IET Intelligent Transport Systems '
The Institution of

Research Article Engineering and Technology

ISSN 1751-956X

Received on 16th December 2014
Revised on 20th August 2015
Accepted on 23rd September 2015
doi: 10.1049/iet-its.2014.0303
www.ietdl.org

Optimising computer vision based ADAS:
vehicle detection case study

Marcos Nieto'! =, Gorka Vélez', Oihana Otaegui’, Sean Gaines', Geoffroy Van Cutsem?
"Vicomtech-IK4, Paseo Mikeletegi 57, San Sebastian, Spain

ZIntel Corporation SA, Veldkant, 31, 2550 Kontich, Belgium
= E-mail: mnieto @vicomtech.org

Abstract: Computer vision methods for advanced driver assistance systems (ADAS) must be developed considering the
strong requirements imposed by the industry, including real-time performance in low cost and low consumption hardware
(HW), and rapid time to market. These two apparently contradictory requirements create the necessity of adopting careful
development methodologies. In this study the authors review existing approaches and describe the methodology to
optimise computer vision applications without incurring in costly code optimisation or migration into special HW.
This approach is exemplified on the improvements achieved on the successive re-designs of vehicle detection
algorithms for monocular systems. In the experiments the authors observed a x15 speed up between the first and
fourth prototypes, progressively optimised using the proposed methodology from the very first naive approach to a

fine-tuned algorithm.

1 Introduction

Computer vision is a reality for the advanced driver assistance
systems (ADAS) industry. Its continuous growth in the last decade
is due to factors such as the reduction of hardware (HW) costs,
improved performance of applications and algorithms, and the
increased market opportunities of car makers [1].

This industry, however, imposes some strong requirements that
must be satisfied to reach the mass market. Namely, the legal
aspects, user acceptance, low power consumption, size and weight
of the devices, integration with onboard computers, and very
reduced time to market (TTM) development.

Although existing prototype ADAS and automated vehicles have
been successfully demonstrated (DARPA Grand and Urban
Challenge, Google driverless car, EUREKA Prometheus, to name
a few), they usually do not meet those criteria, particularly
because of the large volume and cost of the sensors used.

Therefore, there are two main challenges for the developers of
ADAS, which both relate to optimisation steps needed to move
from research to market: (i) algorithm performance optimisation;
and (ii) development cycle optimisation for low TTM.

The first relates to the need to migrate laboratory algorithms to
work within an embedded platform, real-time being the main goal
to achieve. The solution to this problem may be achievable with
long, expensive, re-programming tasks, where the code is analysed
and migrated to VHDL for field-programmable gate arrays
(FPGA), or parallelised with general-purpose computing on
graphics processing units (GPGPU) or digital signal processors
(DSP) primitives. The required development cost goes against the
low TTM premise: this type of migration and redeployment
involve high financial costs and time for development teams. In
general it also involves enormous efforts of coordination between
the multidisciplinary teams, time extensions, etc.

Several work methodologies have emerged to find an appropriate
trade-off. One is the so-called co-design methodology [2], which
basically consists in a coordinated work plan for HW and software
(SW) teams around the flexibility of reconfigurable HW platforms,
where the FPGA logic can be reprogrammed and adapted to
changes in the SW design. However, this option still requires the
presence of multidisciplinary teams and coordination effort.
Another option is the adoption of open standards platforms and

IET Intell. Transp. Syst., pp. 1-8
© The Institution of Engineering and Technology 2015

systems, providing integration interfaces, already validated by the
industry itself, which allow the development team to concentrate
on the optimisation of the algorithm [3]. Here we consider the
latter option as the best to obtain an adequate trade-oft.

This paper contributes presenting a design and development
methodology that addresses the two main challenges for ADAS
developers: algorithm performance optimisation and development
cycle optimisation. Following this proposed methodology, computer
vision algorithms can be optimised without the need to recode or
include code optimisation procedures. The result are incrementally
optimised prototypes implemented in an open source platform that
ensures rapid development cycles. To illustrate this, we also present a
case study where the proposed design and development methodology
is applied for a vehicle detection algorithm.

The rest of the paper is organised as follows. Section 2 provides an
overview of related work about implementation platforms, design
and development methodologies and vehicle detection algorithms.
Section 3 describes the proposed design and development
methodology and Section 4 presents a case study to show how the
proposed methodology is suitable for an ADAS vision application.
Section 5 presents a discussion, and finally, Section 6 concludes
the paper.

2 Related work
2.1 Implementation platforms

Different implementation platforms have been proposed to meet the
requirements of computer vision based embedded systems: high
computational performance and reliability, and low cost, size,
power consumption, and TTM. Traditionally, DSPs have been
used for image signal processing. DSPs offer single-cycle
multiplication and accumulation operations, in addition to parallel
processing capabilities and integrated memory blocks. There are
many examples in the related literature that use DSPs [4-6].
However, DSPs imply a much higher cost compared with other
options such as FPGAs [7]. An FPGA is an integrated circuit
designed to be configured by a customer or a designer after
manufacture. FPGAs take advantage of high speed operation,
especially for parallelisable operations. A similar approach is the

use of application-specific integrated circuits (ASIC). In contrast to
FPGAs, which are also used for rapid-prototyping, ASICs are used
only for high volume manufacturing and long series due to higher
initial engineering cost. In addition, they have another major
drawback: they are not reconfigurable. During the last decade, a
large number of implementations have appeared both ASIC [8, 9]
and FPGA [10-14].

Due to the difficulty of implementing an entire ADAS application
in HW, hybrid solutions emerged which combined SW and HW
implementations [15-18]. These system on a chip (SoC) devices
are usually built by implementing the architecture of a
microprocessor in an FPGA or ASIC. One of the most competitive
options is the Xilinx Zyng-7000 family, which is able to boot
independently of the FPGA. This feature has a number of benefits
being the most remarkable that from a SW engineer’s point of
view, the Zyng-7000 device looks, feels and behaves just such as
a general purpose multicore processor. However, it is only worthy
if the programmable logic part is utterly required. Otherwise it is
much cheaper to use a regular microprocessor.

The use of microprocessors in embedded computer vision-based
systems has experienced a significant growth in recent years.
Computer vision applications are implemented in a microprocessor
in two main ways: as standalone SW, or as a process running on
top of an operating system (OS). The first approach obtains better
computational results, since it does not have the burden of an OS
running on background. However, although the performance
decreases when using an application that runs on an OS, there
are great savings in development time and in the maintenance of
the system.

In the context of SW designed for automotive applications, in the
past, rigid custom built proprietary solutions dominated the market.
However, these solutions were unable to keep up with the pace of
innovation of information and communications technologies.
Today, the main suppliers are starting to develop initial Linux
based systems [19]. Although QNX and Microsoft continue to
lead the market with their own OS, Linux-based OS presence is
expected to grow significantly in the coming years. Following this
trend, Tizen in-vehicle infotainment (IVI) [20] and Android Auto
[21] appeared as new candidates for next generation IVI systems
built on Linux. Tizen IVI is not only designed with ITVI in mind
but can also integrate a wide range of automotive applications and
services, such as ADAS, traffic management, remote diagnosis or
remote vehicle monitoring and control.

2.2 Design and development methodologies

Depending on the chosen implementation platform, the appropriate
design methodology changes. Although there are some general
approaches in the field of engineering design and creative design
[22, 23], the applied design methodology must be adapted to fit
perfectly with the characteristics of the implementation platform.

In the case of using a DSP, a microcontroller or microprocessor, the
obtained solution is a SW application. Professional SW development
models are normally based on an engineering perspective and they
have traditionally emphasised the following [24]:

o The separation of analysis and design.
e Design as a way to comply with the requirements specification.
e Hierarchical decomposition of the design work.

A classical approach is the waterfall design that was first defined in
[25]. In a waterfall design the implementation steps to develop a
computer program start with gathering system requirements and
finish with the testing and operation stages. All the steps are
sequentially followed without iterations. This basic waterfall
design has been highly criticised because of the assumption that
the use situations and needs can be known and specified before
any prototype is built.

More modern approaches have emerged in the field of SW
engineering, such as agile development [26], but the focus is still
in the coordination of general purpose SW development teams

rather than addressing the specific problems of developing
computer vision based embedded systems.

In the case of SoC design methodologies, HW decisions are
traditionally taken first. After an initial specification, HW
architecture is designed based mainly on the experience of the HW
design team and the desired device cost. This methodology has
some major drawbacks. First, it can delay SW teams, since in
some cases the SW development and testing cannot start until the
HW design is available. Furthermore, it can also delay the whole
product design chain if a critical HW design error is detected late.
Finally, there is a risk for overdesigning or underdesigning the
system due to the lack of an initial evaluation of SW’s
computational requirements, which often depend reciprocally on
the HW specifications.

To improve the design chain modern HW/SW codesign
methodologies emerged [2, 27]. HW/SW codesign can be defined
as the concurrent design of HW and SW to implement a desired
function. Using codesign methodologies, before designing the final
platform, a preliminary functional SW prototype is developed
using a more flexible platform: a standard PC. After analysing and
evaluating this SW prototype, the final platform’s architecture is
designed.

2.3 Vehicle detection

Vehicle detection is critical for in-vehicle systems as it is the basis of
pre-crash sensing, collision avoidance and, eventually, autonomous
driving. Approaches using active sensors such as laser or radar
have provided valid solutions, although with a number of
drawbacks, including low spatial resolution, high cost, slow scans,
and more importantly, limited flexibility. In contrast, cameras can
provide a richer description of the scene, which can be extracted
and interpreted by increasingly complex algorithms that combine
traffic sign recognition, pedestrian detection, lane tracking, etc.

In a very general way, all techniques for detection and tracking of
vehicles consist of two stages: hypotheses generation and hypotheses
verification. The former usually implies a quick search, that broadly
identifies the image regions likely containing vehicles (this stage can
also be accomplished by range sensors); the latter uses more
complex algorithms that verify that the selected candidates are
vehicles or not [28] based on the visual information contained in
the selected image region.

The trend in vision-based systems is to use detection-by-
classification methods [29]. These detectors use mathematical
models to classify a given image patch as belonging to a class or not
(e.g. ‘car’, ‘no-car’), using the available data sources (e.g. greyscale
image intensities, motion patterns, and even depth for stereoscopic
setups) to extract discriminant features [30]. The models are obtained
by training a classifier with a sufficiently large database with positive
and negatives examples of the class. The detections can then be fed
into tracking mechanisms, which track the vehicles across frames, or
start online learning threads that update the models to enhance the
detections of the observed vehicles [31].

For a more comprehensive review of the recent advances and
trends in video-based on-road vehicle detection and tracking the
reader can refer to existing surveys [32].

3 Design and development methodology

The proposed design and development methodology for computer
vision based ADAS is based on two main pillars:

(1) Development cycle optimisation for low TTM.
(i1) Algorithm performance optimisation.

The first point deals with design decisions that are taken during the
whole design cycle that can lead to a reduction in TTM without
compromising the requirements imposed by the automotive
industry. The second point deals with the internal design, that is,
the construction of the SW. In that sense a list of general good

IET Intell. Transp. Syst., pp. 1-8
© The Institution of Engineering and Technology 2015

practices for computer vision algorithm development is presented
that leads to enhanced algorithm performances.

3.1 Development cycle optimisation

In this paper we propose the use of a SW solution running on top of an
open source OS as the best option to obtain a short development cycle.
There are a large number of drivers for Linux based OS, which make
the development of ADAS applications much easier. It is worth losing
some computational performance to shorten substantially the
development time and to gain flexibility. Eventually, real-time OS
(e.g. Buildroot) can be used to remove the overhead. Furthermore,
when using an OS the programmers can focus on the specific image
processing algorithms without having to care about other low level
details. A higher abstraction level reduces programming errors and
makes the source code more portable.

First, the code is written and tested in C++ pursuing cross-
platform capabilities and using a branching model as distributed
version control SW (e.g. git). It is therefore tested in a variety of
different OS (at least Windows and Linux) and once all the
detected errors are corrected, it is ported to the final OS. For this
purpose, all the code is recompiled for the target platform. This
process can be straightforward if only standard C++ code is used
and there is not any dependency that cannot be installed in the
target OS. It is also highly recommended to use a compiler-
independent method to manage the build process of SW. For this
purpose, CMake [33] or any other similar application can be used.

As a key feature of our methodology, instead of devoting effort to
the reimplementation of the same algorithm to create new prototypes
that better exploit HW parallelisation capabilities or more efficient
coding, we consider that it is better to return to the design of the
algorithm itself. Previously unnoted bottlenecks in the algorithm
might have been discovered after profiling in the target platform.

This procedure reduces dramatically the time and costs of creating
new prototypes, since it is typically much harder to increase the
performance of a given algorithm rather than finding a better
algorithm. Fig. 1 illustrates this cyclic development methodology.

As shown in the figure, each algorithm design step is preceded by
the previous performance report with identified bottlenecks, and the
definition of HW requirements (which may have been revised after
the last profiling analysis). An initial implementation might be
necessary in the first iterations only to verify that the algorithm is
functional (i.e. it does what it is supposed to do), and then jump to
the optimisation task which aims to accelerate the execution time
of the algorithm without changing its functionality. The
optimisation step can be accomplished using a number of possible
strategies. Next section presents these ideas, with an assessment of
the expected impact on performance improvement and deployment
difficulty.

Moreover, in this methodology, additional training and testing
mechanisms can be added to provide additional information to the
performance report, which, therefore, not only refers to processing
times, but also to the quality of the results (please see Section 4
for a detailed description).

In summary, successive optimised and tested prototypes can be
generated in an agile form using this methodology.

3.2 Algorithm performance optimisation

The following table illustrates a number of options for optimising
computer vision algorithms in the general context of ADAS
applications. They have been ordered top to bottom from highly
recommended to last chance to get something working (including
the worst-case migration to HW-specific languages).

Normally, a good start consists in applying item #1, that is, open
source libraries containing parts of already deployed, tested
algorithms, and that set the basis for rapid prototyping. After
completing the first cycle, obvious improvements typically are
given by the application of items #2 and #3, that is, simplify the
problem by using contextual information or multiple simpler
algorithms to improve the performance. Further improvements are
more related to fine-tune the algorithm deepening and discovering
redundant operations (item #4), or to the application of code
optimisation and programming skills, such defined in items #5 and
#6. The remaining elements are probably useless taking into
account both the expected improvements and deployment times,
hence they should be avoided unless market-ready, mature
prototypes have been completed and fast time to market is no
longer a requirement.

4 Case study: vehicle detection

This case study shows how the methodology defined in Section 3 can
be applied in a real case: a vehicle detection algorithm. First, the
need for optimisation is explained. Then, the specific tasks carried
out to optimise the development time and performance of the
algorithm are described. Finally, the obtained results are presented.

4.1 Problem statement

Vehicle detection is typically achieved intensely scanning the
images, covering the entire image with a sliding window
technique, and applying the classifier to each candidate window.
These schemes can be applied in image pyramids without
changing the window to detect objects of variable size without the
need to know their size in advance. This multiscale approach is
computationally very expensive, although successful in finding all
instances of the class (car) in the image, regardless their position
or size.

4.2 Methods

4.2.1 Prototype #1 ‘Multiscale’: This type of approach is the
basic approach we chose at first glance, including the usage of a
detector-by-classification with a trained model of images of cars in
forward looking cameras. We used the combination of HOG
features and a support vector machine (SVM) classifier from
OpenCV and additional simpler features such a shadows, edges
and symmetry, and used them to train an Adaboost model, which
works as a low false negative classifier. The more reliable and
computationally expensive SVM classifier is then used to verify
Adaboost detections (the block diagram of the approach is

‘ Mo
Algorithm Initial C++ o s Build/Train
A Optimisation =+ 9 —
(re-)design impl. [Migrate
Yes
HW req. Train dataset Protolypei-th

[l
I | Performance report
| HWspecs. | Profile
| &context | analysis
e |

Fig. 1 Work cycle for optimising computer vision-based ADAS SW modules

IET Intell. Transp. Syst., pp. 1-8
© The Institution of Engineering and Technology 2015

Test dataset

Training |

Clustering = SVM 1.0 % Tracking

Training |
u —> Multiscale Adaboost

Images)
B

HOG

Shadows,
udiges,
symmetry

Fig. 2 Block diagram of Prototype #1: vehicle detection ‘multiscale’

illustrated in Fig. 2). This algorithm gives good results in terms of
detection rates, but at the cost of excessive processing time.

In particular, the sliding window works starting from the smallest
window, that is, the smallest size of object to be detected in the
image, and creating L resized copies of the image, downscaled by
a factor f which is typically set from 1.05 to 1.1. This procedure
generates an enormous amount of candidate regions for analysis,
variable according to the values of £, L and the size of the image
(see Fig. 3a).

In our experiments we had to use at least 20 levels involving about
60,000 classifier evaluations with a total processing time above 300
ms in the selected platform to be able to detect close and far distance
vehicles (see Fig. 4 for an example illustration of the number of
candidates thrown by a multiscale approach).

4.2.2 Prototype #2 ‘Perspective multiscale’: Although it may
seem simple to try to re-implement the multiscale approach for
massive parallelisation HW (item #9 of Table 1), it is much
convenient to re-design this brute-force algorithm to focus the
processing effort (CPU or GPU/FPGA) and to exploit existing prior
information that is at hand (item #2 of Table 1). In this sense we
created a second prototype which exploited the existence of the
perspective information. When known, it is possible to pre-compute
realistic candidate locations where vehicles can appear in the images
and their approximate sizes. Therefore, we can replace the
multiscale approach and create a custom grid of locations to search
vehicles (see Fig. 3b). This procedure dramatically reduces the
number of executions of the classifier, and keeps similar detection
rates [34, 35]. Moreover, in this prototype we used an improved
implementation of the SVM algorithm, consisting in the utilisation
of the comparison between the descriptor vector with the
hyperplane instead of the computation of the sum of the distances
over all the support vectors of the model (update from OpenCV
2.4.6 to OpenCV 2.4.9; following item #1 of Table 1) (Fig. 5).

4.2.3 Prototype #3 ‘Two-stages perspective multiscale’: In
the third iteration we found that the joint use of HOG and additional
features (such as shadows, edges and symmetry) can be decoupled
and used at different stages. These additional features are
computed faster and work well as a first filter, while the HOG

100000
80000
80000
70000
60000

50000

Num, Evaluations

40000
30000

20000

10000 ol

0
135 7 9111315171921232527293133353739414345474951535557596163
Levels(L)

Fig. 4 Number of candidates proposed by the sliding window approach

for different values of f, and L for an image of 600 x 400 pixels. The

model size is 48 X 48, the stride is 8§ X 8§

features are applied only to the strongest candidates (items #4 and
#6 of Table 1). It is then possible to reduce the complexity of the
hypothesis generation stage by replacing the application of
classification procedures for all candidates of the grid by a
pre-detection algorithm. Thus most negatives of the grid are
discarded, and the effort of the classifier is exploited efficiently.
For additional speed up we also used integral images to achieve
fast detection rates [36].

We also replaced the clustering submodule which grouped
overlapping detections by a perspective-based clustering approach
that takes into account possible occlusions that may arise due to
the effect of perspective (item #2 in Table 1) (Fig. 6).

4.2.4 Prototype #4'Day/night switch’: The latest addition to
our prototype is an image brightness analysis that can switch
between day and night detection modes (item #3 of Table 1). The
appearance of vehicles at night is much different than during the
day and so are the required detection models. In particular, the
detection is roughly based on the presence of bright spots,
coherent with the shape and position of vehicle tail lights [37].
Such a detector is lighter than SVM-based detectors and therefore
the identification of night-time images (also in tunnels) can lead to
less processing time and better detection performance (Fig. 7).

4.3 Results

Tables 2 and 3 show the average values of processing time for each
sub-module of the different prototypes described above (using a
sample test sequence of 2500 frames). The implementation takes
into account only the use of CPU, so that neither code
optimisation nor utilisation of GPU/FPGA are reported in this
figure, which aims to show the speed-up factor that can be
achieved with a better organisation of the data process flow. The

Scan moving the model window according to stride [8x8)

Eeeceees

1 model s
e.g. SVM-HOG features ,/’
Fixed size 48 x 48 Pddl

L image scales, using scale factor f

a

Fig. 3 Multiscale detection based on sliding window and perspective contextual information

a Multiscale detection
b Grid of candidate regions according to the perspective

IET Intell. Transp. Syst., pp. 1-8
© The Institution of Engineering and Technology 2015

Table 1

List of optimisation-related good practices applicable in the context of computer vision applications for ADAS

Expected impact

Deployment difficulty/cost

Description

very high

very high (can focus analysis to
pre-defined or dynamically designated
pieces of information)

high (higher for finer identification of
situations)

mid

mid (depends on HW capabilities)

mid (depends on HW capabilities)

low (not solvable with SW)

low (depends on programmers ability)

very high

very low

mid (algorithms need to be reshaped
to interpret contextual information)

mid (several algorithms need to be
designed, and an additional selection
algorithm)

mid (requires profiling and full
understanding of algorithm)

high (the entire code need revision)

mid (might imply reshaping parts of
the code, such as loops and callbacks)

low (profile analysis required)

low (requires profiling)

very high

(#1) Effective exploitation of multiplatform libraries: the design
cycle for electronics are rapidly decreasing [1], partly due to the
existence of libraries that prevent reprogramming everything. In the
field of computer vision, libraries such as OpenCV, OpenCL,
OpenGL, or ROS provide a great help for rapid prototyping. The
use of such libraries involves finding a the right balance: on the
one hand, they help to speed development times in a way that an
experienced designer can create new prototypes in short time and
without the need to hire skilled programmers. On the other hand,
they provide atomic modules that can tempt the designer to use
them without clear knowledge of their behaviour or even when
they do not correspond with the best-theoretical solution. Adopting
existing libraries help bringing proven, functional modules to the
system, such as robust visual features such as histograms of
oriented gradients (HOG) or SVM classifiers, which have been
shown to give excellent results to visually describe objects with
recognisable shapes such as persons or cars [34, 35] and has since
its publication become a de-facto standard for robust
non-deformable object detection in images.

(#2) Use contextual information as much as possible: it is common
to have some information related to the scene, the kind of images,
etc. that can be used as prior or contextual information by the
analytics algorithm. Typically, such use may result in a large
reduction in computational complexity, because fewer number of
detectors or sub-processes need to be applied, or the range of
parameters can be narrowed (e.g. using perspective information, as
we show in the case study in Section 4, helps reduce the number
of candidate windows to evaluate to detect vehicles in images).
(#3) Find operating modes and create multiple simpler algorithms:
it is difficult to design an algorithm that works well for all situations
the application may need (e.g. day/night function, as explained in
the use case of Section 4). The inertia of the designer is to increase
the complexity of the algorithms so that they can handle a greater
variety of conditions. However, it is sometimes more effective to
have simpler algorithms that work well for specific conditions and
a switch function that determines the operation mode.

(#4) Avoid redundant operations: some algorithms internally use
basic information such as gradient, colours, etc. Using several of
such high-level algorithms could involve that several identical
image filters are applied (e.g. HOG feature extractor internally uses
the Sobel detector for gradient approximation). This knowledge
may be overlooked by inexperienced developers without the
supervision of a design engineer.

(#5) Balance between operations and memory: some operations
are slow, especially those related to trigonometric or probability
functions. Quantised arrays can be pre-computed and stored in
memory so that arithmetic operations are substituted by memory
accesses (each HW platform has its own specifications of time
consumption comparing memory access and CPU operations).

(#6) Pre-compute repetitive computations: some operations must
be done in execution time and cannot be pre-computed. However,
they can be computed once and kept in memory for the rest of the
process. Therefore, an analysis of memory resources must be done
to consider fixed memory used by the program (in C++, the
memory allocated for the creation of objects), dynamic memory
(the memory temporarily allocated and deallocated, such as when
running specific functions that require copies of the images to be
done and deallocate the memory when leaving the scope), and the
run-time fixed memory, which is the memory allocated at some
point of the process and kept in memory until the end.

(#7) Analyse memory transfer times: the use of various CPU or
auxiliary GPU, DSP or FPGA can dramatically speed up operations
through parallelisation. However, HW imposes its physical
restrictions, and such use involves moving large blocks of memory
from one processors to another, which might result itself in large
transfer times which make the whole migration useless.

(#8) Avoid unnecessary operations: Avoid operations that produce
useless results: for example, filtering an entire image with a
gradient filter mask when only bright pixels are interesting. Instead,
it is better to identify such pixels in advance and filter only them
(note that this knowledge might arrive later on the design process
and thus it is impossible to correct unless a flexible approach is
adopted). In general, careful design should not propagate, or at
least minimise, the computation of intermediate information, and
focus the computational resources effectively.

(#9) Multicore processing capabilities to distribute asynchronous
tasks: the central processing unit (CPU), (e.g. an ARM processor)
will lead the creation and coordination of threads communicating
with other devices such as GPU and FPGA, which might be
operating on asynchronous information (e.g. 3D reconstruction at
key frames, recognition of traffic signs when detected, etc.)

IET Intell. Transp. Syst., pp. 1-8

© The Institution of Engineering and Technology 2015

Training ! Training
-| Adaboost Clustering Tracking

Images

HOG

Shadows,
edges,

symmetry

Fig. 5 Block diagram of Prototype #2, vehicle detection ‘perspective
multiscale’: in black, the blocks modified, reimplemented or added

Perspective Training

1
Perspective

4 SVM 2.0 P Tracking
- f 2 clustering

Images

Shadows,

edges HOG
symmetry

Fig. 6 Block diagram of Prototype #3, vehicle detection ‘pre-detection

perspective multiscale’
Training |
:
/Night Pre-analysis Perspective]
H g Tintegeat [?] Clustering [7] SYM20 [*| Tracking

Shadows,
edges, HOG
symmetry

Perspective

Images

Fig. 7 Block diagram of Prototype #4, vehicle detection ‘day/night switch’

gain introduced by the reimplementation of each submodule in GPU/
FPGA falls outside the scope of this paper.

The tests were carried out in two different phases. During the first
one we compared the first three prototypes implemented in an
embedded platform (Xilinx’s Zynq 7000), to find an approach that
provides real-time performance in a platform suitable for use in
real applications (results are reported in Table 2).

The second round of tests compared the third and fourth prototype
in two different platforms: a general purpose PC and a fanless
in-vehicle PC equipped with Tizen IVI OS (results reported in
Table 3), in an attempt to verify the feasibility of our final
approach in a standard in-vehicle platform.

In Table 2 we can see that the extraction of features and the
computation of the HOG descriptors is the most time consuming
part of Prototype #1. The introduction of the perspective-based
processing in Prototype #2 reduced the number of levels and then
the HOG time is reduced to half. In Prototype #3, the pre-analysis
and use of integral images boosted the speed of the computation
of features, and most importantly, the computation of HOG
features is moved to the verification stage, and therefore executed
only for very strong candidates. The average HOG time is then
approximately 1 ms. For the SVM algorithm, we found a better
implementation for Prototype #2, in which each descriptor vector
was compared by scalar product with the hyperplane of the SVM
model rather than the sum of the distances of the support vectors
as it was done by the SVM implementation we used in Prototype #1.

In all three cases the detection results are similar, while the speed
up achieved by Prototype #3 is about x15 compared with Prototype
#1 and x6 with respect to Prototype #2. As a result, Prototype #3 is
ready to be functional in real scenarios, and further implementation
improvements (such as migration of submodules to GPU/FPGA,
utilisation of SIMD/MIMD architectures, or reprogramming more
efficiently algorithms) would only increase the performance and
give room for more applications to be launched in the same
processor, such as pedestrian detection, traffic sign recognition,
lane departure warning, etc.

Once this goal was achieved, we included a small change that
allowed the system to switch between day and night modes, giving
Prototype #4 as a result. This minor change allows the selection of
features to be applied to the images at the cost of having an initial
day-night detection module.

The performance of this latest Prototype #4 was tested against
ground truth sequences, to evaluate how accurately vehicles can be
detected. We collected a set of 59 videos with a total approximate
duration of 363 min, in a variety of settings, including varying
weather conditions (e.g. rain), day and night sequences and
different types of vehicles (i.e. cars and buses, basically). For
practical reasons, we only manually annotated a subset of
representative videos, grouped into three categories: day, rainy and
night. The total number of annotated frames is 15,450, and the
number of vehicles in the images is 44, 105 being the average
number of frames in which each vehicle can be seen in the
images. The annotations were stored in a frame-wise and
object-wise manner. For each frame, all vehicles in the region of
interest were given a bounding box representing its position, and a
number representing its identity.

Therefore, the evaluation can be done on two levels. At object
level, where we get true positives (TP), false positive (FP) and
false negatives (FN) at vehicle level, that is, a single vehicle
appearing in a sequence of 1000 frames will result in 1 TP if
correctly detected, or 1 FN if not, and as many FP as unmatched
detections. The association between ground truth and detections is
done in a spatiotemporal manner, in a way that a ground truth
object is associated (i.e. TP) with a detection if there is sufficient
temporal and spatial similarity. For this type of analysis we adopt

Table 2 Comparison of the performance (in ms per frame) of the first three prototypes on the embedded platform

Features Adaboost Perspective clustering HOG SVM Tracking Total (average)
prototype #1 135.88 18.45 - 252.23 13.67 0.29 420.52
prototype #2 56.43 5.88 - 112.56 4.12 0.24 179.23
prototype #3 11.23 - 10.22 1.19 4.25 0.27 27.16
Table 3 Performance of Prototype #4 for PC (Ubuntu 12.04) and Nexcomm (Tizen IVI), measured in ms per frame
Platform Sequence Day/night switch Features Perspective clustering SVM-HOG Tracking Total (average)
PC day 0.12 2.96 0.25 0.47 0.37 4.40
in-vehicle day 0.16 9.88 0.92 0.57 0.21 11.85
PC night 0.12 0.43 0.11 - 0.05 0.77
in-vehicle night 0.16 0.71 0.51 - 0.14 1.62

IET Intell. Transp. Syst., pp. 1-8

6 © The Institution of Engineering and Technology 2015

B Ground truth Overlap threshold= 50%

B Detections at = 10 frames Time
T T >
Case A -} |
1TP OFP OFN Overlap =81%> 50%
CaseB S —
1TP OFP OFN Overlap =63% > 50%
CaseC c— e
OTP 2FP 1FN Overlap = 39% < 50%
CaseD [)
P |1 OTP 2FP 1EN Overlap=13%<50% |
— —

At at

Fig. 8 Sparse one-to-many temporal data association between ground truth
and detections. Case A represents a typical situation in which a vehicle is
detected sparsely as different tracks, with short miss-detection periods. The
overlap threshold is set up to define how permissive is the evaluation with
these holes. An extreme but still acceptable case of correct detection is
Case B, where the overlap is above the set threshold. Finally, not valid
detections are exemplified in cases C and D, where lower event overlap
has been detected. In case D, in addition, the first detected event has been
considered as unmatched, due to its extension beyond the time margin

Table 4 Object-level (i.e. spatio-temporal similarity) results

R P F #TP #FP #FN
day 0.667 0.286 0.400 6 15 3
rainy 0.857 0.343 0.490 12 23 2
night 0.765 0.464 0.578 13 15 4

Table 5 Level (i.e. spatial similarity) results

R P F #TP #FP #FN
day 0.717 0.740 0728 2013 707 795
rainy 0.556 0.690 0.615 1006 453 804
night 0.269 0.302 0.284 159 368 433

a one-to-many data association procedure (illustrated in Fig. 8)
which allow associating a single, for example, long-term, ground
truth object with a number of sparse, brief, detected objects.

We also provide traditional frame-level analysis, where the time
information is ignored and only the spatial correlation (i.e.
overlapping) between ground truth and detections are taken into
account. As in the previous example, a vehicle appearing in 1000
frames can generate 1000 TP if correctly detected, and 1000 FN if
not, and as many FP as unmatched detections. The obtained
results are shown in Tables 4 and 5, in the form of recall (R=TP/
(TP+FN)), precision (P=TP/(TP+FN)) and f-measure (F'=2(PR/
(P+R)), ranging from 0 to 1:

The object-level analysis reveals a significant number of FPs,
which relates mainly to short detections occurring during a few
frames and then disappear. Actually, most FPs correspond to
extreme lateral positions where curbs and guardrails may appear
and tend to generate confusing visual patterns for the classifiers.
That said, we trained our vehicle detection model with a
limited-size dataset (available at the UPM website: http:/www.gti.
ssr.upm.es/~jal/) and better performance shall be obtained when
training the models with larger datasets. In any case, such
detections can be easily removed with additional restrictions
applied to the detections, if desired (such as time consistency,
perspective, etc.). The frame-level analysis shows a better overall
performance because the temporal correlation between objects is
not taken into consideration. As we can see, the best performance
is achieved at day time, where the system reaches recalls of about
71% (Fig. 9 shows some example images of the detected
vehicles). For the two other types of sequences the performance is
worst mainly due to the presence of wipers, reflections on the wet
pavement, or bright spots in the night sequences.

5 Discussion

This paper proposes a design and development methodology in the
form of an iterative cycle that creates optimised prototypes in short
time improving certain aspects of the algorithms attending to a set
of identified best practices. This methodology is adequate to
address the two main challenges of ADAS development: (i)
algorithm performance optimisation, and (ii) development cycle
optimisation. There are many works in the literature that present
vision-based ADAS algorithms. However, they focus mainly on
analysing the effectiveness of their algorithms, and they do not
pay special attention to how these algorithms can reach market. To
the best of our knowledge, our work is the first in the literature
that presents an effective and practical methodology designed for
the general case of developing vision-based ADAS targeting both
short TTM and algorithm performance optimisation.

The paper has also demonstrated the applicability of the proposed
methodology in a case study centred on vehicle detection. The case
study has shown how a vehicle detection algorithm can be optimised
iteratively without the need to migrate code parts to special-purpose
HW. Instead of devoting effort to trying to exploit parallelisation
capabilities or complex code optimisation techniques, we consider
it better to go back to the design of the algorithm itself to address
bottlenecks that have been discovered after profiling in the target
platform. Once the algorithm has been iteratively optimised
following this method, other optimisation options, such as porting
code to GPU, can be considered.

The proposed ADAS application has been successfully
implemented in a standard automotive platform formed by an
in-vehicle computer with Tizen IVI OS. The finally implemented
algorithm was able to achieve real-time performance. In our
implementation methodology, we first developed and tested the
applications on a desktop PC. Then, we recompiled all the code in
the target platform. This process can be straightforward if some
considerations are followed such as using only standard C++ or
not using any dependency that cannot be installed in the target
platform. In our case, we have used some cross-platform libraries

Fig. 9 Example output images of detected and tracked vehicles in different situations

IET Intell. Transp. Syst., pp. 1-8
© The Institution of Engineering and Technology 2015

that can be downloaded directly from Tizen IVI repository. This
repository is publicly available and contains all the essential
packages for developing ADAS applications.

The use of an open source OS has important advantages compared
with proprietary solutions. First, the development cost is lower, as
there is no need to pay licensing fees. Furthermore, the platform is
publicly assessed and rated by different partners and potentially
also by academic institutions. Consequently, there is greater
confidence in the product because more people can inspect the
source code to find and fix possible vulnerabilities. Finally,
automotive suppliers can reach market faster, due to the
time-saving advantage of reusable open source code.

6 Conclusions and future work

The introduction of computer vision into the ADAS market is subject
to a number of challenges, associated to the adaptation of this
powerful technology to the restrictive conditions imposed by the
industry. Optimisation becomes a necessity, and takes two main
forms: algorithm optimisation to achieve real-time performance,
and development cycle optimisation to allow rapid TTM.

In this paper we have exemplified our methodology to achieve
these objectives in a use case centred in the well-known vehicle
detection problem in monocular systems. We have shown that very
rapid development can be achieved using open standards platforms
and OS such as Tizen IVI. In addition, we focus on improving the
algorithm rather than applying code optimisation, achieving speed
up factors of up to x15 with four subsequent prototypes where the
algorithm itself was redesigned without any costly code
optimisation or migration to parallelisation languages. Eventually,
that migration can be carried out for a further performance
improvement using open initiatives such as OpenCL that ensure
interoperability in the medium and long-term.

7 Acknowledgments

The works described in this paper have been partially supported by
the program ETORGAI 2013-2015 of the Basque Government
under project IAB13. This work has been possible thanks to the
cooperation with Datik — Irizar Group for their support in the
installation, integration and testing stages of the project.

8 References

1 Schneiderman, R.: ‘Car makers see opportunities in infotainment, driver-assistance
systems’, JEEE Signal Process. Mag., 2013, 30, (1), pp. 11-15

2 Nieto, M., Ortega, J.D., Otacgui, O., ef al.: ‘Optimization of computer vision
algorithms in codesign methodologies’. ITS World Congress 2014, Detroit, US,
7-11 September 2014

3 Velez, G., Nieto, M., Otaegui, O., ef al.: ‘Implementation of a computer vision
based Advanced Driver Assistance System in Tizen IVI’. ITS World Congress
2014, Detroit, US, 7-11 September 2014

4 Lin, H.-Y., Chen, L.-Q., Lin, Y.-H., ef al.: ‘Lane departure and front collision
warning using a single camera’. Int. Symp. on Intelligent Signal Processing and
Communications Systems 2012 (ISPACS), pp. 64-69

5 Wu, B.-F.,, Huang, H.-Y., Chen, C.-J., ef al.: ‘A vision-based blind spot warning
system for daytime and nighttime driver assistance’, Comput. Electr. Eng., 2013,
39, (3), pp. 846-862

6 Turturici, M., Saponara, S., Fanucci, L., et al.: ‘Low-power DSP system for
real-time correction of fish-eye cameras in automotive driver assistance
applications’, J. Real-Time Image Process., 2013, 9, pp. 463-478

14

15

19

20
21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Malinowski, A., Yu, H.: ‘Comparison of embedded system design for industrial
applications’, IEEE Trans. Ind. Inf., 2011, 7, (2), pp. 244-254

Darouich, M., Guyetant, S., Lavenier, D.: ‘A reconfigurable disparity engine for
stereovision in advanced driver assistance systems’, Lect. Notes Comput. Sci.,
2010, 5992, pp. 306-317

Miclke, M., Schafer, A., Bruck, R.: ‘ASIC implementation of a gaussian pyramid
for use in autonomous mobile robotics’. 2011 IEEE 54th Int. Midwest Symp. on
Circuits and Systems (MWSCAS), 2011, pp. 14

Samarawickrama, M., Pasqual, A., Rodrigo, R.: ‘FPGA-based compact and flexible
architecture for real-time embedded vision systems’. Int. Conf. on Industrial and
Information Systems (ICIIS), 2009, pp. 337-342

Wojcikowski, M., Zaglewski, R., Pankiewicz, B.: ‘FPGA-based real-time
implementation of detection algorithm for automatic traffic surveillance sensor
network’, J. Signal Process. Syst., 2012, 68, (1), pp. 1-18

Hiraiwa, J., Amano, H.: ‘An FPGA implementation of reconfigurable real-time
vision architecture’. 27th Int. Conf. on Advanced Information Networking and
Applications Workshops (WAINA), 2013, pp. 150-155

Lee, S., Son, H., Choi, J.-C., et al.: ‘High-performance hog feature extractor circuit
for driver assistance system’. IEEE Int. Conf. on Consumer Electronics (ICCE),
2013, pp. 338-339

Souani, C., Faiedh, H., Besbes, K.: ‘Efficient algorithm for automatic road sign
recognition and its hardware implementation’, J. Real-Time Image Process.,
2013, 9, pp. 79-93

Stein, G., Rushinek, E., Hayun, G., et al.: ‘A computer vision system on a chip: a
case study from the automotive domain’. IEEE Computer Society Conf. on
Computer Vision and Pattern Recognition — Workshops, 2005, pp. 130-130
Hsiao, P.-Y., Yeh, C.-W.: ‘A portable real-time lane departure warning system
based on embedded calculating technique’. IEEE 63rd Vehicular Technology
Conf., 2006, vol. 6, pp. 2982-2986

Jeng, M.-J., Guo, C.-Y., Shiau, B.-C., et al.: ‘Lane detection system based on
software and hardware codesign’. 4th Int. Conf. on Autonomous Robots and
Agents, 2009, pp. 319-323

Velez, G., Cortés, A., Nieto, M., et al.: ‘A reconfigurable embedded vision system
for advanced driver assistance’, J. Real-Time Image Process., 2014, doi: 10.1007/
s11554-014-0412-3

‘Automotive Grade Linux’, available at http:/automotive.linuxfoundation.org/,
accessed December 2014

“Tizen IVD’, available at https:/wiki.tizen.org/wiki/IVI, accessed December 2014
‘Android Auto’, available at https:/www.android.com/auto/, accessed December
2014

Dorst, K.: “The core of ‘design thinking’ and its application’, Des. Stud., 2011, 32,
(6), pp. 521-532

Norman, D.A., Draper, S.W.: ‘User centered system design. New Perspectives on
Human-Computer Interaction’ (L. Erlbaum Associates Inc., Hillsdale, NJ, 1986)
Lowgren, J.: ‘Applying design methodology to software development’. 1st Conf.
on Designing Interactive Systems: Processes, Practices, Methods and
Techniques, 1995, pp. 87-95

Royce, W.W.: ‘Managing the development of large software systems’, JEEE
WESCON, 1970, 26, (8), pp. 328-338

‘Manifesto for Agile Software Development’, available at http:/agilemanifesto.org/,
accessed December 2014

Teich, J.: ‘Hardware/software codesign: The past, the present, and predicting the
future’. IEEE 100(Special Centennial Issue), 2012, pp. 1411-1430

Sun, Z., Bebis, G., Miller, R.: ‘On-road vehicle detection using optical sensors: A
review’. IEEE Proc. Int. Conf. Intelligent Transportation Systems, 2004,
pp. 585-590

Ortega, J.D., Nieto, M., Cortés, A.: ‘Perspective multiscale detection of vehicles for
real-time forward collision avoidance systems’. Advanced Concepts for Intelligent
Vision Systems, 2013 (LNCS, 8192), pp. 645656

Arréspide, J., Salgado, L.: ‘Log-Gabor filters for image-based vehicle verification’,
IEEE Trans. Image Process., 2013, 22, (6), pp. 2286-2295

Chang, W.-C., Cho, C.-W.: ‘Online boosting for vehicle detection’, IEEE Trans.
Syst. Man Cybern. B: Cybern., 2010, 40, (3), pp. 892-902

Sivaraman, S., Trivedi, M.M.: ‘Looking at vehicles on the road: a survey of
vision-based vehicle detection, tracking, and behaviour analysis’, /EEE Trans.
Intell. Transp. Syst., 2013, 14, (4), pp. 1773-1795

‘CMake’, available at http:/www.cmake.org/, accessed December 2014

Dalal, N.: ‘Histograms of oriented gradients for human detection’. Proc. IEEE
Computer Vision and Pattern Recognition, 2005, pp. 886-893

Nieto, M., Ortega, J.D., Cortes, A., et al.: ‘Perspective multiscale detection and
tracking of persons’. MMM 2014, Part II, 2014 (LNCS, 8326), pp. 92-103
Viola, P., Jones, M.: ‘Robust real-time face detection’, Int. J. Comput. Vis., 2004,
57, (2), pp. 137-154

Chan, Y.-M., Huang, S.-S., Fu, L.-C,, et al.: ‘Vehicle detection and tracking under
various lighting conditions using a particle filter’, [ET Intell. Transp. Syst., 2012, 6,
(1), pp. 1-8

IET Intell. Transp. Syst., pp. 1-8
© The Institution of Engineering and Technology 2015

