterministic, in order to achieve the highest
possible variance while keeping the sensibility induced to the UM using the
priors defined by the bi-automaton. In order to do so, the policy employed in
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the current implementation is an α-weighted Random Sampling (RS), in which
the action to perform is sampled from the distribution of the hypotheses seen
in the current state. These priors are modified using an α ∈ [0, 1] structural
constraint parameter. Being δi,j the transition probability from the state qi to
qj it can be re-scored by α as follows:

α(δi,j) =
δα
i,j∑

k δα
i,k

So, the higher α, the more constrained the user variability under the priors
modeled by Û . Note that using α = 0 is the same as randomly picking a possible
user feedback available from the current state qt.

3 Online Learning

The ability to adapt and learn from unseen situations on the run is a powerful
property of the PFSBA formulation. [6] showed that it is flexible enough to
adapt to unseen situations using smoothing techniques and controlled structural
learning. The learning process was done turn-by-turn and so, there was no quality
check of the learned content and every new state and transition, both good and
bad, were learned. The online learning algorithm presented in this section fixes
this problem, learning only useful dialogues when they are finished through the
exploitation of a quality metric QM that discriminates whether a dialogue is
valid or not, in a way similar to the reward function used in reinforcement
learning.

Being z′ the A-PFSBA structure that models an unseen dialogue sam-
ple generated by some user and the DM with dialogue model M̂ =
(Σ,Δ, Γ,Ω, δ, q0, Pf , P ), the online learning method consists on merging the new
states and transitions estimated during the smoothing procedure employed to
deal with unseen situations by the A-PFSBA framework in z′, as described in
Sect. 2.3, with the dialogue model M̂ only if the quality metric QM decides that
z′ is a valid dialogue. Thus, for generated unseen dialogues rendered valid by
QM , the new states qx 
∈ Q and the corresponding set of new transitions δ[qx]
shown in Fig. 1 are learned by the DM dialogue model M̂ , so they no longer need
to be estimated by the smoothing procedure. The update pseudo-algorithm is
defined as follows:

4 Setup and Experiments

This section describes the experiments made on the Let’s Go Corpus [7] to test
the presented approaches. The main goal is to show the improvements obtained
by the inclusion of attributes in the PFSBA implementation, the proposed online
learning procedure and to evaluate the impact of the User Model in the learning
process.



28 M. Serras et al.

Algorithm 1. Online Learning
1: procedure A-PFSBAUpdate
2: M̂ ← DM’s A-PFSBA model
3: z′ ← Unseen Dialogue’s A-PFSBA model
4: if QM(z′) is True then
5: for qz ∈ Qz′ do:
6: M̂ ← merge(M̂, qz, δ[qz])
7: M̂ ← update edge count(M̂)
8: return M̂

4.1 Corpus Description

The Let’s Go SDS developed by Carnegie Mellon University (CMU) exploits the
Olympus architecture using RavenClaw [2] as DM to provide schedule and route
information about the city of Pittsburgh bus service to the general public. The
corpus linked to such SDS was collected from real user interactions during 2005,
so events like unexpected dialogue closing, spontaneous talking, sudden noise etc.
are observed. Some of the corpus statistics are shown in Table 1. In the corpus,
every feedback decoding is done with the CMU Phoenix Parser [14], so each
user state QU and system state QS is represented by a string. The attributes are
discrete values related to bus schedule information. Table 2 shows some dialogue
formatting examples. The corpus was split in half to model two A-PFSBA, M̂
to be used as the DM and Û as the UM.

Table 1. Main features of the Let’s Go Corpus

Let’s Go Corpus statistics

Dialogues 1840 System turns 28141 System dialogue acts 49

Attributes 14 User turns 28071 User dialogue acts 138

4.2 Impact of the Attributes and the User Model

The inclusion of attributes changes the structural behavior of the PFSBA. To
evaluate this change, a total of 25 000 dialogues have been generated between the
DM and the UM, using both the PFSBA and A-PFSBA formulations under the
same DM/UM policy and dialogue partitions as in [6]. The employed evaluation
metrics are the Task Completion (TC) rate and the Average Dialogue Length
(ADL). The task is rendered complete when the DM does a coherent query to
the database and retrieves the information asked by the user. Note that this
metric is more constrained than the one used in previous works [6] due to the
inclusion of attributes. These metrics have also been calculated for the Let’s Go
SDS, that uses an agenda based DM.

Table 3 shows that the inclusion of attributes increases the number of unique
nodes and edges in the graph. Also, it is clear that this structural complexity is
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Table 2. Let’s Go dialogue formatting example

q = [(d̃i : ãi), ω̃i] System actions and user Feedbacks

q0 = [(ε : ε), ε] ∈ QS S: Welcome to the CMU Let’s Go bus information system. To get help...

ã1 = inform welcome,inform get help,request query departure place

q1 = [(ã1 : ε), ε] ∈ QU U: I’m leaving from CMU.

d̃1 = inform departure place, PlaceInformation registered stop

ω̃0 = {}
q2 = [(ã1 : d̃1), ω̃0] ∈ QS S: Departing from <query.departureplace CMU>. Did I get that right?

ã2 = Explicit confirm, request query departure place

ω̃0 = {}
q3 = [(ã2 : d̃1), ω̃0] ∈ QU U: Yes.

d̃2 = Generic yes

ω̃1 = {< query.departure.place >}

needed to create a more sensible representation of the dialogues, as the TC rate
increases from 20% to 31, 5%.

Results also show the impact of the UM, as better performance is achieved
when the UM behavior is constrained with the priors seen in the data. A rough
31% is achieved when the α parameter is set to 0 and the UM chooses its
actions from the action set at random. However, when α = 1 the TC metric
goes up to 60, 02%. Because the frequent actions seen in the data are more likely
to appear, this constraint results in a more sensible UM and manages to improve
the RavenClaw baseline.

4.3 Online Learning Procedure

As described before, the online learning procedure is done in a dialogue basis,
merging those unseen dialogues that are rendered valid by a quality metric QM
in the DM model M̂ . In order to test the performance of the algorithm, 400000
dialogues were generated using the RS α = 1 policy for both UM and DM
and using the TC metric as QM . Note that the UM’s Bi-Automata Û never
learns during this process. Results in Table 3 show that the proposed algorithm
is capable of changing the shape and structure of the A-PFSBA model on the
run, adapting its internal parameters to increase the dialogue task completion
rate from 60, 02% to 69, 39%.

In addition, the evolution of the TC mean over the amount of generated
dialogues and the impact of the α constraint of the UM have also been analysed.
For such purpose, the TC mean was evaluated after each run of 100 generated

Table 3. Attribute and Online Learning (OL) impact on PFSBA.

Nodes-DM Edges-DM Nodes-UM Edges-UM TC (%) ADL (%)

CMU RavenClaw — — — — 54.0 32.33± 1.2

PFSBA α = 0 4030 7781 4044 7652 20.08± 0.51 29.23± 0.28

A-PFSBA α = 0 11005 14737 11058 14988 31.58± 1.54 31.39± 0.722

A-PFSBA α = 1 11005 14737 11058 14988 60.02±1.36 30.98± 0.94

A-PFSBA OL α = 1 14700 21952 11058 14988 69.39±1.34 31.46± 0.69
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Fig. 2. Online learning impact on task completion

dialogues. The left graph of Fig. 2 depicts the TC smoothed mean over the 4000
runs. The right graph shows the mean TC score for differently constrained UM
(α ∈ [0, 1]) before and after the online learning process. Results demonstrate how
the learning strategy converges quite rapidly after around 40 000 dialogues and
that the procedure is valid for User Models with different structural constraints,
where a 8–10% TC rate improvement is achieved in average.

5 Conclusions and Future Work

Throughout this paper various improvements have been proposed to previous
implementations of the PFSBA. First of all, the inclusion of discrete dialogue
attributes has been tested. As a consequence, the Task Completion rate has
significantly increased making the generated dialogues more coherent. In addi-
tion, the inclusion of a quality metric to discriminate between successful and
failed dialogues for online learning purposes has demonstrated to be a cheap-
yet-effective way of controlling the learning process, as the overall improvement
on the dialogue strategy is also significant. Finally, the inclusion of prior prob-
ability distributions in the User Model has shown to very significantly improve
it’s sensibility, demonstrating its capability to capture the user’s behavior and
creating a simple model to test Dialogue Managers.

Despite the promising results, the A-PFSBA is a recently proposed frame-
work that still requires thorough experimentation and testing. As future work,
we plan to explore more complex policies for the Dialog Manager, additional
online learning procedures and other User Modeling techniques. The implemen-
tation of the A-PFSBA in other dialogue databases is also intended, as it is the
development of an end-to-end Spoken Dialogue System.
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