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Abstract. Current 4G networks are approaching the limits of what is
possible with this generation of radio technology. Future 5G networks
will be highly based on software, with the ultimate goal of being self-
managed. Machine Learning is a key technology to reach the vision of a
5G self-managing network. This new paradigm will significantly impact
on connected vehicles, fostering a new wave of possibilities. This paper
presents a preliminary approach towards Autonomic Network Manage-
ment on a connected cars scenario. The focus is on the machine learning
part, which will allow forecasting resource demand requirements, de-
tecting errors, attacks and outlier events, and responding and taking
corrective actions.
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1 Introduction

The Internet of Things (IoT) vision promotes the interconnection of objects that
have traditionally worked offline, creating new opportunities for more direct in-
tegration between the physical world and computer-based systems. However,
current 4G technology is approaching its limits, and will not be capable of cov-
ering the necessities of the huge amount of devices that are expected to utilize
this network [1]. Due to these vast and huge increase in the number of devices,
network management challenges are becoming more and more complicated [2].
Hence, the 5G which is the new generation of radio systems and network ar-
chitecture will need to specially take into account IoT challenges in relation
to network management [3]. Apart from being able to make maximum use of
available spectrum and data transmission rates, it will need to largely manage
itself. Virtualisation will play a key role here. Instead of building a network to
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meet an estimated maximum demand, the network will need to provision itself
dynamically to meet changing demands.

Machine Learning is expected to be one of the main key technologies that will
enable this vision of self managing network. Machine Learning technologies can
learn from historical data, and make predictions or decisions. Instead of follow-
ing static programming instructions, it can dynamically adapt to new situations
learning from new data [4]. This technology has been successfully used in image
analysis, language recognition and many other applications. It has also a great
potential in the network management area. For example, it can be used to fore-
cast resource demand requirements, detect security threats and error conditions,
and react correctly to them.

The transportation sector is one of the key sectors that will be benefited
from 5G. Autonomous and semi-autonomous cars, which are expected to de-
crease significantly the chance of accidents, will depend heavily on connectivity.
Cars will become complex electronic devices that have to cope with multiple,
high-bandwidth, heterogeneous and asynchronous data sources such as cameras,
radars, GPS, etc. So the network must ensure high data rates of big volumes of
data at potentially high travelling speeds, what supposes a great challenge.

The aim of this paper is to show the potential of machine learning for its
application on the softwarisation and virtualisation of common network func-
tions, in the specific case of a connected cars scenario. This article focuses on
the concept and architecture of our approach and also proposes an evaluation
criterion.

The rest of the paper is structured as follows. Section 2 describes the state of
the art on the main technologies involved in Autonomic Network Management.
Section 3 defines a connected cars scenario highlighting the main challenges.
Section 4 proposes a generic solution based on machine learning for the problem
presented in section 3. Finally, Section 5 concludes the paper.

2 Background

5G breakthroughs will not only lay on the radio access network, by means of ad-
ditional spectrum bands and higher spectral efficiency, in order to achieve higher
capacity for dense deployments but will also bring solutions to empower the core
network. These new approaches at the network design will aim to provide con-
nectivity to a increasing number of users and devices [5]. Rising demand for
mobile traffic will enforce new ways of enhancing capacity, such as dense deploy-
ment, as well as intelligent traffic steering and offload schemes while reducing
operational expenditure [6].

The strategy from industrial partners, network operators, equipment vendors
and standardization bodies, like European Telecommunications Standards Insti-
tute (ETSI), is to decouple hardware from software and move network functions
towards software. For example, virtual network functions (VNFs) could virtual-
ize a router a base station, core mobile nodes GGSN, SGSN, RNC, EPC (all-IP
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mobile core network for the LTE networks), firewalls, intrusion prevention IPS,
etc.

Introducing a new software-based solution is much faster than installing an
additional specialized device with a particular functionality. It boosts network
adaptability and provide elasticity to make network easily scalable. So, with
simpler operation, new network features are likely to be deployed or teared-down
more quickly.

However, there is a need for mechanisms to manage the network due to the
increase of the network complexity. To organize all the VNF instances under
common goals and policies, a policy manager and orchestrator is needed for
the life cycle. MANO stands for Management and Orchestration setting up,
maintaining and tearing-down VNFs. Moreover MANO entity communicates
with OSS/BSS(Operation Support System/Business Support System) system of
the telco operator. OSS deals with network management, fault management,
configuration management and service management. BSS deals with customer
management, product management and order management etc.

Open Source projects such as OpenStack3, OpenMano4, OpenBaton5 or Op-
NFV6 implement network functions virtualization (NFV) and MANO stacks.
While solutions, like OpenFlow7 open standard, deploy innovative protocols in
production networks by means of communications interface defined between the
control and forwarding layers of an SDN architecture.

Going beyond, the transformation of operative switching and forwarding into
programmable and configurable functions enable autonomous network manage-
ment. The key challenge is to enable direct access and manipulation of the for-
warding plane of network devices (e.g. router, switch) by moving the network
control out of the networking switches to logically centralized control software.
A logically centralized network intelligence can tune the network control directly
without taking care about the underlying infrastructure that is completely ab-
stract for applications and network services. Thus, networks turn into flexible,
programmable platforms with intelligence to meet dynamically performance and
react to degradation symptoms.

Today, this vision is not yet realized. The is not a reliable solution that
addresses the problems for flexible creation by scaling up/down or in/out an
elastic network in an automated way [7]. We propose to overcome autonomous
network management by means of the application of Machine Learning to data
streams originating from the forwarding plane of network devices.

3 http://www.openstack.org/
4 https://github.com/nfvlabs/openmano
5 http://openbaton.github.io/
6 https://www.sdxcentral.com/listings/opnfv/
7 https://www.opennetworking.org/sdn-resources/openflow
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3 Scenario definition

The connected cars scenario is a complete and challenging scenario to test future
5G capabilities. Vehicles can exchange information with other vehicles (V2V),
with the roadside infrastructure (V2I), with a backend server (e.g., from a vehicle
manufacturer or other mobility service providers) or with the Internet (V2N),
with a pedestrian (V2P), etc. The term Vehicle-to-Everything (V2X) is used to
refer to all these types of vehicular communication. Typical automotive use cases
for V2X include [8]:

– Advanced Driver Assistance Systems: In this application, connected cars
periodically provide either status information (e.g., position, speed, acceler-
ation, etc.) or event information (e.g., traffic jam, icy road, fog, etc.). This
information is usually packed into stateless, individual messages or probes
which are either locally disseminated to neighboring vehicles, or sent to a
central point (base station, backend) where it can be aggregated and then
disseminated to other vehicles to make use of it.

– Enhanced navigation: An efficient connectivity is needed to enable a collab-
orative navigation, where each car can receive information in real-time from
other cars or from roadside infrastructure about noticeable events such as
road works or traffic congestions.

– Information society on the road: people are demanding high data rate and
low latency connectivity when travelling inside vehicles. The introduction of
the autonomous vehicle will increase the consumption of data traffic on the
move, as drivers no longer need to be focused on driving tasks.

One critical factor in the connected cars scenario is performance. Network
performance degradations could potentially impact people lives by affecting the
vehicle safety for instance by causing delays in the network. The cause of such
issues must be detected in advance, and avoided such that no performance degra-
dations occur in the network.

Moreover, in the current deployments and in order to encompass the con-
nected cars scenario, the system will need to be highly over provisioned (i.e.,
more resources are available in the network) based on the peak time connectiv-
ity requirements. This requires that a large amount of resources can be made
available very fast by the system at any time. This continuous time availability is
very expensive to maintain. Therefore, an efficient and accurate service demand
prediction in the connected cars scenarios is necessary to accordingly provision
the network. This should lead to optimizing performance and the use of available
network and VM resources, maintaining the Quality of Service (QoS).

4 Proposed solution

4.1 Architecture

The high-level architecture proposed to solve the problems stated in the con-
nected cars scenario is depicted in Figure 1. In a nutshell, we propose defining
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a Machine Learning cluster, the Data Analyser, and two data flows: an input
data flow for measurements and monitoring, and an output data flow for poli-
cies. Therefore, we need two APIs to interact with our solution. Using these
APIs, the deployment and integration of an existing virtualized infrastructure
with the proposed solution is limited to the data ingest and the policy recom-
mendation embodied in two APIs that decouple our solution from the analysed
and optimized system. The APIs would be based on HTTP, and would use
JSON/Openstack like structured data.

The Data Analyser, which is the core Machine Learning module, is fed by
metrics data that aim to describe the state of the network. Some of this data
comes from the telecommunications operator, while the rest of the data is con-
ventional data gathered from individual VMs or from the VM management soft-
ware. The Data Analyser contains different Machine Learning algorithms, that
are used to detect different kind of events. The main aim of the Data Analyser
is to generate rules and to inform the Policy Manager for resource provisioning.
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Fig. 1. High-level architecture for machine learning based network management.

As it is evident, the autonomic management of virtualized telecommunication
network infrastructures inherently represents a Big Data problem, as it naturally
encompasses issues of data Velocity, Variety and Volume: decisions need in prin-
ciple to be taken in real-time, based on incomplete information represented in
large collections of high-dimensional measurements jointly acquired by different
layers of the networking stack and therefore residing in largely separated de-
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scriptor sub-spaces. This characteristic of the problem needs to be taken into
account when devising a working solution to the problem.

If the Machine Learning subsystem needs to execute network load classifica-
tion and forecasting functions in order to support operational and cost-effective
management decisions, then we consider that this effectivity requires both that:

– The metrics acquisition, storage and the initial data reduction and analysis
components are physically co-located as close as possible in order to minimize
the cost of transferring large volumes of data from one component to another.

– The joint metrics acquisition, storage and pre-analysis elements form a pyra-
midal decomposition of Composites in the sense of [10] (cfr. figure 2) that
progressively reduce and abstract metrics to higher and higher levels, propos-
ing (e.g. horizontal and vertical scaling) remediation measures at a local level
while delegating higher-level contextual ones to parent levels in a Map/Reduce
pyramid [11].

Fig. 2. Joint metrics acquisition, storage and pre-analysis elements form a pyramidal
decomposition of Composites in the sense of [10] that progressively reduce and abstract
metrics.

Distributed real-time analytics architectures beyond the Lambda need to be
considered for the effectual processing of this kind of streaming data.
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While large scale near real-time data processing is a crucial component, stan-
dard architectures typically only permit batch processing strategies on large scale
metrics collections.

As per [12], we propose instead to consider the streaming approach as the
standard one for cognitive NVF self-management, adapting large and historical
batch data processing to a near-real time scenario by task queueing and smart
scheduling. To this end, we propose to consider how the organization of the
data on N-dimensional lattices and the locality of access patterns in the spatio-
temporal and in the resolution dimensions can allow us to define and exploit
a methodology that is based on streaming cluster computing frameworks [13],
Hilbert curve scheduling [14] and multi-scale pyramid decompositions for op-
timizing access to distributed storage and computing resources and maximize
perceived processing speed in real-time operations.

In doing so, we propose adapting an architectural approach from the field of
Earth Observation data mining to improve on the ‘Lambda architecture’ [15],
the prevalent approach in managing the contradiction between the large sizes of
metrics data and the significant data rates their processing involves.

4.2 Required components and proposed methods

Network Sensorization The collection, management and analysis of metrics
describing the state of a virtualized telecommunications network requires that
components are set up and assembled in a proper architecture (see again Fig-
ure 2) to that end.

Requirements for this set of components include:

– The availability of a well-defined querying API allowing standardized access
to the collected metrics.

– Fully automatic setup and deployment for the components and the resulting
composed architecture.

– Open metric protocol defining the ways in which metrics data is formatted
and transmitted through the network.

– Scalability of the resulting component set, especially with respect to scenar-
ios in which the generation, transmission, storage and processing of a large
volume of small I/O operations represents the normal mode of operation of
the sub-system.

Required components include:

– A metrics gathering component capable of receiving the relevant measures
generated by the monitored system, such as StatsD 8

– Listener daemons capable of aggregating metrics from multiple gathering
components. It is in this case fundamental to anticipate and address per-
formance issues at scale, for instance by exploiting highly concurrent imple-
mentations

8 https://github.com/etsy/statsd
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– A metrics database capable of locally storing the aggregated measures so
that at least short term historical analysis is possible. Again, availability
issues at scale need to be addressed.

– A trend analysis component that implements and makes available the Ma-
chine Learning core functionality.

Distributed optimization and Machine Learning It is important to note
that all problems that are solved through data analysis, particularly through
the use of Big Data statistical and machine learning algorithms, share a few key
characteristics. First, the datasets are often extremely large, consisting of hun-
dreds of millions or billions of training examples; second, the data is often very
high-dimensional, because it is possible to measure and store very detailed infor-
mation about each example; and third the data can be stored or even collected
in a distributed manner. As a result, it is essential to develop algorithms that
are both rich enough to capture the complexity of modern data, and scalable
enough to process huge datasets in a parallelized or fully decentralized fashion.

For our particular problem, mathematical optimization can be used as an aid
to a human decision maker, system designer, or system operator, who supervises
the dimensioning of an NFV architecture, checks the results, and modifies the
problem (or the solution approach) when necessary. In a number of scenarios
excluding on-line applications, this human decision maker also carries out any
actions suggested by the optimization problem. As an alternative, for on-line
scenarios embedded optimization procedures can be used to automatically make
real-time choices, and even carry out the associated actions, with no (or little)
human intervention.

4.3 Scenario evaluation

In scenarios dedicated to the management of important telecommunication in-
frastructures such as the one considered here, is crucial to define and execute
appropriate validation activities proving that an operational solution is feasible,
applicable to different operational contexts, and that it will bring the expected
performance benefits.

Here, performance capturing through probes that enable quantitative assess-
ment becomes a key side of the solution. The KPIs and Quality of Service (QoS)
are widely used. KPIs depend in a highly intricate manner on the structure
and dynamics present in the network. While QoS score is determined by the
transport network design and provisioning of network access, terminations and
connections.

The connected cars scenario can be developed in two different configurations,
depending on whether the application is based on low-level data (e.g., raw data
from camera sensors) or based on high-level data (objects or events detected)
[8]:

– High-level data transmission requires a medium data rate (up to 1 Mbit/s)
with a very low tolerance on errors (10−5).
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– Low-level data (mainly video streaming) requires a high data rate (up to
10-20 Mbit/s) with a medium tolerance on errors (10−2).

The connected cars scenario also requires:

– End-to-end latency of less than 5 ms for message sizes of about 1600 bytes.
– Data is sent either event-driven or periodically with a rate of about 10 Hz.
– Minimum throughput: 3Mbit/s. The system under consideration requires

high reliability rather than high throughput [9].

In order to measure these parameters and apply policies there is a set of
frameworks and plugins that can be used on top of an OpenStack infrastructure.
Neutron9 is the interface of OpenStack to configure the network that helped by
ML2 driver provides network attributes. While other solutions like Ryu10 or
OpenDaylight11 allows setting QoS policies over Open vSwitches using an Open
vSwitch database (OVSDB).

5 Conclusions and future work

Current network management devices are generally proprietary and closed, and
have very low improvement potential. The state-of-the-art methods force net-
work operators to implement complex policies and tasks with a limited set of
low-level device configuration commands. The softwarisation and virtualisation
of common network functions can raise the level of abstraction, simplifying and
making more flexible the network configuration process.

This new network management paradigm can also impact on the automotive
sector, specially with the future adoption of 5G technology, which is expected
to be aligned wit this paradigm. V2X communications will need to deal with
a big amount of data in an efficient and reliable way. A software-based self-
managing 5G network could more easily fulfill the requirements needed for this
purpose. Furthermore, there can be a great number of new applications due to
the introduction of technologies that allow improved performances.

In this article, we focus on machine learning as a key enabling technology for
autonomic network management. We first identify the features and challenges of
a connected cars scenario, and then we propose a preliminary approach towards
autonomic network management. However, it does not exist a generic machine
learning mechanism suitable for all use cases. Developers need to design a specific
learning path for each use case, which may combine multiple approaches or
algorithms together. So instead of proposing a specific approach, we propose a
generic architecture that can accommodate different machine learning strategies.

The deployment and validation of our solution require further and intensive
research and development work, which is planned to be done inside the frame-
work of an ongoing H2020 European Project.

9 https://blueprints.launchpad.net/neutron/+spec/quantum-qos-api,
https://blueprints.launchpad.net/neutron/+spec/ml2-qos

10 http://osrg.github.io/ryu/
11 https://wiki.opendaylight.org/
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