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Abstract We present a real-time volume rendering component for the Web, which provides
a set of illustrative and non-photorealistic styles. Volume data is used in many scientific
disciplines, requiring the visualization of the inner data, features for enhancing extracted
characteristics or even coloring the volume. The Medical Working Group of X3D published
a volume rendering specification. The next step is to build a component that realizes the
functionalities defined by the specification. We have designed and built a volume rendering
component integrated in the X3DOM framework. This component allows content develop-
ers to use the X3D specification. It combines and applies multiple rendering styles to several
volume data types, offering a suitable tool for declarative volume rendering on the Web.
As we show in the result section, the proposed component can be used in many fields that
requires the visualization of multi-dimensional data, such as in medical and scientific fields.
Our approach is based on WebGL and X3DOM, providing content developers with an easy
and flexible declarative way of sharing and visualizing volumetric content over the Web.
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1 Introduction

Scientific visualization aims to offer a better understanding of complex data like multi-
dimensional data. This goal requires specialized rendering techniques to visualize data from
many scientific areas and topics, such as biomolecular systems in biology, particle collisions
in quantum physics, fluid flow in physics and geographic information in geoinformatics.

When it comes to 3-dimensional discrete sampled data, direct volume rendering visual-
ization techniques can be used (see Fig. 1). Volumetric data often needs to be processed in
order to enhance and extract specific information or characteristics within the data. In the
medical field, the visualization of enhanced features eases the identification and differen-
tiation of objects such as tumorous tissues, functional activities, organs and morphological
characteristics. We provide users with operations to search specific information impercepti-
ble during the raw data exploration. Therefore, in terms of the user’s interactions, interactive
volume rendering techniques can be compared to the traditional interactive tools in Visual
Analytics [41]. These actions are goal-oriented and the user’s knowledge of the domain is
what drives the discovery process.

The Web is the greatest platform for knowledge and content distribution. In this environ-
ment, new software distribution paradigms have been introduced. Ideally, a web application
will be universally accessible by its web address, and it will run in any computer or device.
This is the opposite to the Desktop environment, where a program is meant to run in the
specific computer it is installed on.

Current web applications lack the capabilities for rendering volumetric datasets interac-
tively in compliance with the Extensible 3D (X3D) standard [40]. The Medical Working
Group of X3D published a volume rendering component specification. Following these
definitions, content developers may easily define a distributable and replicable 3D volume
rendering scene in a declarative way.

Our objective is to provide interactive rendering of volumetric datasets in the Web, which
places two main challenges: In first place, all the rendering requirements described by the
X3D specification should be fulfilled. In second place, the challenge should be solved using
only standardized web-based tools: HTML, JavaScript and WebGL. Our approach adapts
the traditional volume rendering techniques [20, 36] in the Web environment. We have
solved the challenges placed by X3D when they defined the nodes that should make possible
to interactively display volumetric datasets.

Fig. 1 Volume rendering outputs of the brain [39] dataset with the proposed volume rendering component
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The presented component solves the challenges placed by web technologies for data
segmentation, volume blending, visual enhancements on edges, boundaries and silhouettes.
Web content developers can take advantage of our software solution that allows them to
avoid programing complex computer graphics specialized techniques: creating a volume
rendering canvas can be as easy as using X3D and HTML. With a declarative approach, the
graphics rendering process is transparent to content creators and developers.

The paper is structured as follows. Section 2 briefly introduces the status of the differ-
ent volume rendering algorithms and non-photorealistic styles. Section 3 gives an overall
picture of the presented work. Section 4 presents the software component and algorithms
we have developed for X3DOM, including the necessary adaptations of the volume render-
ing methods to the Web environment. Section 5 presents our implementation of the X3D
nodes. Section 6 shows the results obtained with the implemented rendering styles. Finally,
Section 7 summarizes our work with the conclusions and future work.

2 Related work

This section presents the related work. Firstly, it introduces the necessary context to under-
stand where our proposed component is positioned. Secondly, we review the literature that
provides the background required to solve the challenges of the presented component.

2.1 Context

In recent years, there has been a development of web-oriented real-time 3D graphics engines
motivated by the objective of making easier the creation and delivering of Web-based games
and interactive content. Several popular frameworks already take advantage from the latest
capabilities of JavaScript, HTML5 and WebGL, enabling the interactive visualization of
traditional polygonal meshes on the Web e.g. Three.js [4], Babylon.js [5] and OSG.js [31].
However, they are not focused on the rendering of volumetric data.

Previously, there were two common approaches for volume rendering in the Web
browser. The first one makes use of third party plug-ins and the second one, renders the
volumetric data on the server side. The first method follows the same approach as desk-
top solutions using OpenGL or DirectX APIs, but it has been discarded over time due
to browsers sand-boxing policies of third-party software and applications for security rea-
sons. The second method is an effective way of rendering big volumetric datasets using
high-performance servers. Possibly, this approach is not always suitable for interactive
applications, due to the connection lag between client and server. Also, it is not a scalable
solution and requires more investment on server side computational power.

In 2012, WebGL-based approaches like goXTK [17] and X3DOM [12] provide new tools
to address these problems. They benefit from the use of Graphics Processing Units (GPU)
on the client side and cross-platform support, including support for mobile devices.

X3D is a royalty-free and matured ISO standard [40]. Conceived for interchangeable 3D
content on the Web, it aims at representing a 3D real-time scene with a standard eXtensible
Markup Language (XML) based file format. X3DOM [1] is a document object model based
tool that allows the integration of the X3D nodes into the HTML DOM tree. It adds the
capability of declaring 3D scenes under the X3D format and directly modifying the X3D
tree through DOM events.

X3D defines several profiles. Each profile is composed by a set of components. Some of
these components are extensions added by collaborative committees. The Medical Working
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Group of X3D defined the volume rendering component [32]. However, current literature
does not contain an implementation of the volume rendering nodes for the Web.

2.2 Background

In the state of the art, several volume rendering algorithms can be found. Indirect methods
try to extract the surface data in a pre-processing step, and then, the surfaces are ren-
dered. In contrast, direct methods generate a 2D image directly from the volume data. Our
approach is based on a well-known direct method: volume ray-casting. It was presented
by Kajiya and Von Herzen [18] and formalized by Levoy [21]. Rays are cast from the
viewer position through the volume data and they are sampled at regular intervals along
these rays. Each sampled point along the same ray is blended by accumulating color and
opacity which makes it computationally expensive. It became more popular when Kruger
and Westermann [20] used the graphics hardware computational power and presented a
GPU-based ray-casting algorithm, achieving real-time frame rates with nowadays consumer
hardware. Several techniques have been addressed to gain performance with ray-casting,
such as early ray termination [20], which finishes the accumulation process when the con-
tribution of the sample is irrelevant, and empty space skipping [22], which optimizes the ray
traversal through empty regions. In general, ray-casting is a technique that can obtain higher
quality renderings than other direct methods. The flexibility and performance of ray-casting
against slice-based algorithms was denoted by Stegmaier et al. [36] when they presented a
single-pass volume rendering framework for GPU-based ray-casting.

Web volumetric visualization has been researched from two points of view. Rendering
the volume on the server side (Gutenko et al. [16]) and rendering the volume on the client
side with WebGL. In first instance, Congote et al. [7] presented a WebGL volume ray-
casting algorithm based on Kruger and Westermann’s multi-pass approach. Later, Mobeen
et al. [26, 27] revisited the algorithm presenting a volume rendering WebGL platform based
on Stegmaier et al. [36] single-pass approach. Also, with WebGL’s ubiquitous characteris-
tic, Noguera et al. [28, 29] have analyzed volume rendering on mobile devices, comparing
ray-casting with a texture slicing rendering technique. Currently, among the 3D graph-
ics frameworks available for the Web, only goXTK [17] and X3DOM [6] support volume
rendering for scientific data visualization.

Volume visualization can be enhanced by visual effects or feature extraction [42, 43].
Originally conceived for traditional image rendering and artistic effects, illustrative and non-
photorealistic renderings can be adapted for volume rendering. They enhance the feature
perception within the volume data. Decaudin [10] introduced cartoon style rendering for
3D scenes and Gooch et al. [15] presented a tone-based non-photorealistic lighting model
for automatic technical illustration. Applied to volume rendering, a set of non-photorealistic
styles were collected by Ebert and Rheingans [11]. Cluster-based, GPU hardware accel-
erated, non-photorealistic renderings were studied by Lum and Ma [25]. More recently,
Bruckner and Gröller [3] presented a novel technique to apply an illustrative style with the
use of transfer functions.

Our proposal extends the WebGL-based volume rendering work by Congote et al. [7]
and Mobeen and Feng [26] to support the rendering styles specified in the volume rendering
component of the X3D standard [40].

Regarding the standard, Polys et al. [33] described and evaluated the usability and feasi-
bility of their volume rendering component implementation. Their tests were focused on the
desktop visualization of several datasets acquired from different fields. Their results demon-
strated how the X3D specification meets the requirements of repeatable multi-dimensional
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Table 1 Summary of the related work in categories: The volume rendering algorithm (Texture slicer, Ray-
casting and Single-pass ray-casting), hardware acceleration (GPU or WebGL), supported platform (Desktop
and Mobile) and multiple rendering styles (Styles)

References Text. slicer Ray-casting Single-pass GPU WebGL Desktop Mobile Styles

[18, 21] x � x x x � x x

[20, 22] x � x � x � x x

[36] x � � � x � x �
[16] x � x � x � � ?

[6, 7] x � x � � � � x

[26, 27] � � � � � � � x

[28, 29] � � x � � � � x

[17] � x x � � � ? x

[3, 25, 33, 34, 42, 43] x � x � x � x �

volume image presentation across domains. Additionally, Polys et al. [34] described to what
extend the X3D standard meets the requirements for immersive volume rendering and some
examples were provided. Our proposal implements the X3D standard volume rendering
component for the X3DOM framework, following some guidelines and suggestions from
their previous works. Table 1 summarizes the presented bibliographic works, providing the
relevant supported features.

3 Overview

The objective of the volume rendering component defined by X3D is to provide volume ren-
dering support in a declarative manner. Our implementation of the component integrates web
technologies: CSS, HTML, JavaScript, WebGL and DOM scripting. The new component
allows 3D volume rendering content and interactions to coexist in the web ecosystem.

Firstly, web content developers must store the volume data on a web repository. After-
wards, a web document is created which references to the X3DOM framework and the
volume rendering component. The document includes the declared X3D scene using HTML
markup language (see Fig. 2).

Secondly, on the user device, when the browser loads the HTML/X3D document, our
component and the volume data are loaded. At runtime the browser creates a 3D canvas and
renders the 3D volume making use of the local computer GPU. As a result, when the user
interacts with the 3D canvas new images are rendered in real-time (see Fig. 3).

The volume rendering component along with the X3DOM framework, provides support
for volume rendering in a declarative manner at the client browser. Web content develop-
ers that are familiar with the X3D standard specification can integrate a volume rendering
canvas within a web page. The component developed in this work makes it easier to cre-
ate volumetric content for developers without specific knowledge on computer graphics
rendering.

Our component approach is well suited for the Web in terms of scalability, because the
rendering computation is made on the client device. Other solutions that use servers for
the rendering computation could have a potential scalability problem when the number of
simultaneous users increases.
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<html>
 <head>
    ...
 </head>
 <body>
   ...
 <body>
</html>

<script src="x3dom.js"></script>

<x3d>
 <VolumeData>
    <ImageTextureAtlas>
    </ImageTexureAtlas>
    ...
 </VolumeData>
</x3d>

LINK X3DOM

HTML DOCUMENT

X3D SCENE

Volume Data

<script src="VolumeRenderingComponent.js"></script>

LINK Component

Web repository

Fig. 2 Resources that must be created by a web content developer on the web repository

On Fig. 3 we have placed our component in the X3DOM repository, however as the
component is a JavaScript library, it can be stored in any web repository. For large scale
infrastructures, it can be duplicated on several servers or distributed through a content
delivery network (CDN).

Moreover, the component provides a set of rendering styles in compliance with the X3D
standard that have not been rendered by Web browsers before. These rendering styles pro-
vide the tools to improve the visualization of volumetric data at many fields. Examples of
the use of the rendering styles at different fields will be shown in Section 6.

4 Methodology

This section presents our solution for the volume rendering component. We start introducing
the pre-processing step required by our approach. Afterwards, the architecture and method-
ology used is presented. Later, the declarative nature of the X3DOM framework together
with the component is detailed with an example. Finally, the last subsection deals with the
rendering parameters that can be modified interactively by the user.

Fig. 3 Overview of direct volume rendering using the proposed component
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(a) Volume data atlas (b) First volume data slice

Fig. 4 Volume data of the aorta dataset with transparent background. a Volume slices stored in one texture
(matrix configuration). b The first slice of the volume data

4.1 Pre-processing

Volume data can be seen as a 3D array composed of cubic elements. The unit space that each
cubic element represents is called voxel. Usually, in GPU-accelerated volume rendering,
the volume data is stored as a 3D texture. However, WebGL does not support yet this data
structure. This limitation can be overcome using the volume atlas method introduced by
Congote et al. [7].

4.1.1 Volume data atlas

Our proposal requires an offline pre-processing of the volume data before it can be inter-
actively visualized using WebGL. All the slices of the volume data are tiled into a single
image on a matrix configuration. This image is called atlas (see Fig. 4).

4.1.2 Gradient data atlas

In order to enhance features or illuminate the volume, surface normals are needed. Unlike
regular polygonal meshes, volumetric data does not have implicit normals. Our approach
adds the normal to each voxel by calculating the voxel gradient from the volume data values.
The computed gradient data is used as surface normals for the volume rendering nodes. We
have implemented two different ways to manage the gradient data.

In the first method, the gradient is computed at the pre-processing step. The choice of
the gradient operator is up to the user. A Sobel or a Gauss filter are suitable operators, but
user-defined ones could also be applied.

The computed gradient data is encoded into an atlas texture with the same matrix config-
uration as the volume data atlas. We call gradient data atlas to the information stored in this
structure (Fig. 5 shows a single slice of the gradient data atlas). Our approach stores each
gradient vector in the RGB channels: {R: X, G: Y, B: Z} at its corresponding voxel.

The access to the gradient data atlas uses the same coordinates as the volume data. There-
fore, the gradient vector is obtained on the shaders with only an additional texture fetch,
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Fig. 5 A color-enhanced version
of a gradient data slice of the
aorta dataset with transparent
background

being a good approach to preserve the overall performance. However, the amount of GPU
memory increases due to the need of an extra texture.

In the second method, the gradient is computed on-the-fly using a central differences
operator.

� f (x, y, z) =

⎧
⎪⎨

⎪⎩

f (x+1,y,z)−f (x−1,y,z)
2 ,

f (x,y+1,z)−f (x,y−1,z)
2 ,

f (x,y,z+1)−f (x,y,z−1)
2

(1)

The gradient computation (�) is a neighborhood operator. The (1) shows that, on each
sampled voxel, six additional neighbor texture fetches are needed to compute the gradient.

Summing up, with the first method better performance is achieved than with the second
method, but the extra memory required by the gradient data atlas could be a drawback for
some specific hardware like mobile devices.

4.2 Atlas resolution

There is one consideration that must be taken into account regarding this approach: the
volume reduction needed to fit the atlas within the texture size limit of the client device
GPU. Typically, for in-core GPU volume rendering, resolution of datasets vary from 128 ×
128 × 128 to 512 × 512 × 512, bigger datasets require out-of-core algorithms as stated by
[9, 14]. Congote et al. [8] showed the render quality achieved with the ray-casting algorithm
under different steps and atlas resolutions. Using the statistics collected by WebGLStats in
2014, we assume 4096 × 4096 as the texture size limit supported by the majority of PCs,
and 2048 × 2048 for mobile devices. The Table 2 summarizes the overall size reduction,
down-sampling percent of the generated atlas, for the most supported texture sizes. We have
used bicubic interpolation with Gimp in our tests to perform the down-sampling.

Table 2 Overall resolution reduction using atlases

Dataset Atlas Valid Atlas 81922 40962 20482 10242

1283 15362 20482 0 % 0 % 0 % 33, 3 %

2563 40962 40962 0 % 0 % 50 % 75 %

5123 117762 163842 30, 4 % 65, 2 % 82, 6 % 91, 3 %
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4.3 X3D volume node hierarchy

The scene graph is the basic entity of the X3D run-time environment. It contains the objects
and relations that define the scene. The X3D standard defines a set of nodes for volume
rendering, along with the definition of its fields and expected output behavior.

The node hierarchy defined by X3D is composed of three abstract node types. The root
node describes the volume data to be rendered. It is defined as X3DVolumeDataNode. A
volume rendering style node defines how the volume data is rendered, producing illustrative
and non-photorealistic renderings to enhance the visual output. The style nodes derive from
a X3DVolumeRenderStyleNode or a X3DComposableVolumeRenderStyleNode, and they are
declared as children of the X3DVolumeDataNode.

Style nodes that inherit from the X3DComposableVolumeRenderStyleNode can be
composed: the output of a style can be the input of the next applied style.

The ImageTextureAtlas is an additional node not defined by the X3D standard. This node
is used by our approach to provide the volume data or the gradient data previously defined
in Section 4.1. Depending on the scene, the gradient data can be provided as an Image-
TextureAtlas, and declared as a child node of the X3DVolumeDataNode or child node of the
X3DComposableVolumeRenderStyleNode.

4.4 Shaders

Our component generates on-the-fly the necessary shaders to be used by the programmable
graphics pipeline available through WebGL. Therefore, the workload of the volume ren-
dering ray-casting method is executed by shaders on the GPU. Shaders are a set of
text strings that are passed to the graphics hardware driver for compilation and execu-
tion. Our approach is based on Congote et al. [7] and Mobeen and Feng [26]. A single
shader (vertex and fragment shader) is generated for each volume data declared on the
scene.

The declarative nature of X3D allows to nest multiple rendering styles in a hierarchically
constructed node scene graph. Using a given volume data, content developers can define a
X3D scene with the desired rendering styles to get a specific visualization of such dataset.
For instance, they could use different illustrative styles in two segments within a volume or
they could compose a set of styles to enhance the contours of the volume.

Thus, the number of possible scenes is unbounded, and each scene requires its specific
shader to implement the volume rendering. In this regard, to fulfill the dynamic require-
ments of X3D, we avoid storing pre-defined shaders. Instead, shaders are created on-the-fly
by composing a set of strings which are collected during the traversal of the X3D volume
rendering nodes. Each node defines its own shader strings, which are added to a common
template defined at the root level (see Fig. 6). This process starts when a new web page with
X3D content is loaded.

The ray-casting loop is implemented in our fragment shader. Our solution generates auto-
matically the shader code required for each X3D scene. We use a fixed step size and a fixed
maximum number of steps in the ray-casting loop, because the GLSL shading language
requires the number of instructions sent to the GPU to be known at compiling time.

Unlike the fragment shader, the vertex shader is common to all scenes. When the HTML
document is loaded on the browser, a scene traversal is triggered to load the X3D scene.
Once the traversal has parsed the child nodes of the root volume data node and they are
attached to the DOM, the shader generation begins. This shader generation is made in two
steps: an initialization phase and a shader code generation phase.
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<X3D Scene>

<DataTypeNode>

<ComposableStyles>

<StyleNode/>

<StyleNode/>

</ComposableStyles>

</DataTypeNode>

</X3D Scene>

UNIFORMS & TEXTURES

LIGHTING EQUATION

STYLE FUNCTIONS

INLINE CODE

GLOBAL UNIFORMS

3D TEXTURE ACCESS FUNCTION

GRADIENT CALCULATION FUNCTION

RAY-CASTING LOOP

FRAGMENT SHADER TEMPLATE

UNIFORMS & TEXTURES

LIGHTING EQUATION

STYLE FUNCTIONS

INLINE CODE

SCENE TRAVERSAL

VERTEX SHADER

GPU

UNIFORMS & TEXTURES

LIGHTING EQUATION

STYLE FUNCTIONS

INLINE CODE

Fig. 6 Template-based shader code generation

During the initialization phase, shader uniforms and texture variables are collected from
the child nodes, initializing their values so that they can be handled by X3DOM. The initial-
ization of these variables is needed as they must be declared on both the JavaScript (CPU)
and shader (GPU) sides. There are several factors that are taken into account for this phase:
i) The uniforms data types must be specified before compilation, ii) the name of the uni-
forms and texture variables must not be the same to avoid name collision problems when
the same style is applied more than once. iii) The assignation of a free texture image unit
to each texture sampler must be managed and, iv) each variable must be correctly linked to
its node parameter at the DOM tree, to allow dynamic changes on the shader variables (see
Section 4.6).

In the shader code generation phase, the complete shader code is composed, compiled
and linked in the GPU. The volume data type node (X3DVolumeDataNode) defines the base
template of the fragment shader (see Fig. 6, on the right). The missing parts of this template
are filled with the strings collected from its child nodes in several traversals. In general
terms, a render style node (X3DVolumeRenderStyleNode, X3DComposableVolumeRender-
StyleNode) defines a set of strings where the uniforms and textures, the lighting equation,
the style functions and the inline code are stored.

The uniforms and textures, marked as red on Fig. 6, declare the input parameters that are
used by the style. Therefore, they have to be located at the top of the template. The code
generated by the template to calculate or access the gradient data is conditioned by whether
the gradient data is provided by a render style node through a texture or not. When no texture
gradient is provided, a function to calculate the gradient is generated on the template. In the
opposite case, a function to access the gradient atlas is generated.

The lighting equation marked as green is an optional function which may be added to
the template if the user declares a light on the scene or it is mandatory to the style, e.g.
ShadedVolumeStyle (Section 5.3).
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The style functions marked as yellow are strings composed of functions that modify the
ray accumulation according to the style logic.

The inline code marked as blue is code to be located within the ray-casting loop. It con-
sists mainly of function calls to the style functions, but it can also contain code to serialize
or blend results of several styles and code that can not be separated on style functions, such
as temporal variables.

Some render styles are composable, so there can be several rendering styles applied
to one dataset. Each of the styles defines their own strings following the same described
structure. They are collected and appended one after the other on their corresponding part
of the template. An exception is the lighting equation string, which is not appended. As
defined in the X3D standard, the lighting equation is only collected from the first style node.
By filling each part of the template with the collected strings, the shader is completed and
ready to be compiled.

4.5 Declarative scene

The node architecture proposed by the X3D standard offers flexibility to compose a scene
graph. With the X3DOM framework, X3D content can be integrated into a HTML document
[1]. The <x3d> tag element is the initial statement to embed a 3D canvas. Each X3D node
matches with a corresponding tag under the <x3d> namespace.

Figure 7 shows an example of a volumetric scene tree of the backpack [37] dataset,
where each node type is shown with a distinctive color. In this example, a scene is
defined with a ComposedVolumeStyle which includes two rendering styles. First, edges are
enhanced with red color using the EdgeEnhancementVolumeStyle and then, the Silhouette-
EnhancementVolumeStyle highlights the areas where the surface normals are perpendicular
to the view direction. Figure 8 shows the rendering output of the X3DOM scene tree (see
Fig. 7).

In a volume rendering scene, multiple volume data nodes can be declared. A custom
shader will be generated for each declared X3DVolumeDataNode.

4.6 Interactivity

The camera defined in a volume rendering scene can be interactively manipulated by the
web page viewer: rotation, zoom, pan are the basic camera manipulation methods. X3DOM
connects the X3D scene with the DOM. Changes on the scene can be done with the addition
of event handlers and listeners that change the attributes of a volume rendering node tag at
the DOM tree.

Fig. 7 X3DOM partial tree of a composed scene
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(a) X3D example (b) Our implementation

Fig. 8 Two rendering outputs of the backpack dataset using the ComposedVolumeStyle with the Silhoue-
tteEnhancementVolumeStyle and the EdgeEnhancementVolumeStyle. a Rendering output taken from the X3D
standard. b Rendering output from our implementation

Input parameters of the rendering style nodes are usually shader uniform variables (see
Fig. 6). Once they have been compiled at run-time, an update in a style parameter will
dynamically modify the uniform value. As a result, the output rendering will be updated in
real-time without the need of regenerating and compiling the shader again. Textures are also
linked as uniforms on the shaders. Thus, an update on the input textures (such as the vol-
ume data, gradient data or any transfer function) will be directly reflected on the rendering
output.

Our approach creates custom shaders when the scene is loaded. When needed, shader
code is generated based on the provided parameters, possibly affecting the style function,
inline code or the base template (see Fig. 6). The modification of such parameters, will
require to regenerate the shaders again. For these cases, the scene must be reloaded to
compile and link the new updated shader.

5 Implementation

This section describes our implementation of the nodes defined by X3D.

5.1 X3DVolumeDataNode

The X3DVolumeDataNode has three derived nodes: VolumeData, SegmentedVolumeData
and IsoSurfaceVolumeData.

The VolumeData specifies a non-segmented volume. It is the most basic node. The styles
attached to this node will be applied to the whole volume data. By default, an OpacityMap-
VolumeStyle is used.

The SegmentedVolumeData takes a segmented volume data as input. The segment iden-
tifier assigned to each voxel is not stored in the volume data. So, when required in the
rendering process, we assign a segment identifier using (2).

id = �f (x) × maxSegment − 0.5� (2)
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(a) Segmented Volume Data (b) Iso Surface Volume Data

Fig. 9 Two rendering outputs of the aorta dataset using the X3DVolumeDataNode. a Two segments
tissue and bones, the first rendered using a BoundaryEnhancementVolumeStyle and the second with an
EdgeEnhancementVolumeStyle. b A single 0.92 isosurface value rendered with the CartoonVolumeStyle

In (2), f (x) is the voxel value and maxSegment is the number of segments considered (by
default, 10). Each segment is mapped to a render style in strict order of declaration (see
Fig. 9a). In our implementation we have added the maxSegment parameter for this node
in order to adjust the way the segment identifiers are computed from the input segmented
volume data.

The IsoSurfaceVolumeData allows the visualization of one or more surfaces extracted
from the volume data (see Fig. 9b). “An isosurface is defined as the boundary between
regions in the volume where the voxel values are larger than a given value (the isovalue)
and smaller on the other side and the gradient magnitude is larger than a given surface
tolerance” [40].

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Cg = styleNode(Cv, Ov) ∧ Og = 1,

if (f (x) ≥ isov ∨ f (x − 1) < isov)∧ ‖ �f (x) ‖≥ st
Cg = styleNode(Cv, Ov) ∧ Og = 1,

if (f (x) ≤ isov ∨ f (x − 1) > isov)∧ ‖ �f (x) ‖≥ st
Cg = Cv ∧ Og = 0, otherwise

(3)

Multiple isovalues can be given as parameters to the style. Equation (3) shows the condi-
tional statement we use to check if a voxel belongs to a given isosurface. Cv and Ov are
the original voxel color and opacity. Cg and Og are the generated output color and opac-
ity. When multiple isovalues are given, a rendering style is associated to each isovalue,
following the rules of the X3D specification.

5.2 X3DVolumeRenderStyleNode

The X3DVolumeRenderStyleNode has only one derived node: the ProjectionVolumeStyle.
The ProjectionVolumeStyle allows three types of rendering methods: max, min and average.
Each method outputs a color based on the voxels values traversed by a ray. Maxi-
mum Intensity Projection (MIP) stores the greatest value along the ray (see Fig. 10).
It is widely used in the medical field. It was originally proposed by Wallis et al. [38] for

Author's personal copy



Multimed Tools Appl

Fig. 10 The rendering output of
the aorta dataset using the
ProjectionVolumeStyle with the
max method (MIP)

its use in Nuclear Medicine. It can be used for lung nodules detection in lung cancer for
computed tomography data and for magnetic resonance angiography studies [30].

Minimum Intensity Projection outputs the minimum value along the ray. Average Inten-
sity Projection outputs the average value along the ray traversal and the resultant rendering
is an approximation of an X-Ray.

5.3 X3DComposableVolumeRenderStyleNode

Nodes derived from the X3DComposableVolumeRenderStyleNode can be composed result-
ing in richer renderings. The X3DComposableVolumeRenderStyleNode has the following
derived nodes: ComposedVolumeStyle, BlendedVolumeStyle, CartoonVolumeStyle, Opa-
cityMapVolumeStyle, BoundaryEnhancementVolumeStyle, EdgeEnhancementVolumeStyle,
SilhouetteEnhancementVolumeStyle, ToneMappedVolumeStyle and ShadedVolumeStyle.

The ComposedVolumeStyle allows compositing multiple X3DComposableVolume-
RenderStyleNode rendering styles under a single render pass. This is done by serializing the
styles; the output of a style is the input of the next style. In our implementation, the styles
are applied in the same order as declared. There is no order restriction for the styles, i.e. the
order in which the styles are declared is up to the X3D designer. But the order is impor-
tant, as the X3D standard defines, the equation for the lighting is always taken from the first
rendering style node.

The BlendedVolumeStyle allows blending two volume datasets with a weight function
(see Fig. 11). The main dataset is the parent X3DVolumeDataNode and the second dataset
is passed as a parameter to the BlendedVolumeStyle using an ImageTextureAtlas node. The
X3D standard defines several options for the weight function: it can be a constant value, a
value dependent on the opacity of one of the datasets or it can be a texture. When a texture
is provided as a weight function, each opacity value from the dataset is mapped to a weight
value from the texture. The use of a ComposedVolumeStyle is mandatory when the X3D
designer wants to apply a rendering style to each of the datasets.

The CartoonVolumeStyle takes two colors as input parameters. The final rendering will
depend on the local surface normals and the view direction. The result is a cartoon-style non-
photorealistic rendering [10]. Our implementation differs slightly from the specification.
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(a) X3 Dexample (b) Our implementation

Fig. 11 Two rendering outputs using the BlendedVolumeStyle with the body [39] and internals [39]
datasets. a Rendering output taken from the X3D standard. It uses the OpacityMapVolumeStyle on the body
and the ToneMappedVolumeStyle on the internals. b Rendering output from our implementation. Also,
it uses the OpacityMapVolumeStyle on the body and the ToneMappedVolumeStyle on the internals

We do not take into account the alpha channel from the input colors. Instead, the opacity
values are obtained from the volume data.

The OpacityMapVolumeStyle maps the opacity and color values for each voxel from
a function stored as a texture. This texture is called transfer function. The creation of
this transfer function is up to the designer and is created in an offline preliminary step.
Extensive work has been done regarding this topic. Kniss et al. [19] denoted the use of
multi-dimensional transfer functions. Bruckner and Gröller implemented illustrative styles
through transfer functions [3]. We have followed the X3D specification regarding this style,
supporting 1D transfer function textures.

The BoundaryEnhancementVolumeStyle modifies the opacity of the volume. This
approach, based on the gradient magnitude, enhances boundaries. A volume is usually com-
posed of several densities. The gradient magnitude is low in areas of constant density, and
it is large when density varies.

Og = Ov × (Kgc + Kgs × (‖ � f (x)‖Kge )) (4)

The (4) is used to enhance the opacity of boundaries. Kgc is the amount of initial opacity to
retain, while Kgs and Kge adjust the darkness of the boundary.

The EdgeEnhancementVolumeStyle stands out the edges of the volume with an input
color parameter. Edges are volume data values where the gradient is perpendicular to the
view direction. The input color is blended with the volume data color in function of the
angle between both vectors (see (5)).

Cg =
⎧
⎨

⎩

Cv× | �f (x) · V | +edgeColor × (1− | �f (x) · V |),
if | �f (x) · V |> cos (gradT hreshold)

Cv, otherwise.
(5)

Og = Ov (6)

The edge enhancement can be more or less noticeable with the threshold parameter
gradT hreshold. It is used to adjust the edge detection. The edgeColor is the input color
and the normalized view direction is denoted by V .
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The SilhouetteEnhancementVolumeStyle is similar to the EdgeEnhancementVolumeStyle:
both enhance the voxels where the gradient is perpendicular to the view direction. In this
case, only the opacity is enhanced, but not the color.

Os = Ov × (Ksc + Kss × (1− | �f (x) · V |Kse )) (7)

The (7) is used to enhance the opacity of the volume. Ksc is the base opacity factor to retain.
It regulates the non-silhouette areas. Kss represents the silhouette enhancement factor and
Kse is an exponent to control the sharpness of the silhouette. The three factors are the input
parameters of this style.

The ToneMappedVolumeStyle illustrates the volume based on the orientation towards
the light. Gooch et al. [15] were the first to propose an illumination model following this
approach. This tone shading technique defines two colors: warm and cool. The warm color
represents surfaces facing towards the light direction, and the cool color is used for sur-
faces facing away the light. The interpolation between these colors is assigned using the dot
product between the angles of the gradient and the light direction to each sampled voxel.

Currently, our implementation supports local illumination following the Blinn-Phong
illumination model [2]. Additionally, the ShadedVolumeStyle node allows to specify the fog
and material properties. Due to the extra computational cost that imply global illumination
models, they have been considered for future work.

When gradient data is passed as parameter to one of the child nodes of the Composed-
VolumeStyle, it is loaded just once, being available for the rest of the style nodes. The
memory consumption is reduced by avoiding multiple instantiation of the texture. Any other
gradient data defined on the styles will be ignored, except if it is defined with the Blended-
VolumeStyle, where a second gradient data texture can be provided. Figure 12 shows the
rendering output of our implementation for each described X3DComposableVolumeRender-
StyleNode.

6 Results

This section shows the advantages, flexibility and utility of the declarative approach for
volume rendering. It shows the powerful and easy-to-use tool for web content developers.
Four volumetric datasets from different thematic areas are presented: medical, engineering,
physics and life sciences. For each use-case, some interaction examples are introduced and
some possible solutions are devised by providing some X3D scenes that experienced users
of the domain might use to explore the volumetric datasets.

Each use case is structured as follows: first, the objective and motivation for the visual-
ization is introduced, then a basic render of the volume is shown. Afterwards, a partial X3D
scene for each use case is presented. Finally, we show a table that resumes the performance
achieved on each of the presented figures.

6.1 Medical use case

Undoubtedly, a useful tool in the medical field is the segmentation, i.e. the partitioning of
the volume data into different segments. Sometimes, for a variety of reasons, a region of
interest inside the volume needs to be enhanced or highlighted. The goal of this use case
is to visualize segments which correspond to different organs, pathologies, tissue types and
other biological structures. The user will differentiate better the segments from the rest of
the data. We use the Head MRI [37] dataset. It consists of a Magnetic Resonance Imaging
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(a) Opacity Map Volume Style (b) Edge Enhancement Style

(c) Boundary Enhancement-
Volume Style

(d) Silhouette Enhancement-
Volume Style

(e) Cartoon Volume Style (f) Tone Mapped Volume Style

(g) Composed Volume Style (h) Shaded Volume Style

Fig. 12 The rendering output of each X3DComposableRenderStyleNode using the aorta dataset
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Fig. 13 Direct volume rendering
visualization of the Head MRI
dataset (2048×2048 atlas), using
the OpacityMapVolumeStyle
without a transfer function

(MRI) scan of the head and a segmentation of the ventricles of the brain. With the use of the
SegmentedVolumeData node, we enhance the ventricles shape from the rest of the volume
data. Figure 13 shows a basic visualization of the Head MRI dataset, without the use of the
segmentation data.

Using the segments information, we can apply a rendering style to each one.
Figure 15 shows two rendering outputs that highlight the ventricles of the brain. Both use the
SegmentedVolumeData node with two different rendering styles. Figure 14 is a partial X3D
scene tree of Fig. 15a. First, the volume is declared as a SegmentedVolumeData. In this case,
two atlases must be provided to the component: the volume data atlas and the atlas contain-
ing the segmented information. Then, the rendering styles are declared. The first rendering
style is applied to the first segment and the second rendering style on the second segment.

In the scene tree defined in Fig. 14, the first segment has been rendered using the Opac-
ityMapVolumeStyle with a low opacityFactor making more visible the insides of the head.
The second segment, the ventricles of the brain, has been rendered with a composition of
two rendering styles: the OpacityMapVolumeStyle and the EdgeEnhancementVolumeStyle.
Making the segment more opaque and highlighting the shape of the ventricles. The differ-
ence between Fig. 15a and b is the render style used on the second segment. In Fig. 15b we
have used the CartoonVolumeStyle instead of the EdgeEnhacementVolumeStyle.

Fig. 14 Partial X3D scene tree of the Head MRI dataset, using the SegmentedVolumeData node

Author's personal copy



Multimed Tools Appl

(a) Edge Enhancement Vol-
ume Style

(b) Cartoon Volume Style

Fig. 15 Direct volume rendering visualization of the Head MRI dataset (2048 × 2048 atlas), using the
SegmentedVolumeData to enhance the ventricles of the brain

6.2 Engineering use case

In the engineering field, we show a use case using the engine [37] dataset. This dataset
consists of a Computed Tomography (CT) scan of an engine block. In this use case, we
aim to visually enhance a region of interest: the two cylinders inside the engine. We will
achieve this objective showing two different resulting scenes: firstly, with the aid of a
transfer function, and secondly, the cylinders are extracted with the visualization of an
isosurface. Figure 16a shows the engine dataset, with the default rendering style: the
OpacityMapVolumeStyle.

Using a 1D transfer function on the OpacityMapVolumeStyle, we can map each opacity
value from the volume data to a color and opacity, enhancing and illustrating the volume
(see Figs. 16b and 17).

(a) Engine dataset (b) Engine with TF

Fig. 16 Direct volume rendering visualization of the engine dataset with a 2048 × 2048 atlas. a Basic
visualization (by default OpacityMapVolumeStyle). b Engine dataset with a 1D transfer function
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Fig. 17 Partial X3D scene tree declaration of the engine dataset, using the OpacityMapVolumeStyle with
a transfer function

The creation of the transfer function is out of the scope of the volume rendering compo-
nent. The use of a transfer function offers a lot of control on how the volume is illustrated,
allowing to enhance the desired information. Usually, it is a manual and time-consuming
process. In this example, an alternative is to use the IsoSurfaceVolumeData and automati-
cally extract the region of interest by selecting a correct set of surfaceValues (see Figs. 18
and 19).

In Fig. 18 we have used the CartoonVolumeStyle to illustrate the extracted isosurfaces,
showing a comparison between different colorSteps. A more cartoonish effect can be
achieved when the number of colorSteps is low (Fig. 18a and b), whereas a higher value of
colorSteps can be used to get a more solid appearance (see Fig. 18e). Note that in this case,
we do not see the whole volume as before (Fig. 16b). Both presented solutions are able to

(a) 2 colorSteps (b) 4 colorSteps (c) 8 colorSteps

(d) 16 colorSteps (e) 32 colorSteps

Fig. 18 Direct volume rendering visualization of the engine dataset with a 2048 × 2048 atlas. Dataset
declared as an IsoSurfaceVolumeData with a set of surfaceValues of [0.7, 0.75, 0.8] and illustrated with the
CartoonVolumeStyle at different colorSteps
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Fig. 19 Partial X3D scene tree of the engine dataset, declaring the volume as a IsoSurfaceVolumeData
and using a CartoonVolumeStyle

visualize the cylinders, which denotes the flexibility of the proposed component and the
X3D specification (Fig. 19).

6.3 Physics use case

Volume rendering is useful for scientific volume data visualization. We have selected
the neghip [37] and hydrogen-atom [37] datasets to show examples of the utility
of our volume rendering component in the nuclear physics field. The neghip dataset
(64 × 64 × 64) is a simulation of the spatial probability distribution of electrons in a high
potential protein molecule. Knowing the distribution of the electron in such molecules has
important benefits for chemistry-based areas, such as pharmacology, for example, to better
understand the relation between molecules and the organism [23]. The hydrogen atom
dataset (128×128×128) is a simulation of the spatial probability distribution of the electron
in a hydrogen atom residing in a strong magnetic field. In both cases, we aim to observe the
shape of the density distributions, by visualizing a selection of isovalues from the datasets.
A basic visualization of both datasets (Fig. 20) gives a general idea of the shape, but does not
help to accurately pinpoint the location of the electrons, nor the evolution of the distribution
fields.

To explore the distribution, we present a X3D example (see X3D nodes in Fig. 21)
on how to visualize a set of isovalues and color them (see Fig. 22). The use of the

(a) Neghip dataset (b) Hydrogen atom dataset

Fig. 20 Direct volume rendering visualization of the neghip (512 × 512 atlas) and hydrogen atom
(1024 × 1024 atlas) datasets with no styles applied
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Fig. 21 Partial X3D scene tree for the neghip dataset illustrated with the ToneMappedVolumeStyle

IsoSurfaceVolumeData allows us to apply a rendering style on each specified surfaceValue.
The illustration of the volume is necessary to enhance the perception of depth in the volume.

Figures 22 and 23 are defined with the same tree (Figs. 21 and 24). In both cases, an
isosurface of the volume is being visualized with the IsoSurfaceVolumeData node and then,
illustrated with the ToneMappedVolumeStyle. We can select the desired isosurface by spec-
ifying a surfaceValue, and limit the surface detection with the surfaceTolerance parameter
(Fig. 23). The PointLight node is declared in both scenes, because it is necessary for the
ToneMappedVolumeStyle to know the light location or direction.

6.4 Life science use case

Educational articles are usually illustrated with hand-made figures or illustrative images
making easier to understand their material. Volume rendering is adequate for the exploration
of real data. By allowing to explore the data, a better understatement of its composition and
morphology is obtained. Thus, our approach can be used to complement web articles and
teaching material. As an example, we have selected the orange1 dataset (256 × 256 × 64)
to visualize its inner structure. Figure 25a shows a basic rendering of the orange dataset.
This can be easily declared in a few lines of HTML and X3D.

Figure 25a shows a cartoon rendering of the orange illustrated with orange and yellow
colors to make it closer in appearance to the real fruit. As an alternative, a transfer function
could be used to achieve a similar result, but it would be a more time consuming approach
if the transfer function has to be edited manually. Figure 26 shows the scene tree used to
illustrate the volume with the CartoonVolumeStyle.

In this use case, we aim to highlight the composition of the orange. A quick and effec-
tive way to achieve our objective is to enhance the boundaries and silhouette considerably.
Figure 27 shows the composition of several rendering style nodes, which allows us to
visualize the orange sections and seeds.

The final rendering (Fig. 27) is produced using the scene at Fig. 28. The Composed-
VolumeStyle provides a way to combine different style nodes. The first stage of this case
is to use an OpacityMapVolumeStyle to adjust the amount of opacity accumulated on
each sample. Then, we have applied a BoundaryEnhancementVolumeStyle to make more
noticeable the changes between regions inside the orange. Afterwards, we have applied
the SilhouetteEnhancementVolumeStyle retaining very little opacity from the original vol-
ume by making slightly visible the contours of the volume. Finally, we have used the
EdgeEnhancementStyle to fill with color the previous filtered contour.

1Available at http://www9.informatik.uni-erlangen.de/External/vollib/ .
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(a) surface Value 0.2 (b) surface Value 0.4 (c) surface Value 0.9

Fig. 22 Volume rendering visualization of the neghip dataset (512 × 512 atlas). Using the IsoSur-
faceVolumeData node with a single isovalue on the surfaceValues parameter and illustrated with the
ToneMappedVolumeStyle

6.5 Performance

The previous examples were carried out on a PC with an Intel Quad Core Q8200 processor,
4GB RAM and a NVIDIA GeForce GTX 295 GPU under Windows 7. Tests were performed
with Chrome 38 and Firefox 32. Both Firefox and Chrome use Google’s Angle Library to
gain major hardware compatibility by translating OpenGL ES 2.0 API calls to DirectX 9
or DirectX 11 API calls. All the datasets were transferred from an Internet server. Table 3
summarizes the performance obtained on each of the cases described before.

For the creation of the figures and performance tests, we have used 120 steps, i.e., each
ray is sampled 120 times at maximum in the ray-casting method. If the ray comes out of
the volume, or the accumulated opacity reaches the value 1, the ray sampling is stopped.
By default, the release version of the volume rendering component currently shipped in
X3DOM is configured with 60 steps. The download time of the datasets does not impact in
the performance tests and they are not included in the table.

In general, we can affirm that the results are good to be used in consumer oriented
desktop computers with domestic PC graphics cards. Table 4 summarizes the advantages
and disadvantages of our Web based methodology in comparison with the desktop based
solutions presented in Section 2. As a Web based approach, the X3DOM framework is

(a) surface Value 0.20 (b) surface Value 0.05 (c) surface Value 0.05 and sur-
face Tolerance 0.035

Fig. 23 Volume rendering visualization of the hydrogen atom dataset (1024 × 1024 atlas) illustrated
with the ToneMappedVolumeStyle. a,b Using the IsoSurfaceVolumeData node with a single isovalue on the
surfaceValues parameter and a surfaceTolerance value of 0. c Using the IsoSurfaceVolumeData node with a
single isovalue on the surfaceValues parameter and a surfaceTolerance value of 0.035
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Fig. 24 Partial X3D scene tree of the hydrogen-atom dataset illustrated with the ToneMappedVol-
umeStyle

(a) Orange dataset (b) Composed with Opaci-
ty Map and Cartoon styles

Fig. 25 Volume rendering of the orange dataset with a 1024 × 1024 atlas. a Basic volume visualization
(by default OpacityMapVolumeStyle). b Orange dataset rendered with the OpacityMapVolumeStyle and
CartoonVolumeStyle

Fig. 26 Partial X3D scene tree of the orange dataset to illustrate the volume
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Fig. 27 Volume rendering of the orange dataset with a 1024×1024 atlas from two point of views. Applying
several composable styles to highlight the sections and seeds of the orange

Fig. 28 Partial X3D scene tree, enhancing and highlighting the insides of the orange dataset

Table 3 Performance, frames per second (FPS) on each use case example at different resolutions

Use case Figure Dataset Resolution Gradient atlas FPS

6.1 Fig. 13 Head MRI 2048 × 2048 no 50-55

6.1 Fig. 15a Head MRI 2048 × 2048 no 25-35

6.1 Fig. 15b Head MRI 2048 × 2048 no 40-50

6.2 Fig. 16a engine 2048 × 2048 no 50-60

6.2 Fig. 16b engine 2048 × 2048 no 50-55

6.2 Fig. 18 engine 2048 × 2048 no 30-39

6.3 Fig. 22a neghip 512 × 512 yes 40-45

6.3 Fig. 22b neghip 512 × 512 yes 40-45

6.3 Fig. 22c neghip 512 × 512 yes 38-45

6.3 Fig. 23a hydrogen-atom 1024 × 1024 yes 38-45

6.3 Fig. 23b hydrogen-atom 1024 × 1024 yes 40-45

6.3 Fig. 23c hydrogen-atom 1024 × 1024 yes 38-45

6.4 Fig. 25a orange 2048 × 2048 no 50-60

6.4 Fig. 25b orange 2048 × 2048 no 40-45

6.4 Fig. 27 orange 2048 × 2048 no 25-35

As a help to the reader, the section and figures are referred
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Table 4 Summary of the key advantages and disadvantages of our Web based approach against other desktop
based approaches

Our Web based approach Desktop based approaches

Datasets up to 512 × 512 × 512 at Larger volume datasets

interactive rates

GPU restrictions through WebGL No GPU API restrictions

Seamless integration with the Web Desktop oriented applications

No need for software installation Software installation required

One deployment for multiple platforms Applications targeted only to the desktop platform

Declarative scene and style composition Programming skills required to deploy an application

Easy sharing of scenes and volume Sharing is complex: requires transferring

data across devices (URL’s) local volume data and the installation of an application

available for all compatible WebGL devices, being the interactivity rate limited by the GPU
computational power of the device.

7 Conclusions

The X3D Medical Working Group defined a volume rendering component and its nodes for
3D visualization of volumetric data. This paper shows how the challenge placed by these
definitions has been solved. Section 6 shows, how web content developers can easily declare
these 3D interactive visualization canvases. It also presents graphical results that show dif-
ferent applications and renders that can be interactively displayed. Our work demonstrates
the power of X3D definitions once their implementation challenges have been solved. Its
performance achieves interactive rates in domestic PC web browsers.

We have presented the first volume rendering component based on WebGL for real-
time volume rendering that supports multiple illustrative and non-photorealistic styles in a
declarative manner. In compliance with the X3D standard, the set of styles available with
the component is useful to enhance features from the volume data. The render styles are
suitable for any volumetric visualization. Among them, some have direct applications in
the medical field, like the MIP. The integration of the component in X3DOM does not only
provide the advantages of a declarative approach, but it also provides an opportunity to
create web-based applications on top of it.

We have implemented all the nodes defined by the X3D volume rendering component
specification, as described in the Section 5. The flexibility and utility of the framework has
been proved in Section 6, where we have showed the rendering outputs of several datasets
that go beyond a basic visualization. A few lines of HTML and X3D are enough to enhance
or highlight the data hidden within the volumetric datasets. A user evaluation of the pro-
posed component will provide deeper insights and conclusions of the capabilities of the
volume rendering component in real world scenarios.

The supported volume datasets are limited by the target GPU texture size limit and the
dataset resolution (see Section 4.2). Even if the proposed implementation can not compete
in terms of performance and rendering quality to current desktop solutions, the presented
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results are good enough for the visualization of volumes up to 512 × 512 × 512. Bigger
datasets will require the utilisation of out-of-core ray-casting algorithms and novel volume
data streaming techniques.

The gap between desktop and web graphics may close in future versions of WebGL as
more functionality of the GPU will be available to the browser. Until then, we consider
appropriate the inclusion of the ImageTextureAtlas node in the X3D standard to support
volume rendering in WebGL 1.0 compatible browsers and devices. In addition, we see nec-
essary a new parameter at the X3DVolumeDataNode level that regulates the qualityLevel of
the rendering output. The cross-platform capabilities of WebGL open volume rendering to
devices with far less GPU computational power than desktop computers. Allowing to reg-
ulate the qualityLevel will help to target different devices and maintain performance across
them. Also, we consider that it would be interesting to add more illustrative rendering styles
on top of the X3D specification like hatching [35] and stippling [24].

Although limited by GPU power on some mobile devices, the rapid growth of these
devices makes them appropriate for real-time graphics applications as its computational
power is expected to improve over the years, making the volume rendering component avail-
able to a bigger number of devices. The presented implementation shows the possibilities
of 3D graphics on the Web. The component with all the nodes described at Section 5 are
already available for public use at the public X3DOM repository [13].
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